
Chapter 3: Contractors
Luc Jaulin,

ENSTA-Bretagne, Brest, France.

http://www.ensta-bretagne.fr/jaulin/

1 Definition

The operator CX : IRn→ IR
n is a contractor for X ⊂

Rn if

∀[x] ∈ IRn,
�
CX([x]) ⊂ [x] (contractance),
CX([x]) ∩ X = [x] ∩ X (completeness).

The operator C : IRn → IR
n is a contractor for the

equation f (x) = 0, if

∀[x] ∈ IRn,
�
C([x]) ⊂ [x]
x ∈ [x] et f (x) = 0⇒ x ∈ C([x])

CX is monotonic if [x] ⊂ [y]⇒ CX([x]) ⊂ CX([y])
CX is minimal if ∀[x] ∈ IRn, CX([x]) = [[x] ∩ X]
CX is thin if ∀x ∈ Rn, CX({x}) = {x} ∩ X
CX is idempotent if ∀[x] ∈ IRn, CX (CX([x])) = CX([x])
CX is convergent if [x](k)→ x ⇒ CX([x] (k))→ {x} ∩

Exercise. Replace the symbol ⊲⊳ either by⇒,⇐ or⇔.

CX minimal ⊲⊳ CX idempotent
CX thin ⊲⊳ CX minimal
CX minimal ⊲⊳ CX monotonic
CX thin ⊲⊳ CX convergent

Solution. We have

CX minimal ⇒ CX idempotent
CX thin ⇐ CX minimal
CX minimal ⇒ CX monotonic
CX thin ⇐ CX convergent

intersection (C1 ∩ C2) ([x]) = C1 ([x]) ∩ C2 ([x])
union (C1 ∪ C2) ([x]) def

= [C1 ([x]) ∪ C2 ([x])]
composition (C1 ◦ C2) ([x])

def
= C1 (C2 ([x]))

repetition C∞ def
= C ◦ C ◦ C ◦ . . .

repeat intersection C1 ⊓ C2 = (C1 ∩ C2)∞
repeat union C1 ⊔ C2 = (C1 ∪ C2)∞

Exercise. If C1,C2,C3,C are contractors, do we always

have

C∞ is idempotent (yes/no)
(C1 ∩ C2)∞ = (C1 ◦ C2)∞ (yes/no)
C1 minimal and C2 minimal ⇒ C1 ∪ C2 minimal (yes/no)
C1 minimal and C2 minimal ⇒ C1 ∩ C2 idempotent (yes/no)

Solution.

C∞ is idempotent Yes (if Sc
(C1 ∩ C2)∞ = (C1 ◦ C2)∞ Yes
C1 minimal and C2 minimal ⇒ C1 ∪ C2 minimal Yes
C1 minimal and C2 minimal ⇒ C1 ∩ C2 idempotent No

2 Projection of constraints

Exercice. Let x, y, z be 3 variables such that

x ∈ [−∞, 5],
y ∈ [−∞, 4],
z ∈ [6,∞],
z = x+ y.

Contract the intervals for x, y, z.

Solution.

[x] = [2, 5]

[y] = [1, 4]

[z] = [6, 9]

To project a constraint (here, z = x + y), is to com-

pute the smallest intervals which contains all consistent

values.

For our example, this amounts to project onto x, y and

z the set

S = {(x, y, z) ∈ [−∞, 5]× [−∞, 4]× [6,∞] | z = x+ y} .

3 Numerical method for projec-

tion

Since x ∈ [−∞, 5], y ∈ [−∞, 4], z ∈ [6,∞] and z =
x+ y, we have

z = x+ y ⇒ z ∈ [6,∞] ∩ ([−∞, 5] + [−∞, 4])
= [6,∞] ∩ [−∞, 9] = [6, 9].

x = z − y ⇒ x ∈ [−∞, 5] ∩ ([6,∞]− [−∞, 4])
= [−∞, 5] ∩ [2,∞] = [2, 5].

y = z − x⇒ y ∈ [−∞, 4] ∩ ([6,∞]− [−∞, 5])
= [−∞, 4] ∩ [1,∞] = [1, 4].

The contractor associated with z = x+ y is.

Algorithm pplus(inout: [z], [x], [y])
1 [z] := [z] ∩ ([x] + [y]) ;
2 [x] := [x] ∩ ([z]− [y]) ;
3 [y] := [y] ∩ ([z]− [x]) .

The projection procedure can be extended to other ternary

constraints such as mult: z = x · y, or equivalently

mult �
�
(x, y, z) ∈ R3 | z = x · y

�
.

The resulting projection procedure becomes

Algorithm pmult(inout: [z], [x], [y])
1 [z] := [z] ∩ ([x] · [y]) ;
2 [x] := [x] ∩ ([z] · 1/[y]) ;
3 [y] := [y] ∩ ([z] · 1/[x]) .

For the binary constraint

exp � {(x, y) ∈ Rn|y = exp (x)} ,

the associated contractor is

Algorithm pexp(inout: [y], [x])
1 [y] := [y] ∩ exp ([x]) ;
2 [x] := [x] ∩ log ([y]) .

Any constraint for which such a projection procedure is

available will be called a primitive constraint.

Example. Consider the primitive equation:

x2 = sinx1.

Forward contraction

Backward contraction

Decomposition

x+ sin(xy) ≤ 0,
x ∈ [−1, 1], y ∈ [−1, 1]

Decomposition

x+ sin(xy) ≤ 0,
x ∈ [x], y ∈ [y]

can be decomposed into





a = xy
b = sin(a)
c = x+ b

,
x ∈ [x] a ∈ [−∞,∞]
y ∈ [y] b ∈ [−∞,∞]

c ∈ [−∞, 0]

Forward-backward contractor (HC4 revise)

For the equation

(x1 + x2) · x3 ∈ [1, 2] ,

we have the following contractor:

algorithm C (inout [x1] , [x2] , [x3])
[a] = [x1] + [x2] // a = x1 + x2
[b] = [a] · [x3] // b = a · x3
[b] = [b] ∩ [1, 2] // b ∈ [1, 2]
[x3] = [x3] ∩ [b]

[a]
// x3 =

b
a

[a] = [a] ∩ [b]
[x3]

// a = b
x3

[x1] = [x1] ∩ [a]− [x2] // x1 = a− x2
[x2] = [x2] ∩ [a]− [x1] // x2 = a− x1

Properties

(C∞1 ∩ C∞2)∞ = (C1 ∩ C2)∞

(C1 ∩ (C2 ∪ C3)) ⊃ (C1 ∩ C2) ∪ (C1 ∩ C3)�
C1 minimal
C2 minimal

⇒ C1 ∪ C2 minimal

Contractor on images

The robot with coordinates (x1, x2) is in the water.

4 Propagation

A CN (Constraint Network) is composed of

1) a set of variables V = {x1, . . . , xn} ,
2) a set of constraints C = {c1, . . . , cm} and

3) a set of interval domains {[x1], . . . , [xn]}.

Principle of propagation techniques: contract [x] =

[x1]× · · · × [xn] as follows:

(((((([x]⊓c1) ⊓ c2) ⊓ . . .) ⊓ cm)⊓c1)⊓c2) . . . ,

until a steady box is reached.

4.1 Example 1

Consider the system of two equations.

y = x2

y =
√
x.

We can build two contractors

C1 :
�
[y] = [y] ∩ [x]2
[x] = [x] ∩

�
[y]

associated to y = x2

C2 :
�
[y] = [y] ∩

�
[x]

[x] = [x] ∩ [y]2
associated to y =

√
x

Contractor graph

4.2 Example 2 (local consistency)

If C∗
S1

and C∗
S2

are two minimal contractors for S1 and

S2 then

CS = C∗S1 ◦ C
∗
S2
◦ C∗

S1
◦ C∗

S2
◦ . . .

is a contractor for S = S1 ∩ S2, but it is not always

optimal. This is the local consistency effect.

Exemple. Consider the system
�
y = 3 sin(x)
y = x

x ∈ R, y ∈ R.

5 Contractor algebra

intersection (C1 ∩ C2) ([x]) def
= C1 ([x]) ∩ C2 ([x])

union (C1 ∪ C2) ([x]) def
= [C1 ([x]) ∪ C2 ([x])]

composition (C1 ◦ C2) ([x]) def
= C1 (C2 ([x]))

repetition C∞ def
= C ◦ C ◦ C ◦ . . .

repeat intersection C1 ⊓ C2 = (C1 ∩ C2)∞
repeat union C1 ⊔ C2 = (C1 ∪ C2)∞

6 A link between matrices and con-

tractors

linear application → matrices

L :
�
α = 2a+ 3h
γ = h− 5a → A =

	
2 3
1 −5

We have a matrix algebra and Matlab.

We have: var(L) = {a, h}, covar(L) = {α, γ} .
But we cannot write: var(A) = {a, h}, covar(A) =

{α, γ}.

constraint → contractor

a · b = z →

Contractor fusion
�
a · b = z → C1
b+ c = d → C2

Since b occurs in both constraints, we fuse the two

contractors as:

C = C1 × C2⌋(2,1)
= C1|C2 (for short)

7 Circuits

Domains

E ∈ [23V, 26V]; I ∈ [4A, 8A];
U1 ∈ [10V, 11V];U2 ∈ [14V, 17V];
P ∈ [124W, 130W];R1 ∈ [0,∞[and R2 ∈ [0,∞[.

Constraints

(i) P = EI, (ii) E = (R1 +R2) I, (iii) U1 = R1I,
(iv) U2 = R2I, (v) E = U1 + U2.

Solution set

S =











E
R1
R2
I
U1
U2
P






∈






[23, 26]
[0,∞[
[0,∞[
[4, 8]
[10, 11]
[14, 17]
[124, 130];






,






P = EI
E = (R1 +R2) I
U1 = R1I
U2 = R2I
E = U1 + U2






variables

E in [23 ,26];

I in [4,8];

U1 in [10,11];

U2 in [14 ,17];

P in [124,130];

R1 in [0 ,1e08];

R2 in [0 ,1e08];

contractor_list L

P=E*I;

E=(R1+R2)*I;

U1=R1*I;

U2=R2*I;

E=U1+U2;

end

contractor C

compose(L);

end

contractor epsilon

precision(1);

end

Quimper returns

[24; 26]× [1.846; 2.307]× [2.584; 3.355]
× [4.769; 5.417]× [10; 11]× [14; 16]× [124; 130] ,

i.e.,

E ∈ [24; 26] , R1 ∈ [1.846; 2.307] ,
R2 ∈ [2.584; 3.355], I ∈ [4.769; 5.417] ,
U1 ∈ [10; 11] , U2 ∈ [14; 16] ,
P ∈ [124; 130] .

