
Project Report

SHEPHERD PROJECT

March 2, 2017

Students

El Jawad.A, Chanu.S, Sola.Y, Welte.A, Soulie.C, Benet.P, Mehdi.N,

Galland.A, Barronier.R, El Abdalaoui.Z, Finand.C, Zhu.L, Pertierre.S,

Ennouhi.F, Bernardes.E, Tanguy.F, Martin.P

Supervisor

Luc Jaulin, ENSTA Bretagne

Abstract

1 The SHEPHERD Project aims to command a swarm of robotic oceanographic buoys by the astute use of
the di�erent directions of the current at along the water column, with the help of an acoustic localization system
provided by robotic sailboats acting as shepherds. This paper describes the simulation created to validate the
foundations of the project. This simulation uses simple models and equations to e�ectively command a swarm
of robots.

1Author : Simon CHANU

Contents

1 Presentation of the Shepherd project 1
1.1 Given issue . 1
1.2 Our solution . 1
1.3 Interval Analysis . 2

1.3.1 Introduction . 2
1.3.2 Application . 2

1.4 TDOA . 3
1.4.1 Introduction . 3
1.4.2 Method principle . 3
1.4.3 Geolocation problem with random error . 4

2 Team management methods 5
2.1 Scrum . 5

2.1.1 Agile Software Development . 5
2.1.2 Scrum Methodology . 5

2.2 Github . 8
2.2.1 Introduction to Git and Version control systems . 8

2.2.1.1 Version control system . 8
2.2.1.2 Git . 8
2.2.1.3 How does it work ? . 9

2.2.1.3.1 Commands . 9
2.2.1.3.2 Branches . 9

2.2.2 Github . 11
2.2.3 Architecture of the project . 11

2.2.3.1 First decentralized architecture . 11
2.2.3.2 Migration on ROS . 11

3 Simulation theory 12
3.1 Simulation of the environment . 12
3.2 Simulation of the sailboats . 12

3.2.1 External forces and assumption . 13
3.2.2 State representation . 13
3.2.3 Control algorithm . 13

3.3 Simulation of the buoys . 14
3.3.1 The Controller of the buoys . 14
3.3.2 The state equations of the buoys . 14

4 Simulation architecture 16
4.1 ROS presentation . 16
4.2 ROS architecture of the project . 18

4.2.1 Overview of the architecture . 18
4.2.2 Detailled architecture of sailboats and buoys . 18

5 Display 20
5.1 Simulink 3D Animation . 20

5.1.1 Introduction . 20
5.1.2 How does it work ? . 20

5.2 Matplotlib . 21
5.2.1 Presentation . 21

1

5.2.2 Operating Structure and Code Elements . 21
5.2.2.1 Code Structure . 21
5.2.2.2 Sea Plot Utility . 22

5.2.3 Result . 22
5.3 OpenGl . 23

5.3.1 Presentation . 23
5.3.2 3d features . 24
5.3.3 Camera control . 24
5.3.4 Communication with the Simulation . 24

5.4 Unity3D . 25
5.4.1 Presentation . 25
5.4.2 The Environment of Simulation . 25

5.4.2.1 Graphical Objects . 25
5.4.2.2 Buoy and Sailboat creation . 27
5.4.2.3 SimulationManager . 27

5.4.3 Communication with the simulation . 28
5.4.3.1 Server-Client link . 28
5.4.3.2 JSON format . 28

5.4.4 Results . 28
5.4.5 Thought for enhancement . 29

2

List of Figures

1.1 Buoy localization and control . 2
1.2 The SIVIA algorithm. 2
1.3 Illustration of the SIVIA algorithm (blue:outer area, red:inner area(buoy), yellow:estimated po-

sition of the buoy green: sailboats) . 3
1.4 Time di�erence values are stored by the buoy. 4

2.1 An overview of the Scrum methodology. 6
2.2 An example of a kanban Board. 6
2.3 An example of a burn-down chart. 7
2.4 Logo of the platform taiga.io. 7
2.5 Logo of Git . 8
2.6 Branching system . 10
2.7 Logo of Github . 11

3.1 Force illustration and state representation of sailboat . 13

4.1 Overview of ROS Architecture . 18
4.2 Buoy ROS Architecture . 19
4.3 Sailboat ROS Architecture . 19

5.1 A sailboat simulation with simulink 3d Animation . 20
5.2 Messages �ow between the simulation and the display . 21
5.3 Display with matplotlib plotting . 23
5.4 simulation rendering with opengl and SDL . 24
5.5 Plane with texture and after modeling . 26
5.6 Buoy (left) and Sailboat (right) models . 27
5.7 Screenshot of a scene displayed with Unity3D . 29

Chapter 1

Presentation of the Shepherd project

1.1 Given issue

1 The issue the project is trying to solve in an issue raised by IFREMER. They wish to realize a three dimensional
map of the turbulent �ow of currents in ocean. To this end, they wish to deploy a swarm of buoy robots, left
to drift with the current, at a know variable depth.

Our mission was to design such a swarm of buoy robots, their shepherd sailing boats2 and to realize a
simulation of experiment through interval calculus.

1.2 Our solution

3 In order to solve the given issue we decided to introduce "shepherd sailboats". Because our buoys are unable
to locate themselves via GPS while under water, the sailboats act as interfaces between the GPS network and
the underwater buoys.

There will be four shepherd boats providing a frame for the buoys to locate themselves in. This localization
will be realized through calculating the Time Di�erence Of Arrival 4 of four acoustics pings. Each boat send a
unique synchronized ping received by all the buoys that can then estimate their position relatively to the boats.

This allows us to have a relative control over our swarm of buoys dispersion. Having a map, or at least
a local map, we can indeed chose the current that best match our expectations for the chosen dispersion or
displacement of the swarm. Such a dispersion and or position will be a �xed chosen interval of positions in the
four sailboats frame.

However the positioning is relative to the sailboats and not necessarily known by the buoys. So they need
to come back to the surface during the mission in order to precisely update their position and centralize their
data.

1Section Written by Camille Finand
2see "Our solution" section for more details
3Section Written by Camille Finand
4see section 1.3 TDOA method

1

Figure 1.1: Buoy localization and control

The Buoys are controlled in depth via Ballasts and pressure captors. The sailboats are not controlled in
position but rather follow lines that forms triangle. It is indeed much simpler than having them strictly sticking
to a point, and we don't really need them to be on a speci�c place at a given time, they just need to be close
enough and far enough to each other to give the buoys an adapted frame in which to position themselves.

1.3 Interval Analysis

1.3.1 Introduction

5 Interval analysis aims to use sets of intervals, rather than sets of real numbers in arithmetic. Thus performing
the same simple operations such as sum and multiplication on intervals. The usefulness of this particular
method lies in its tolerance to uncertainty. In the SHEPHERD Project our sensors and methods inherently
cause uncertainty, making the use of Interval Analysis in the localization procedure almost compulsory.

1.3.2 Application

In our simulation we restricted the problem to a buoy trying to �nd its location using the data fed by four
sailboats. We then use the SIVIA algorithm to estimate the position of the buoy. The Set Inversion Via Interval
Analysis globally consists of performing set inversion.

if f: Rn → Rm and Y ⊂ Rm (1.1)

X = {x ∈ Rn |f(x) ∈ Y} = f−1(Y)

We strongly recommend viewing the videos of M. Luc Jaulin on this subject which can be found on YouTube.

Figure 1.2: The SIVIA algorithm.

With the SIVIA algorithm, a list of boxes is generated which corresponds to the localization of the robot.
There are three di�erent areas, one representing the position of the robot (the inner area). The outer area does

5Section written by M. Fadil Ennouhi and F. Tanguy

2

not contain the robot, and the last area correspond to the border, the size of this area depends on the minimum
size of the boxes.

Figure 1.3: Illustration of the SIVIA algorithm (blue:outer area, red:inner area(buoy), yellow:estimated position
of the buoy green: sailboats)

1.4 TDOA

1.4.1 Introduction

6 In our settings we have four boats that should simultaneously send signals to the buoy, informing their positions
(known due to each boat's GPS system) and time of emission (each boat has also an internal clock, considered
to be synchronized). The buoys have to be programmed in a way that make it possible for them to receive these
data and calculate their position.

One possible way to solve this problem is to put a clock inside each buoy. In this way, using the fact that
we know the signal's velocity in the sea, we can easily calculate the distances of the buoy to each one of the
boats by doing the following calculation:

dn = ||p− qn|| = c(tn − t0) (1.2)

Where dn is the distance of the buoy to the nth boat, qn = (qnx, qny, qnz) is the position of said boat,
p = (px, py, pz) is the buoy's position in the sea, c is the signal's velocity in the medium, t0 is the time of
emission and tn is the time when the buoy receive the nth boat's signal. We can calculate all distances in this
way and then triangulate the buoy's position.

It is indeed a simple and e�cient method of calculation. Nevertheless, it can be di�cult to guarantee that
the buoy's internal clock is well synchronized with those of the boats, raising the possibility of high uncertainties
in the calculations. It is not impossible to do so, but the needed precision clock can be expensive. The Time
Di�erence of Arrival (TDOA) method is proposed to replace this method of calculation and overcome this
di�culty.

1.4.2 Method principle

The method consists in substituting the buoy's clock with a chronometer. The chronometer is not capable of
knowing the exact moments of the signals arrivals, but it is able to keep track of the time di�erence between
each signal.

When the buoy receives the �rst boat's signal, if launches the chronometer and waits for the arrival of the
other signals, keeping track of the time between then. They buoy stores then the values τ2 = t2− t1, τ3 = t3− t1
and τ4 = t4 − t1; as shown in the Figure 1.4.

6Section written by E. Bernardes and S. Pertierre

3

Figure 1.4: Time di�erence values are stored by the buoy.

The equation 1.2 is still valid, and applying it to our project, we have the system of linear equations described
in 1.4.

d1 = ||p− q1|| = c(t1 − t0)

d2 = ||p− q2|| = c(t2 − t0) (1.3)

d3 = ||p− q3|| = c(t3 − t0)

d4 = ||p− q4|| = c(t4 − t0)

Substituting the time di�erences τn in 1.4, we have the following �nal system:

||p− q1|| = c(t1 − t0)

||p− q2|| = c(t1 + τ2 − t0) (1.4)

||p− q3|| = c(t1 + τ3 − t0)

||p− q4|| = c(t1 + τ4 − t0)

Since qn, c, t0 and τn are all known, then the only unknowns in the system are t1, px, py and pz. Since we
have 4 equations and 4 unknowns, we can easily solve this system to �nd the p vector. Since the buoy's are
also equipped with ballasts, we also known the value pz in our case, our number of equations is bigger than our
number of unknown variables.

1.4.3 Geolocation problem with random error

7 We assume we are in 2D and there are 4 sailboat (as described in our problem de�nition). We generate a
gaussian random variable εi with mean 0 and variance ei. We not the time arrival of source 1 signal t1, it may
contain the receiver clock o�set.
We have thereby 4 equations:

||p− q1|| = c(t1 − t0) + ε0

||p− q2|| = c(t1 + τ2 − t0) + ε1 (1.5)

||p− q3|| = c(t1 + τ3 − t0) + ε2

||p− q4|| = c(t1 + τ4 − t0) + ε3

(1.6)

Known variables are: c, t0, qi, τi.
Unknown variables are: p, t1,εi
The problem is undetermined because of the noise on the estimation of distances.
The Geolocation problem becomes the following minimization problem:

J(x, t1) =
∑(

||x− x1|| − c(τi + t1 − t0)
)2

/e2
i , τ0 = 0 (1.7)

7The subsection "1.4.3 Geolocation problem with random error" were written by Lei Zhu.

4

Chapter 2

Team management methods

2.1 Scrum

1

2.1.1 Agile Software Development

The traditional methods of project management, such as the "V-Model" for example, are not appropriate with
software engineering. Indeed, they are too in�exible, they induce a lack of reactivity and they ask for too many
deliverables. These methods are predictive methods because they need to plan every single detail of the project,
before even starting to code anything.

A proof of this ine�ciency is the "Chaos Report", published in 1995 by the Standish Group, which studied
about 8380 software projects, taken from 365 companies. It showed that 16,2% of the projects were compliant
with the initial forecasts, 52,7% of them were over the initial budget and went over the initial deadline, and
31,1% of them were cancelled during their development.

Based on this observation, 17 experts in software engineering decided to create in 2001 the Agile Alliance
and "The Manifesto for Agile Software Development", which describes the values of the Agile methodology in
software engineering. There are four fundamental values in the Agile methodology :

• people and communication BEFORE processes and tools

• operational features BEFORE the documentation

• interacting with the client INSTEAD OF contractual relations

• accepting the change INSTEAD OF always following initial plans

Here are some of the most known methods : ASD (Adaptative Software Development), Crystal, DSDM
(Dynamic Software Development Method), Lean, Scrum, XP (eXtreme Programming). We used the Scrum
methodology in the SHEPHERD Project.

2.1.2 Scrum Methodology

The principle of the Scrum methodology is to organize the project in phases called "sprints" (see Figure 2.1).

1The section "2.1 Scrum" and its subsections "2.1.1 Agile Software Development" and "2.1.2 Scrum Methodology" were written
by Yoann SOLA.

5

Figure 2.1: An overview of the Scrum methodology.

Indeed, each time a feature of the software is de�ned by the team (at the beginning or during the project),
it is added to a database called the "Product Backlog".

A sprint is often a phase of several weeks, which has to produce a fully operational prototype at its end, even
if the prototype includes a feature which is not going to be kept for the �nal version of the software. For that
purpose, the features that are going to be implemented during the current sprint are taken from the Product
Backlog and are stored in an other database called the "Sprint Backlog".

In order to be sure that no one is encountering some troubles, daily morning meeting of 15 minutes are
organized by the team, called "Scrums".

Moreover, the Scrum methodology uses some useful tools such as the "Kanban Board" (see Figure 2.2) and
the "Burn-down Chart" (see Figure 2.3), which allows to check if the work will be �nished on time if we kept
the current pace of work.

Figure 2.2: An example of a kanban Board.

6

Figure 2.3: An example of a burn-down chart.

Finally, three roles are de�ned by the Scrum methodology for each member of the team :

• the Product Owner : it is the person who has to be constantly in relation with the client and has to �ll
the Product Backlog with him.

• the Scrum Master : this is the project manager who has to apply correctly the Scrum methodology and
has to be sure that each member of the team has good working conditions.

• member of the Scrum Team : this is the team of developer which has to implement features from the
Product Backlog.

In order to implement the Scrum methodology in the SHEPERD project, we use an online platform that
allows to easily manage all aspects of this Agile software development method : taiga.io (see Figure 2.4).

Figure 2.4: Logo of the platform taiga.io.

7

2.2 Github

2

Github is a website created as free public code repository that facilitate the use of the version control system
named Git.

2.2.1 Introduction to Git and Version control systems

2.2.1.1 Version control system

A version control system is a powerful tool used by software development teams to increase the e�ciency of
coding in team. It is heavily used, if not essential to nowadays software development. It can be a standalone
application (such as Git) or it can be embedded in other applications or webapplications (such as Wikipedia).
There is a large number of di�erent software that provides a version control system (VCS), but the most com-
monly used nowadays is Git.

The VCS several advantages :

• Simultaneous coding : two members of a team can edit the same �le then merge theirs modi�cations.
Thus it allows for e�cient teamwork. There is no need anymore to warn the other people of the team that
you are working on this speci�c �le and the others must not modify it. This is by far the most interesting
feature by making merging code very easy.

• Versioning : there is no need to create lots of backup anymore. You can revert the code to previous
modi�cations.

• Branching : the code can be separated in di�erent versions. This tool can be used to store versions of
the code for di�erent OS for example. But a more common use today is to split versions to implement
a new but still buggy feature in the code while the ancient version stays the same. This system will be
explained with git in details later.

• Cloud developpement : The code can be stored locally or on a remote server. Therefore this is
decentralized : it allows to get the sourcecode from anywhere you want and work on it very easily.
Moreover if the developer makes a huge mistake and delete everything, he can just download it back to
his computer from the remote server.

2.2.1.2 Git

Git is a version control software created by Linus Thorvald (Creator of Linux) in 2005. It was created at the
begining as a development tool for the linux kernel. The tool much quicker, secure and supporting distributed
development that any version control development at that time, This software is available on Linux, Windows,
Mac, Solaris. 3

Figure 2.5: Logo of Git

Git is now the most widely used source code management tool with 42.9% of professional software developers
using it.

4

2Section written by Simon Chanu
3https://git-scm.com/downloads
4https://eclipse.org/org/community_survey/Survey_Final_Results_2012.xls

8

2.2.1.3 How does it work ?

In this section, we will focus on the practical use of Git. First of all, git is a command line software. The main
commands are explained below.

2.2.1.3.1 Commands

• git clone : clone a repository from a remote server to a local folder.

• git status : give the current status of the repository and the state of its �les. It gives informations about
the changes in the repository : which �le has been modi�ed, deleted, created, which modi�cation will be
sent to the remote in case of a commit push.

• git pull : the main command to recover the changes from the remote server. If some changes have been
made to your local copy of the code, it will warn you an try an automatic merge of the �les. If there is
con�icts that can't be resolved automatically, it will warn the user and let it take care of them. It advised
to commit any changes to your local copy before pulling from the remote.

• git add : validate the changes so can be inserted in a commit.

• git commit : register the changes of the local repository so they can be sent to the remote. A git
commit must have an explanatory message which describes the changes and why did they happened. This
message can be short or long but an input is required from the user. A good habit is to always make
comprehensive messages about the changes, so if there is any problem, the code can be easily reverted to
a previous commit.

• git push : the main command to send the local changes to the remote. It sends the commit you have
registered with git commit. If any changes has been made on the remote and they haven't been pulled,
then the push will be rejected. The user must pull the changes or merge the codes to be able to push all
the commits.

• git merge : merge two version of a repository together. It takes one version and merge inside the
code from the other version. If the merge can't be done automatically because of unresolvable con�icts, a
merging process will begin. With a git status it is possible to see the con�icting �les. When the con�icting
�les have been modi�ed, add them and commit them to resolve the merge.

2.2.1.3.2 Branches As it was said above, the code can be split into di�erent existing version among the
same repository. These version are called branches. The �gure 2.6 explains how to use it e�ectively.

In a professional software project there is at least usually two branches : Master and develop.

• Master is the stable, reliable last working version of the code. It's the one customers will download.

• develop is the unstable, but as stable as possible, development branch. This is the next iteration of the
software. Any developed features end up in the develop branch, waiting to be extensively tested before it
is allowed to move into the master branch

• Features branches are usually the rest of the branches. They are created when an independent feature
of the software is developed. The development can continue in the branch until �nished. Then it can be
merged into develop for further testing.

9

Figure 2.6: Branching system

This system simplify greatly the work�ow. Each merge from develop into master is a new release. Each new
feature has it's own branch. On the �gure 2.6, it's possible to see this work�ow :

1. A new improvement for the software is planned with several features (A and B). The develop branch is
already up to date with the master branch.

2. The branches from the features are created. They both comes from develop.

3. Some developers work on the features and add, commit then push some changes.

4. At some point, the dev team from Feature A has �nished their job. In order to always have the latest
version, they merge the code from develop into their branch, resolve the con�icts on their branch, and
debug the software. Then they merge automatically into develop from Feature A

5. The team of Feature B does the same job after.

6. Then when the software is fully debugged and tested. The develop branch can merge into master. This is
a release.

You can �nd more about how to work collaboratively with git here. If you want to �nd tutorials about git,
it's here.

10

https://www.atlassian.com/git/tutorials/comparing-workflows
https://openclassrooms.com/courses/gerez-vos-codes-source-avec-git

2.2.2 Github

Figure 2.7: Logo of Github

Github is a website created in 2008 by Tom Preston-Werner, Chris Wanstrath and PJ Hyett. It provides an
internet hosting service and an web based git and project manager. This website provides free remote servers
to host the repositories. This access is public and anyone can see the source code pushed on on Github unless
a subscription is paid.

This website provides as well project management tools, such as a kanban board, a way to specify an track
issues on the code, and a interface for most of the di�cult git operations. The use of these services are free and
require only an inscription.

Our project being an open-source research project. The ease of use and the tools provided made this web-
site the best candidate to host our remote repositories. Therefore we decided to create an organization on the
website to host our repositories.

This organization can be found at https://github.com/ENSTA-Bretagne-Shepherd

2.2.3 Architecture of the project

2.2.3.1 First decentralized architecture

At �rst we decided to decentralize our work into 3 repositories : Shepherd-Simulation, Shepherd-Display,
Shepherd-Localization. Then these projects would be included as submodules into Shepherd-Main. Another
repository, called Ressources-internes-et-administration has been created to host our work documents on the
software.

It happened that this �rst approach was not very e�ective. Indeed several types of display have been de-
veloped and the number of repository has been multiplied. Moreover the communication between the di�erent
parts of the code was di�cult to implement.

2.2.3.2 Migration on ROS

That's why a Shepherd-Ros-Structure repository has been created. We integrated the code from the other
repository inside ROS. ROS is a middleware that will be presented later in the report. With this integration
the project needs only one repository. As presented above, we follow the good rules of conduct in the use of git.
Our master branch is the stable up-to-date version of the code and the develop is the development one.

11

https://github.com/ENSTA-Bretagne-Shepherd

Chapter 3

Simulation theory

3.1 Simulation of the environment

1

Taking the complexity of modeling a lac into consideration, we had made some simpli�cations to our simu-
lated environment.

The situation of wind in the real world is really intricate. Even the most experienced meteorologist can-
not predict the variation of wind for a 100% accuracy. In our case, it is next to impossible to simulate the
wind in an open sea area. Even if we generate randomly the force, this makes no sense except give out a
confusing motion of the sailboat under irregular wind. Conversely, if we suppose the wind as constant, we don't
really lost the similarity to real word. Meanwhile, we get a lot of time saved as well as the illustration simpli�ed.

For the part of waves, we studied the existing work by Mr.Ponte about the analytical solutions of plausible
oceanic �ows.The mathematic model of multiple 3D eddies is given as Equation 3.1.

ψ =
∑

ψie
−||x−xi||2/R2

i × cos
N

cn
(z + h)

cn =
NH

nπ
(n > 0,

N

c0
= 0)

u = −∂yψ =
∑

ψi
2y(y − yi)

R2
i

e−||x−xi||2/R2
i

v = ∂xψ =
∑

ψi
−2x(x− xi)

R2
i

e−||x−xi||2/R2
i

(3.1)

This model and simulation of eddies enlightened us. However, we �nd that the sailboat will always work on
the sea level and we do not need a 3D simulation of the water. Furthermore, from this model we take notice of
that the water stream on the sea level is rather small than under the water. Therefore we chose to ignore the
wave so that waves are not simulated eventually.

In brief, our simulated environment is under a series of assumption:

• There is no wave on the horizontal surface;

• The water stream is negligible;

• The wind is with unchangeable power and direction.

3.2 Simulation of the sailboats

2

1The section "3.1 Simulation of the environment" was written by Lei Zhu.
2The section "3.2 Simulation of the sailboats" was written by Lei Zhu.

12

3.2.1 External forces and assumption

As explained in the previous chapter, we analyzed the complexity and compared the result of di�erent choices,
and �nally we assume that the wind is constant and the water surface is static.

Chie�y, there are two media, air and water, are in touch with the sailboats directly. Among all the forces
given by air and the water, the friction and damping are insigni�cant. For this reason, there are also only two
kinds of external forces can give out perceptible in�uence on our simulative sailboats: the wind and the wave.
There is no force from the land.

To sum up, we designed our method for simulating the the wind and the wave: the wave is supposed to be
zero and the wind is a constant force with a �xed direction.

3.2.2 State representation

Figure 3.1: Force illustration and state representation of sailboat

As shown in Figure 3.1, we denote a triple (x, y, θ) to represent the state of the boat. Here x and y is its geometry
coordinate while θ is its heading. Except for the 3 state variables, all the others are used for calculation. Their
physic meaning and units are shown in Table 3.1.

Table 3.1: Used variables in sailboat state representation.

Variable Physic Representation Unit

v advancing speed m/s

ω angular speed rad/s

ψ wind angle rad

fs force of the wind N

fr force of the water on the rudder N

δs sail angle rad

δr rudder angle (input) rad

δmaxs maximum angle of the sail(input) rad

3.2.3 Control algorithm

Given 2 points a and b to pass through, a sailboat can be controlled by a model-free method [?]. As we have
mentioned in previous subsection, the sailboat has two inputs which are the rudder angle u1 = δr and the max-
imum angle of the sail u2 = δmaxs . We realized a controller by Algorithm 1, witch was proposed my Mr.Jaulin
on his paper [?].

13

Algorithm 1 Sailboat controller algorithm

Input: m,θ, ψ, a, b, q
Output: δr,δ

max
s , q

1: e = det(b−a
||b−a|| ,m− a)

2: if |e| > r then
3: q = sign(e)
4: end if
5: φ = angle(b− a)
6: θ̄ = φ− atan(er)
7: if cos(φ− θ̄) + cosζ < 0 or (|e| < r and (cos(ψ − φ) + cosζ < 0)) then
8: θ̄ = π + ψ − qζ
9: end if
10: δr =

δmaxs

π sawtooth(θ − θ̄)

11: δmaxs = π
2 (cos(ψ−θ̄)+1

2)
log(π

2β
)

log(2)

This algorithm stands for the control of a sailboat with 3 sensors. That is to say, the heading θ, the wind
angle ψ and the position of its physic center m = (x, y) can be captured all the time during its advance process.
For the part of actors, u1 and u2 are the two motors to control the movement of sailboat. Therefore, the
controller will give out u1 and u2 as output.

In this algorithm, we used a very simple idea: when the error between the aim and reality surpass a thresh-
old, the aim will be adjusted by a coe�cient. Then with the help of two functions atan() and sawtooth, it is
not complicated to generate a feedback.

More concretely, we designed a triangle path of side 100m for each sailboat. And 4 sailboats will work
together to follow their triangles respectively.

3.3 Simulation of the buoys

3.3.1 The Controller of the buoys

3

By default, buoys constantly go up and down inside a water column of the ocean, in order to measure the
direction of ocean currents at di�erent depths. They can go down until a depth of 1 km and their speed cannot
be over 1 m/s. They are able to move vertically thanks to ballasts.

They are able to know the direction of ocean currents at a given level of depth by measuring their own
acceleration. Indeed, the acceleration of the buoy has the same direction than the direction of ocean currents.
This is due to the fact that buoys are moved by ocean currents.

In order to prevent buoys from drifting too far, they need to move towards the barycenter formed by the 4
sailboats. This principle allows to keep the group cohesion between buoys.

As buoys know the ocean currents of a given water column, they can reach the depth (thanks to their
ballasts) which is going to correspond to the best ocean current allowing to move towards the barycenter of the
sailboats.

Finally, they must surface every 5 hours in order to synchronize their internal clock with GPS signals.

3.3.2 The state equations of the buoys

4

We consider that our system, the sea, can be represented by an incompressible �uid. Thus, we can de�ne a
stream function noted ψ, which will determine the map of displacement of a particle in the �uid. Futhermore,
we consider that the buoy will behave as a passive particle, letting itself drift with the current. In the case of

3The subsection "3.3.1 Controller of the buoys" was written by Yoann SOLA.
4The subsection "3.3.1 Controller of the buoys" was written by Alexandre GALLAND.

14

two-dimensional, divergence-free Eulerian velocity �elds, the equations of motion for a passive particles are : dx
dt = u(x, y, t) = ∂ψ

∂y

dy
dt = v(x, y, t) = −∂ψ∂x

(3.2)

where u(x) = [u(x,y,t),v(x,y,t)]. We will consider the following system as the equations describing the
dynamics of advected impurities d2x

dt2 = δDu
Dt − µ(dx

dt − u)

d2y
dt2 = δDv

Dt − µ(dy
dt − v)

(3.3)

where Du
Dt = ∂u

∂t + (u.∇)u, δ =
ρf
ρb

is the ratio of the �uid density ρf to the density of the buoy ρb, and

µ ' 1 is the dynamic viscosity ofthe water. δDu
Dt represents the force per unit volume that would be exerted by

the �uid on a �uid particle placed at the position of the impurity (similarly to the Archimede's principle).The
second terms represents the Stockes drag felt by the buoy whose velocity is di�erent from the �ow velocity.

This equation does not yet consider the dsiplacement induced by the ballasts.The ballast can be compared
as a syringe �lled with water, connected to the extern environment. A piston pushes (or pulls) water ouside
(or inside) the buoy, changing its volumic mass. The command received by the simulation from the controller
is understood by the simulation as the desired speed for the piston in the ballast. The vertical acceleration of
the buoy is then computed using Newton's second law.

d2z

dt2
= g − ρw

(V − ξS)

m
(3.4)

where m is the mass of the buoy, V its volume when the ballast is empty, S the surface of the piston, and ξ the
place of the piston in the ballast (if ξ = 0 the ballast is empty). ρw is the volumic mass of the water, and g is
the gravitation acceleration.
The �nal form of the dynamic equation is then

d2x
dt2 = δDu

Dt − µ(dx
dt − u)

d2y
dt2 = δDv

Dt − µ(dy
dt − v)

d2z
dt2 = g − ρw (V−ξS)

m

(3.5)

In our simulation, we tried out two di�erent two-dimensional stream equation :

ψ = A ∗ cos(axx+ ayy) (3.6)

where A = 2, and ax = ay = 1

ψ =
∑

ψi
‖X−Xi‖2

R2
i

e
−‖X−Xi‖2

R2
i (3.7)

The �rst equation creates for small values of A,ax ,ay what looks like a chaotic behavior for the buoys.The
associated current is a series of vortex close to each other.

The second equation is the equation of a stream composed of a multiple water whirl indexed by i. Xi is the
center of the water whirl i, ψi represents the rotation speed of the whirl, and Ri represents its range of e�ect.
This representation match correctly the observations of the ocean stream close to the surface.

The simulation will cumpute the dispacement of the buoys using the Euler method. The main drawback of
using Euler, is the fact that we have to know the exact duration between every iterations. If it is not the case,
after a certain period of time, the positions of the buoys might vary from the reality. However, ROS is able to
calculate precisely these durations, making the simulation closer to the reality.

15

Chapter 4

Simulation architecture

4.1 ROS presentation

1

ROS (Robot Operating System) is the most commonly used middleware in robotic application. The suite
was �rst released in 2007 by Willow Garage, a robotics research lab in California.

The Middleware are computer software that allow us to develop new program in a modular fashion. It work
as an interface between the di�erent block of our programs. It allows programmer to begin writing their code
with a basis.The block Architecture facilitate the �ow between simulation and reality : changing the simulation
block by real data from real sensor doesn't necessitate to change the whole code. Middleware are frequently
used in Simulation, Network system and Robotics.

ROS works with a Node architecture, our di�erent blocks become Node in a web of shared Data. Every
shared information are Topic that can be broadcasted by Ros's publisher and any node can subscribe to receive
update on those informations.Those subscriber can launch Callback function when they receive new data, giving
us the possibility to apply traitement to those data. Ros Node can be written in a lot of programming language
but the two most commonly used are Python and C++. Moreover as the programs are not directly interfaced
but use ROS, we can write some nodes in python and some in C++ and make them communicate without any
compatibility problem. We exploited this feature as some of our developper prefer Python while some choose
C++.

Code 4.1: Simple Publisher

#include " ros / ros . h"
#include "std_msgs/ St r ing . h"
#include <sstream>
int main (int argc , char ∗∗ argv)
{

ros : : i n i t (argc , argv , " t a l k e r ") ;
/∗∗
∗ NodeHandle i s the main acces s po in t to communications wi th the ROS system .
∗ The f i r s t NodeHandle cons t ruc t ed w i l l f u l l y i n i t i a l i z e t h i s node , and the l a s t
∗ NodeHandle d e s t r u c t e d w i l l c l o s e down the node .
∗/

ro s : : NodeHandle n ;
/∗∗
∗ The ad v e r t i s e () f unc t i on i s how you t e l l ROS tha t you want to
∗ pu b l i s h on a g iven t op i c name .
∗/

1This Section was written by Romain Baronnier

16

ro s : : Pub l i sher chatter_pub = n . adve r t i s e <std_msgs : : Str ing >(" cha t t e r " , 1000) ;
ro s : : Rate loop_rate (1 0) ;
int count = 0 ;
while (ro s : : ok ())
{

/∗∗
∗ This i s a message o b j e c t . You s t u f f i t wi th data , and then pu b l i s h i t .
∗/

std_msgs : : S t r ing msg ;
std : : s t r i ng s t r eam ss ;
s s << " h e l l o world " << count ;
msg . data = s s . s t r () ;
ROS_INFO("%s" , msg . data . c_str ()) ;
/∗∗
∗ The pu b l i s h () f unc t i on i s how you send messages . The parameter
∗ i s the message o b j e c t . The type o f t h i s o b j e c t must agree wi th the type
∗ g iven as a temp la te parameter to the adve r t i s e <>() c a l l , as was done
∗ in the cons t ruc to r above .
∗/

chatter_pub . pub l i sh (msg) ;
ro s : : spinOnce () ;
loop_rate . s l e e p () ;
++count ;

}
return 0 ;

}

Code 4.2: Simple Subscriber

#include " ros / ros . h"
#include "std_msgs/ St r ing . h"

void chat t e rCa l lback (const std_msgs : : S t r ing : : ConstPtr& msg)
{

ROS_INFO(" I heard : [%s] " , msg−>data . c_str ()) ;
}

int main (int argc , char ∗∗ argv)
{

/∗You must c a l l one o f the v e r s i on s o f ros : : i n i t () b e f o r e us ing any o ther
∗ par t o f the ROS system .
∗/

ro s : : i n i t (argc , argv , " l i s t e n e r ") ;

/∗ NodeHandle i s the main acces s po in t to communications wi th the ROS system .
∗ The f i r s t NodeHandle cons t ruc t ed w i l l f u l l y i n i t i a l i z e t h i s node , and the l a s t
∗ NodeHandle d e s t r u c t e d w i l l c l o s e down the node .
∗/

ro s : : NodeHandle n ;
/∗ The su b s c r i b e () c a l l i s how you t e l l ROS tha t you want to r e c e i v e messages
∗ on a g iven t op i c .
∗/

ro s : : Subsc r ibe r sub = n . sub s c r i b e (" cha t t e r " , 1000 , chat t e rCa l lback) ;

/∗ ros : : sp in () w i l l en te r a loop , pumping c a l l b a c k s . With t h i s vers ion , a l l
∗ c a l l b a c k s w i l l be c a l l e d from wi th in t h i s thread (the main one) . ros : : sp in ()
∗ w i l l e x i t when Ctr l−C i s pressed , or the node i s shutdown by the master .
∗/

ro s : : sp in () ;

return 0 ;

17

}

4.2 ROS architecture of the project

2 ROS provides lots of infrastructure, tools and capabilities as it was explained in the previous section. It means
that there are so many di�erents ways to do the same task. So, in this section we will explain using diagrams
how ROS was implemented for project SHEPHERD, demonstrating the advantages of using this middleware.

Basically, there are the diagram which shows the general view of the project and then two diagrams presenting
the detailed architecture of sailboats and buoys.

4.2.1 Overview of the architecture

The diagram below shows the global view of how elements of the project communicate between them.

Figure 4.1: Overview of ROS Architecture

The node sim_world sends the message /worldwind communicating the direction and force of the wind
to the sailboats, which use this information for the simulation. Then they send their positions pose_real to
the node pinger. These positions and the position of the buoys are also sent to other nodes for displaying
the ensemble. Di�erent method for displaying were implemented, and a node for each one of this method was
implemented as well, but this is better explained in chapter 5.

The node pinger is an abstraction of the ping sent by the sailboats to inform their position to the buoys.
Indeed, in the physical world a ping takes a certain time to travel to the buoy. In the simulation however, we
estimate this travel time by knowing the real position of the sailboats and buoy and give this information to
the buoy. This information is used to estimate the pose of the buoy using TDOA (as explained in section 1.4)

4.2.2 Detailled architecture of sailboats and buoys

Every buoy and sailboat basically works the same way. There are three main nodes that do most of the
computation needed for the simulation of one of these components (see diagram 4.2 and 4.3)

• Simulation node: this node handles the simulation of the robot (sailboat or buoy - see chapter 3). It
subscribes to the environment parameters and the command published by the regulator. Then it simulates
the robot for a time step and publishes the real state of the robot and a noisy state that corresponds to
the information given by the sensors.

• Localisation node: this node handles the localisation of the robot. It subscribes to the noisy state of
the robot (i.e. the information given by the sensors), estimates and publishes the position of the robot.

• Regulation node: this node regulates the robot according to the objective it was given. It subscribes
to the position of the robot, deduces the command to correct the trajectory and publishes it.

Also, in both cases the real poses are published so that the pinger and the display nodes know exactly where
are the elements. However there are small di�erences between the sailboat and the buoy.

2written by Alaa El Jawad and Sergio Pertierre

18

In the case of the buoy (see �gure 4.2), the localisation subscribes to the ping and the depth sensors. The
ping is sent by the pinger (see previous section). The depth sensors is simulated by the buoy simulator.

Figure 4.2: Buoy ROS Architecture

In the case of the sailboat (see �gure 4.3) the simulation node needs to subscribe to the environment to
know informations about the wind (force and direction) to simulate the sailboat. The regulation node also need
informations about the wind direction and the center of the triangle the sailboat needs to follow.

Figure 4.3: Sailboat ROS Architecture

19

Chapter 5

Display

5.1 Simulink 3D Animation

1

5.1.1 Introduction

The Simulink 3D Animation product is a solution for interacting with virtual reality virtual systems models
over time. It extends the capabilities of Simulink and MATLAB software into the world of virtual reality. The
product provides a complete environment of creation, development and realization of 3D visual simulations.
Comparing to other display method, the most signi�cant of Simulink 3D Animation is its simplicity to starters.
With around 10 lines of code or a simple control �ow under Simulink, it can already generate a 3D simulation,
which means we can easily use Simulink blocks and MATLAB apps and functions for connecting models to
virtual reality worlds. Figure 5.1 shows a sailboat simulation with a simple Simulink control �ow.

Figure 5.1: A sailboat simulation with simulink 3d Animation

A beginner can do a visualization of real-time simulations after tens of minutes study. That is an advantage
if we just have not much time to simulate, especially it is on 3D.

5.1.2 How does it work ?

It works by providing applications to link Simulink and MATLAB algorithms to 3D graphics objects. It allows
us to view and check the dynamic behavior of the system in a virtual reality environment. The objects are
represented in Virtual Reality Modeling Language (VRML), a standard 3D modeling language. We can animate
a 3D world by changing its position, rotation, scale, and other object properties during desktop or real-time
simulation. We can also inject virtual sensor signals and access the 3D animation data in Simulink or MATLAB

1The section "5.1 Simulink 3D Animation" was written by Lei Zhu.

20

for post-processing. Simulink 3D Animation includes viewers for rendering and interaction with virtual scenes.
With 3D World Editor, we can create detailed scenes assembled from 3D models exported from CAD or web-
based sources. We can incorporate multiple 3D scene views into the MATLAB �gures and interact with these
views by a hardware device as simple as a mouse.

5.2 Matplotlib

5.2.1 Presentation

2 Matplotlib, created by John Hunter (1968-2012), is a Python 2D plotting library composed of several toolkits
like 3D plotting, real-time plotting, mapping toolkits and more. With NumPy, Python provides an object
oriented API for data programming and scienti�c visualizations sharing some features with MATLAB.

5.2.2 Operating Structure and Code Elements

Displaying a simple looking animation with matplotlib was the easier way to obtain an animated representation
of the simulation running under ROS. To do so, we had to just create a ROS package dedicated to plotting a 2D
simulation. It was one of the strengths to use Python and the associated libraries. Everything is running under
the ROS ecosystem and we do not need to export the data from the simulation toward an external program.
We access the data through regular subscribers. For more details on how the di�erent ROS packages including
the Python display, we could refer to the Chapter 4 Section 4.2.

Figure 5.2: Messages �ow between the simulation and the display

5.2.2.1 Code Structure

The whole code used for the Matplotlib display is inside the dedicated ROS package. Each element, from
the sailboats to the buoys, is represented by an instance of the PoseHolder class which is the mother-class of
SailboatPoseHolder and BuoyPoseHolder. This family of classes contains the objects which will be in�uenced
by the environment like the wind direction and regulated by the controller. For the sailboat, the parameters
are x, y and θ while the buoy location is represented by x, y and z. Each object has a parameter history for
each component, allowing the regulator to access to the previous locations of the objects.

Code 5.1: PoseHolder Class

class PoseHolder (object) :
""" doc s t r i ng f o r Sa i lboatPoseHolder """
MAX_HIST_SIZE = 500

def __init__(s e l f , pose) :
s e l f . pose = pose
s e l f . histX = []
s e l f . histY = []
s e l f . h istT = []

def update_hist (s e l f , x , y , theta) :
s e l f . histX . append (x)
s e l f . histY . append (y)
s e l f . h istT . append (theta)
i f len (s e l f . histX) > PoseHolder .MAX_HIST_SIZE:

del (s e l f . histX [0])
i f len (s e l f . histY) > PoseHolder .MAX_HIST_SIZE:

2Section written by N.Mehdi

21

del (s e l f . histY [0])
i f len (s e l f . h istT) > PoseHolder .MAX_HIST_SIZE:

del (s e l f . h istT [0])

Di�erent functions allows to update the parameters calculated by the simulation package and read by the
publisher. These update functions are called in a while loop, animating the di�erent objects on the display.
The principal update methods are given in the following.

Code 5.2: Update Functions

def update_disp (msg , name) :
global s a i l b o a t s , buoys
pr in t ' Updating ' , sailboat_name
pr in t (' [INFO] updating : {} ' . format (name))
i f name in s a i l b o a t s :

pr in t (' [INFO] Adding new s a i l b o a t pose : { } ' . format (name))
s a i l b o a t s [name] . add_new_pose (msg . pose)

else :
buoys [name] . add_new_pose (msg)

def update_wind (msg) :
global wind_dir , wind_strength
wind_dir , wind_strength = msg . wind_angle , msg . wind_strength

def update_center (msg , name) :
global s a i l b o a t s , buoys
pr in t ' Updating cente r ' , sailboat_name
i f name in s a i l b o a t s :

s a i l b o a t s [name] . cx = msg . data [0]
s a i l b o a t s [name] . cy = msg . data [1]

else :
pass

5.2.2.2 Sea Plot Utility

A separate module called sea_plot_utility was used to provide the drawing functions. Each function within
gives a Numpy array (vector or matrix), which is called in the main �le for each drawn objects.

5.2.3 Result

Once the launch �les executed, we have the following display. The sailboats leave a green trail behind them
and the opacity of the buoys represent the depth and the black arrow gives the wind direction.

22

Figure 5.3: Display with matplotlib plotting

5.3 OpenGL3

5.3.1 Presentation

Open Graphics Library (OpenGL) is a cross-language, cross-platform application programming interface (API)
for rendering 2D and 3D vector graphics. The API is typically used to interact with a graphics processing unit
(GPU), to achieve hardware-accelerated rendering.

We chose to use OpenGl 1.1 as a soft and reliable 3d rendering system. OpenGl is a low level rendering
library. Unlike high level graphic engine such as Unity, it is easy to print vector �elds and soft graphic that
are easy to see. With realistic graphics, it can be di�cult to see the data between the re�ects of the light
and the real opacity of watter for example. With Opengl, transparency of watter can be adjusted for a better
visualization.

OpenGl does not work alone. It has to be integrated in the window manager of the operating system.
An open source library SDL (Simple Direct media Layer) enables to use the graphic interface of most of the
operating systems. Moreover, it provides keyboards and mouse support so that the user can navigate in the
3d environment and interact with the window. SDL provides also a lot of features such as sound handling and
other device support.

3Section 5.2 written by Pierre BENET

23

5.3.2 3d features

The 3d geometric object that we print are the sea, the boats, the buoys, the vector �elds, the grid pattern and
the localisations of the intervals. The sea is made of two layer of transparent blue sqares, so that looking to the
sea from the outside looks darker that from the inside. And everything that is in the sea looks blue. The boats
geometry have been recovered from an older sailboat control simulation. The veil and rudder are movable. The
buoys are simple red spheres.

Figure 5.4: simulation rendering with opengl and SDL

5.3.3 Camera control

The camera control system is a �rst person view. The camera can be controlled in the six local axis of the view
(three rotations and three translations) thanks to the mouse. This enables a practical and intuitive navigation
in all directions.

The mouse wheel enables to move forward and backward. holding the left mouse button of the camera while
moving the mouse moves the scene perpendicularly to the camera. holding the right mouse button while moving
the mouse rotates the camera on an axis perpendicular to the camera axis. holding both right and left button
enables to rotate the camera on its axis.

Camera handling is often used by an extern 3 by 3 matrix system that has to be implemented. However,
this time, only the OpenGl transformation system has been used to control the camera. OpenGl possessed its
own matrix 4 by 4 stack that includes rotation and translation and also includes multiplication function and
generation of basic matrix such as rotation and translation matrix. The purpose of this matrix stack is to apply
successive a�ne transformation to the geometry. But we can use it as a computationnal tool. OpenGl provides
a function to store in our program the current transformation matrix. So to compute matrix multiplication and
rotation matrix generation, we will store the current matrix transformation in a variable; load the matrix we
want on the OpenGl matrix stack; compute transformations; get the result in an other variable; put back the
initial transformation result so that OpenGl has seen nothing.

5.3.4 Communication with the Simulation

The communication between the simulation and the OpenGl rendering is a client-server link. The simulation is
a server on which the OpenGl display connects. As the OpenGl display is soft and very compatible, it can be
run on any distant computer, while the simulation need ROS to run.

The communication is binary, allowing a very e�ective communication. The client and the server know the
data structures and just copy part of the communication bu�er into structures. The structures are composed

24

of the state variables of the Buoys and Sailboats.

Code 5.3: display opengl communication structures

class Sa i l boa t0
{

public :
double x , y , theta , phi ; // po s i t i o n and o r i e n t a t i o n

double fg , fv , gamma, de ltav , de l tag , deltavmax ; // l i n k v a r i a b l e s
double a , p s i ; // wind

double cx , cy ; // t r i a n g l e c en te r
} ;

class Buoy0
{

public :
double x ; // po s i t i o n x
double y ; // po s i t i o n y
double z ; // po s i t i o n z
double Xdot [3] ; // Buoy speed

} ;

5.4 Unity3D

5.4.1 Presentation

4

Unity3D is a game engine developed by Unity Technologies. It is widely used in the development of video
games, especially on mobile devices and websites because it is one of the most lightweight game engine available.
It uses the aforementioned OpenGL API to use the processing power of the machine it is installed on. It also
provides an abstraction level allowing the programmer to easily add 3D Objects in a scene, manage lighting
and shading options, textures, sound e�ects and many other functionalities. Unity also o�ers a physics engine
that can compute collision, gravity as well as more complicated patterns such as moving cloth and water.

In our project we use Unity as a graphical engine, it was decided not to use the physic engine in order to
have complete control over the behaviors of the sailboats and buoys. The simulation program computes the
state of the world, this is then send to Unity that displays the new state of the world. Because Unity is intended
to be used more as a pleasing graphical tool than a exact representation of the simulation, liberties may have
been taken on the position of the objects in order to obtain smoother movements.

Finally Unity provides powerful libraries which allow us to display a very realistic simulation. However the
position of the objects on the screen depends on the frame rate which depends of the platform used to display
the simulation. Therefore the display may be delayed compared to the simulation. In fact, the purpose of Unity
in this project was mainly to render the simulation with a high graphic realism and this may be an additional
asset to eventually convince a customer more easily. Furthermore the use of Unity3D can be extended with
virtual reality since it is compatible with some VR devices such as the Oculus Rift or the HTC Vive.

5.4.2 The Environment of Simulation

5.4.2.1 Graphical Objects

5 As it has been said Unity gives us a great freedom in the creation of environment even with the free version.
Thanks to a large number of librairies (more precisely called assets) it is possible to create a realistic scene
using water,trees,skybox,ground modeling etc. In our project the main purpose was that Ifremer's team could

4Section written by Anthony Welte and Camille Soulié
5Section written by P.Martin and Z.El Abdalaoui

25

recognize something like the "Rade de Brest" with its huge bridge, coasts ,Ifremer's building. On the whole,
the scene has been created in 4 stages.

• The �rst step has been the creation of the ground. Unity provides a large range of tools allowing di�erent
modi�cations of ground's shape.So, we create our plane as a GameObject, then we can add on it several
components. In order to create a wide area of sand we added a sand texture, it is just a jpg �le which will
be repeated many times on the plane. Like that the plane looks like a real (almost) sea �oor.

• Now that the texture applicated, it is possible to model the terrain on our own. For this we used a very
useful tool. Thanks to this feature, changing the elevation (relief) of our plane. This works like a brush.
We can de�ne it size (diameter) and the maximum altitude reached by the plane. It exists several brushes,
some create peaks, others just elevated platforms. It is really interesting to model his own plane. you can
spend several hours on this task if you want details. Finally here modeling yields this result:

Figure 5.5: Plane with texture and after modeling

• The next step consists in adding the main asset of the project. It is not exactly a long step because water
plane is already a very powerful asset implemented in Unity. This one allows us to display a very realistic
sea plane. We decided to put a re�ective water mode. It means that only the sky is re�ected on the
surface and the water is not transparent too. Several water assets exist in unity, some of them are able to
generate waves, movement on the water. However in this project we decided to leave these modules and
just keep a simple water. A calm ocean.

• To create a realist scene, we need environment (ground,water,sky..) but also need some 3D objects like
building, bridge or road. For this part the community helped us. Indeed thanks to the online 3D library
TF3D people share their creation. To display Ifremer's building we used a 3D object representing building
which look like Business O�ce, then to remember the "Rade of Brest" we used a huge bridge.

It is possible and easy to import in Unity stl �les or 3D �les or Blender �les. Keep in mind that we
used Unity for the represention and for the graphic performances. However it is really hard to draw or
model an accurate object as a boat,or a car with simple assets. (square,plane,circle..) Thus, working on
Unity invited us to work on other software (which we did not master or never used at all). This was
actually interesting to discover Blender and all the abilities it provides for 3D modeling,Video making,
visual rendering etc.

26

Figure 5.6: Buoy (left) and Sailboat (right) models

• Finally, the last object to control is the camera. Indeed in Unity you can see how does your scripts or
your objects behave in the scene with a Camera item. It was crutial for the project in order to observe
how our boats and buoys move to drive the camera. We control our camera with the keyboard for the
elevation, and the left right turns .And the rotation is controlled with the mouse. We also created a script
which allow us to displace the camera as we want.

In short, the creation of the scene is a long process because it always need some adjustements. Please �nd in
the 5.3.5 part the �nal result of our scene. We can note that even if the result is acceptable we tried to improve
it. We tested on script of buoyancy in order to simulate the real boat's movement on the ocean. However that
script was not easy to use , so we gave up on this way because it was really hard to control the �ux of waves
(back and forth). Then we could add the rotation of the sail as a function of the wind. This idea was envisaged,
and was not di�cult to implement, but we left it aside in order to focus on the localisation of the squad. Finally
the �nal scene is really su�cient and the project seems greatly correspond to expectations even if Unity allows
to us to improve it again and again.

5.4.2.2 Buoy and Sailboat creation

After creating the environment in which the boats and the buoys will move, we need the actual object to display
in the scene

• As previousely mentionned, the Unity3D community shares many game objects of their own to use. We
used one of these assets found online to represent the sailboats onscreen. But we had to add some more
textures to create a realistic sailboat. For instance, since the textures are only seeable from one side, only
one side of the sail was displayed. Then to be able to move the sail yaw, we had to split it from the
original game object in order to make the sail movable around the mast.

• The adding of the buoy was much more simple. First we tried to draw the buoy from scratch but as
explained in the previous part, it is not something easy to do with the time at our disposal. But in the
end we were provided with a 3D CATIA model of a buoy similar to the one usually used. Then we just
had to import the model on Unity to display it.

Once the creation of the objects and the scene were done, we could link them to the client-server architecture
that manage the position of all the items onscreen. (ie the position of the boats and buoys, the depth of the
buoys, the sailboat, and sail yaw.)

5.4.2.3 SimulationManager

6 SimulationManager is the main object of the scene. It has two scripts TCPServer.cs and SimulationManager.cs
that provide communication with the simulation and dynamically instanciate the objects (sailboats and buoys).

TCPServer.cs is the implementation of the client-server architecture. It listens to the simulation and records
a stream of one or several JSON strings. This stream is then processed to extract individual JSON string that
are then sent to SimulationManager.cs.

SimulationManager.cs extracts the data of the messages received from TCPServer.cs and stores them in a
queue. Then at every new frame displayed, SimulationManager dequeues a message (if there is one) and updates

6Section written by Anthony Welte and Camille Soulié

27

the scene. It either creates a new object if the message corresponds to a new object or updates the state of an
existing entity. We have tried to interpolate the position of the di�erent entities between two received positions
in order to reduce the number of messages sent by the simulation but this was more complicated than predicted
and this functionality is not fully operational yet. That is why we have chosen for now to increase as much as
possible the data �ow between the server and the client in order to have the most �uid display possible.

5.4.3 Communication with the simulation

5.4.3.1 Server-Client link

7

To communicate between the simulation and Unity, a client-server architecture has been chosen. This choice
has several advantages:

• A modular architecture: enabling the two programs to work independently and making the development
of the programs easier to split into two separate teams.

• An online architecture: enabling the programs to run on a same machine or on distant machines

• A language agnostic architecture: enabling the simulation and the display to use di�erent languages (C++
for the simulation, C# for Unity)

5.4.3.2 JSON format

8 To communicate data, JSON parsing is used. This method format variables (test, numbers, etc) into a text
that contains all the variables and that can be easily extracted by Unity. JSON was introduced by Javascript
but libraries are know available on most mainstream languages making it an ideal solution to communicate data
between two languages

Code 5.4: JSON format

{
" Sa i l boa t " :
{

"name" : "Auv0" ,
" sailYaw" : −13.1802 ,
"x" : −19.2049 ,
"y" : 20 .338 ,
"yaw" : −296.908

}
}

This formating made it easy to add a the buoys later in the project.

5.4.4 Results

9 Since the aim of this part of the project is to display a scene, the results of our work is better described by
images than by words. You can see below a screenshot of a scene displayed with Unity that gives an good
overview of what have been done. We can notice the high realism of the display. Unity can indeed handle the
shadows, the re�ects, the ripples on the water...

7Section written by Anthony Welte
8Section written by Anthony Welte
9Section written by Camille Soulié

28

Figure 5.7: Screenshot of a scene displayed with Unity3D

5.4.5 Thought for enhancement

10 As mentioned earlier, one way to optimize the display of the simulation might consist in in interpolating
the position of the entities between two successive positions and therefore in drastically reducing the data �ow
between the client and the server. That will enable both more �uidity and the workload decrease of unity. We
can also add some textures on the entities or some atmosphere sounds like seagull calls, sail slams, slappings...
to increase the realism.

10Section written by Camille Soulié

29

Conclusion

11 In this project, we constructed a mathematical model as well as a simulation with visual display. At the
very beginning, all the theoretical basic concerned are reviewed. We have used the method of interval analysis
and TDOA, by which we built the basic equations. Next, we did several studies on the tools for better work
condition and parfait group cooperation. Tools like GitHub and scrum bring us more e�ciency . We worked as
a group rather than only work separately on each party. Furthermore, we constructed the architecture to solve
the simulation problem and let it be optimized. We have used ROS(Robot Operating System) as the kernel
instrument. We simulated the environment, the boat and the buoys under ROS. At last we did some visual
model on 2D and 3D platform. This allow us to explain the simulation to the public. The production of this
experiment is quite useful in further researches.

Despite of the ambitious nature of the SHEPHERD project, we remain con�dent of its feasibility. All the
assumptions made in our working simulation remain compatible with the real world environment. We demon-
strated in this report a working simulated prototype relying solely on existing techniques and sensors.

As mentioned, the Robot Operating System coupled with GitHub enabled our relatively large team to work
independently in small groups and each group handled a speci�c module of the project without risking the
compatibility of the pieces. Perhaps the most noteworthy example of this seamless integration is the Unity
video rendering which allows the viewer to quickly grasp the functioning and the purpose of the project while
remaining faithful to the algorithms and physics of the project.

We got a great deal of progress from working on this project. In the three months of activity, �rst of all, the
most direct acquisition is on the professional techniques. We did not only practice the knowledge acquired in
class, such as interval analysis, but also made ourselves more skilled by learning numerous new skills. We had
17 di�erent mini courses in a variety of subjects. And each one gave us an opportunity to optimize our processes
of work. In addition, we worked three months in a cooperative environment. Working as a team is not easy as
imagined but we achieved this successfully. Solidarity and cooperation are the fruit for the e�ort we had payed.
Last but not the least, we experienced what a real project looks like. It is more close to a professional job, thus
making us better and faster at adapting to a working life and rhythm after graduation.

11Section written by M. Fadil Ennouhi and L. Zhu, reviewed by Simon Chanu

30

ANNEXES

31

	Presentation of the Shepherd project
	Given issue
	Our solution
	Interval Analysis
	Introduction
	Application

	TDOA
	Introduction
	Method principle
	Geolocation problem with random error

	Team management methods
	Scrum
	Agile Software Development
	Scrum Methodology

	Github
	Introduction to Git and Version control systems
	Version control system
	Git
	How does it work ?
	Commands
	Branches

	Github
	Architecture of the project
	First decentralized architecture
	Migration on ROS

	Simulation theory
	Simulation of the environment
	Simulation of the sailboats
	External forces and assumption
	State representation
	Control algorithm

	Simulation of the buoys
	The Controller of the buoys
	The state equations of the buoys

	Simulation architecture
	ROS presentation
	ROS architecture of the project
	Overview of the architecture
	Detailled architecture of sailboats and buoys

	Display
	Simulink 3D Animation
	Introduction
	How does it work ?

	Matplotlib
	Presentation
	Operating Structure and Code Elements
	Code Structure
	Sea Plot Utility

	Result

	OpenGl
	Presentation
	3d features
	Camera control
	Communication with the Simulation

	Unity3D
	Presentation
	The Environment of Simulation
	Graphical Objects
	Buoy and Sailboat creation
	SimulationManager

	Communication with the simulation
	Server-Client link
	JSON format

	Results
	Thought for enhancement

