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1 Definition



The operator Cx : IR™ — IR" is a contractor for X C
R™ if

n | Cx([x]) C [X] (contractance),
vix] € IR, { Cx([x])NX =[x] "X (completeness).



X2 - [X]






The operator C : IR"™ — IRR"™ is a contractor for the
equation f(x) =0, if

C([x]) C [x]

\VI[X] S HR”) { x € [X] et f (X) =0=x¢€ C([X])



Cx is monotonic if

x] C [y] = Cx([x]) € Cx([y])

Cx is minimal if

vix] € IR™, Cx([x]) = [[x] N X]

Cx is thin if

vx € R", Cx({x}) = {x}nX

Cx Is idempotent if

vIx] € IR™, Cx (Cx([x])) = Cx([x])

Cx Is convergent if

x](k) = x = Cx([x](F)) = {x} 0




Exercise. Replace the symbol < either by =,<= or <.

Cx minimal > Cx idempotent
Cx thin > Cx minimal

Cx minimal >t Cx monotonic
Cx thin > Cx convergent



Solution. We have

Cx minimal = Cx idempotent
Cx thin < Cx minimal

Cx minimal = Cx monotonic
Cx thin < C(Cx convergent



intersection (C1NCo) ([x]) =C1 ([x]) NCo ([x])

def

union (C1UCo) ([x]) = [C1 ([x]) U Ca ([x])]
composition (C10Co) ([x]) & C1(Co ([x]))
repetition co®escoco. ..

repeat intersection | C1 M Cy = (C1 NCy)™>°

repeat union C1UCr = (CLUCy)™




Exercise. If C1,C>,C3,C are contractors, do we always
have

C°° is idempotent (yes/no)
(C1NC2)> =(C10C2)™ (ves/no)
C1 minimal and C» minimal = Cy U C» minimal (yes/no)
C1 minimal and C» minimal = C; N Cy idempotent (yes/no)



Solution.

C° is idempotent Yes (if S
(C1 N Cz)oo =(Cq0 Cz)oo Yes
C1 minimal and C» minimal = C7 U C> minimal Yes

C1 minimal and C» minimal = C; N C» idempotent No



2 Projection of constraints



Exercice. Let x, y, z be 3 variables such that

r € [—o0,5],
y € [—o0,4],
z € [6,00],
zZ = T +Y.

Contract the intervals for x, y, z.



Solution.

2, 5]
1, 4]
6, 9]




To project a constraint (here, z = = + y), is to com-
pute the smallest intervals which contains all consistent
values.

For our example, this amounts to project onto x,y and
z the set

S ={(z,y,2) € [-00,5] X [—00,4] X [6,00] | z=x + y}.



3 Numerical method for projec-

tion



Since x € [—00,5],y € [-00,4],2 € [6,00] and z =
x + y, we have

z=x+y= z€ [6,00]N([—00,5]+ [—00,4])

r=z—y= x € [—00,5]N([6,0] —[—00,4])
— :_0075] M [2700 — 275
Yy=z—r= yc —OO,4]ﬁ([6,00——OO,5)
= [—o0,4] N[1, 00] = [1, 4].




The contractor associated with z = x + y is.

Algorithm pplus(inout: [z], [x], [y])

L [2] := [l 0 ([=] + [9]);
2 [z] := [x] N ([2] = [9]);
3 [yl =yl (lz] = [z]) .




The projection procedure can be extended to other ternary
constraints such as mult: z = x - y, or equivalently

multé{(x,y,z)€R3 | z:x-y}.

The resulting projection procedure becomes

Algorithm pmult(inout: [z], [z], [y])
L [z] =[] N ([=] - [v]):

2 |x] :=[=z] N ([2] - 1/[y]);

3 [wl=1[yln(z]-1/[z]).




For the binary constraint

exp £ {(z,y) € R"|y = exp ()},

the associated contractor is

Algorithm pexp(inout: [y], [z])
1 [yl == [yl Nexp([]);
2 [z] == [=z] Nlog ([y]) -




Any constraint for which such a projection procedure is
available will be called a primitive constraint.



Example. Consider the primitive equation:

To = sinxy.









Backward contraction



Decomposition

x + sin(zy) < 0,
T < [_17 1]7y S [_17 1]



Decomposition

x + sin(zy) < 0,
z € [z],y € [y]
can be decomposed into
a=zy x € [z] a € [—o0, 0]

b=sin(a) , ye€ly] be[-o0,00]
c=x+b c € [—o0,0]



Forward-backward contractor (HC4 revise)

For the equation

(21 +22) - 23 € [1,2],

we have the following contractor:

e_1|gorithm C (inout [z1], [z2], [x3])

a] = [z1] + [z2] /] a=w1+x2
b] = [a] - [z3] /] b=a-3
b] =[b] N [1,2] //bell,2]
03] = [23] N {4 /) a3 =1t

a] = [a] N &) /] a=2%

c1] = [z1] N [a] —[x2] // @1=0a—
zo] =[zo] N [a] —[z1] //xo=0a—mz




Properties

(CT°NC3®)™
(C1N(C2UC3))
{ C1 minimal

C> minimal

(C1 N Cp)™®
(C1NC2) U (C1NC3)

J U

C1 U Co minimal



Contractor on images

The robot with coordinates (x1, z3) is in the water.









4 Propagation



A CN (Constraint Network) is composed of
1) a set of variables V = {z1,...,zn},

2) a set of constraints C = {c1,...,cm} and
3) a set of interval domains {[z1], ..., [zn]}.



Principle of propagation techniques: contract [x] =
[£1] X - - - X [zn] as follows:

((((((X]TTer) Mex) Me ) Mem) Mey) Mep) - -

until a steady box is reached.



4.1 Example 1

Consider the system of two equations.

y = a°

y = V.



We can build two contractors

vl =N [z]? . 2
Cq: { 2] = [2] N \/m associated toy =«

: [y]:[y]ﬂ\/m associated to y = v/«
62'{[x1=[x1m[y12 ted toy = v



Cly=x2

CzJ’:ﬁ

Contractor graph



Y,

7z




Y,

7z

























4.2 Example 2 (local consistency)



If C§1 and C§2 are two minimal contractors for S7 and
So then

ngcglocgzocglocgzo...

is a contractor for S = S7 N Sy, but it is not always
optimal. This is the local consistency effect.



Exemple. Consider the system

(v

3sin(x)

. r€eR, yeR.



10



10















10



10






10



5 Contractor algebra



intersection (C1 N Co) ([x]) def C1 ([x]) NCa ([x])
(C1UCo) (Ix]) = €1 ([x]) U Co (Ix))]
composition (C10Co) ([x]) o C1(Co ([x]))
repetition C° def CoCoCo...

repeat intersection | C1 M Cy = (C1 NCy)™°

repeat union C1UCy = (CLUC)™®




6 A link between matrices and con-

tractors



linear application — matrices
) a = 2a+3h (2 3
ﬁ'{v — h—>5a _>A_<1 —5)

We have a matrix algebra and Matlab.
We have: var(L) = {a, h}, covar(L) = {a,v}.
But we cannot write: var(A) = {a, h}, covar(A) =

{a, 7}



constraint

contractor




Contractor fusion

a-b=z — (C
b+c=d — (o

Since b occurs in both constraints, we fuse the two
contractors as:

C = G xCloy
C1|Co (for short)






7 Circuits






Domains
E € [23V,26V];I € [4A,8A];

U, € [10V,11V]; U, € [14V,17V];
P € [124W,130W]; R; € [0, oo[ and Ry € [0, oo.

Constraints

(i) P=FI, (i) E=(R1+ Ry) I, (iii) U3y = R11,
(iv) Up = RoI, (v) E=U;+ Us.



Solution set

[23,26]
[0, oo
[0, oo
[4, 8]

[10, 11]

[14, 17]

N\

\ [124,130]; /

(P=FEI
E=(R1+Ry)]I
Uy = BRI
Us = Rol

\ E=U;+ U




variables
E in [23 ,26];
I in [4,8];
Ul in [10,11];
U2 in [14 ,17];
P in [124,130];
R1 in [0 ,1e08 1;
R2 in [0 ,1e08 1;
contractor_list L
P=ExI;
E=(R1+R2) *I;
Ul=R1x*I;
U2=R2*1I;
E=U1+U2;

end



contractor C
compose (L) ;

end

contractor epsilon
precision(1);

end



Quimper returns

[24; 26] x [1.846;2.307] X [2.584; 3.355]
x [4.769; 5.417] x [10; 11] x [14; 16] x [124;130],

| D= [24; 26] : R]_ - [1.846; 2.307] ,
Ry € [2.584;3.355], I € [4.769;5.417],
Uy € [10;11], U, € [14;16],

P € [124;130] .



