
Guranteed numerical integration based on explicit
methods of Runge-Kutta

Alexandre Chapoutot

U2IS, ENSTA ParisTech

May 14, 2014

Context

1 Context

2 Numerical solution of IVP

3 Guaranteed numerical integration: Taylor methods

4 Representation of sets of values

5 Guaranteed numerical integration: Runge-Kutta methods

6 Conclusion

2 / 30

Scientific context

Fact: Simulink is a de facto standard in industry for model-based design
of control-command systems because:

it can model and numerically simulate hybrid systems, i.e. it mixes
ordinary differential equations (ODE) and (very generally) state
transition systems.

Goal
Defining and applying formal verification methods on Simulink models.

Main challenges
Solve ODEs for sets of initial values and bounded parameters.
Handle interactions between continuous-time and discrete-time
components.

3 / 30

Numerical solution of IVP

1 Context

2 Numerical solution of IVP

3 Guaranteed numerical integration: Taylor methods

4 Representation of sets of values

5 Guaranteed numerical integration: Runge-Kutta methods

6 Conclusion

4 / 30

Goal of numerical integration

Recall, we consider IVP (initial value problem):

ẋ = f (t, x) with x(0) = x0 . (1)

This problem (Cauchy problem) admits a unique solution x(t; x0) on R,
if f : R× Rn × Rn is continuous in t and Lipschitz in x that is:

∀t,∀x1, x2 ∈ Rn,∃L > 0, ‖ f (t, x1)− f (t, x2) ‖≤ L ‖ x1 − x2 ‖ .

Goal
Compute a sequence of time instants t0 ≤ t1 ≤ · · · ≤ tn
Compute a sequence of values x0, x1, . . . , xn such that

∀i ∈ [0, n], xi ≈ x(ti ; x0) .

Remark:
ẋ = f (t, x)⇔ ż =

(
ẋ
ṫ

)
=

(
f (t, x)

1

)
= g(z)

5 / 30

Example of numerical integration method: Euler’s method
Consider a simple IVP:

ẋ = −x3
2 with x(0) = 1 .

The exact solution is x(t) = 1√
1+t .

We consider two fixed-step methods (Euler and Heun) that is they
compute the sequence of time instants such that ti+1 = ti + h.

The Euler’s method computes the sequence of values

xi+1 = xi + h ×−x3i
2

The Heun’s method computes the sequence of values:

k1 = xi + h ×−x3i
2

xi+1 = xi +
h
2 ×

((
−x3i

2

)
+

(
−k31

2

))
6 / 30

Example of numerical integration method: Euler’s method

−0.5 0 0.5 1 1.5 2 2.5
0.4

0.6

0.8

1

1.2

1.4

t

x(
t)

=
−

1
√
1+

t

exact
Euler: h = 0.75
Euler: h = 0.25
Heun: h = 0.75

Remark: precision vs performance in the application of Euler’s method.
6 / 30

Goal of the guaranteed numerical integration

Set of solutions of IVP
We consider ẋ = f (x), x(0) ∈ x0 with x0 ∈ IRn.
Solutions:
X = {x | x0 ∈ x0 such that x is solution of ẋ = f (x), x(0) = x0}

Problem
Find a sequence of values (tn, xn) such that

∀x ∈ X , ∀n, x(tn) ∈ xn

Example

Exact solution of ẋ = f (x) with
x(0) ∈ X .
Safe approximation at discrete time
instants.
Safe approximation between time
instants.

7 / 30

Guaranteed numerical integration:
Taylor methods

1 Context

2 Numerical solution of IVP

3 Guaranteed numerical integration: Taylor methods

4 Representation of sets of values

5 Guaranteed numerical integration: Runge-Kutta methods

6 Conclusion

8 / 30

One slide on interval analysis

Interval analysis extends arithmetic operations and elementary
functions to intervals.
Inclusion function:

∀x ∈ [x], f (x) ∈ [f]([x]).

Operation Interval arithmetic
[a, b] + [c, d] [a + c, b + d]
[a, b]− [c, d] [a − d , b − c]
[a, b]× [c, d] [min(E),max(E)] with E = (ac, ad , bc , bd)

[a, b]÷ [c, d]

[
a
d ,

b
c

]
if 0 6= [c, d]

Remark: substituting all operations in the definition of a function by
their interval counter-part generates an inclusion function

9 / 30

Guaranteed integration with Taylor method

Basics
Assume x(tn) ∈ [xn] and hn+1 = tn+1 − tn.
The Taylor expansion of x :

x(tn+1) = x(tn) +

N−1∑
i=1

hi
n+1
i!

d i x
dt i (tn) +

hN
n+1
N!

dNx
dtN (t ′)

∈ [xn] +

N−1∑
i=1

hi
n+1f [i−1](x(tn)

)
+ hN

n+1f [N−1](x(ξ))
∈ [xn] +

N−1∑
i=1

hi
n+1[f [i−1]]([xn]) + hN

n+1[f [N−1]]([x̃n]) , xn+1

Challenges
Compute [x̃n] such that ∀t ∈ [tn, tn+1], x(t) ∈ [x̃n]. (Solution:
Picard-Lindelöf operator and Banach fixpoint theorem)
Note that, w([xn+1]) ≥ w([xn)].

10 / 30

Banach fixpoint theorem and Picard-Lindelöf operator

To bound the term f (N+1) (x(ξ)) requires to know a bound of the
solution x(t; x0) on [tn, tn+1].

Banach fixed-point theorem
Let (K , d) a complete metric space and let g : K → K a contraction that
is for all x , x in K there exists c ∈]0, 1[such that
d (g(x), g(x)) ≤ c · d(x , x) , then g has a unique fixed-point in K .

Picard-Lindelöf operator

P(f ; tn; xn)(t) = xn +

∫ t

tn

f (x(s))ds

Remark: using interval arithmetic we can compute by iteration a
solution of the Picard-Lindelöf operator.

11 / 30

Computing x̃n.

We use the interval Picard-Lindelöf operator:

Ψ(R) = xn + [0, h].[f](R)

If we can find R1 such that Ψ(R1) ⊆ R1, then the IVP admits a
unique solution on [tn, tn+1] and this solution is contained in R1.

12 / 30

Computing x̃n.

We use the interval Picard-Lindelöf operator:

Ψ(R) = xn + [0, h].[f](R)

If we can find R1 such that Ψ(R1) ⊆ R1, then the IVP admits a
unique solution on [tn, tn+1] and this solution is contained in R1.

12 / 30

Computing x̃n.

We use the interval Picard-Lindelöf operator:

Ψ(R) = xn + [0, h].[f](R)

If we can find R1 such that Ψ(R1) ⊆ R1, then the IVP admits a
unique solution on [tn, tn+1] and this solution is contained in R1.

12 / 30

Computing x̃n.

We use the interval Picard-Lindelöf operator:

Ψ(R) = xn + [0, h].[f](R)

If we can find R1 such that Ψ(R1) ⊆ R1, then the IVP admits a
unique solution on [tn, tn+1] and this solution is contained in R1.

12 / 30

Reduction of the width of [xn+1].
We want to evaluate:

[xn+1] , [xn] +

N−1∑
i=1

hi
n+1[f [i−1]]([xn]) + hN

n+1[f [N−1]]([x̃n]) (2)

To reduce the width of [xn+1], we use centered form to compute
f [i]
(
xn
)
.

f
(
[x]
)
∈ f
(
m([a])

)
+ J
(
f , [a]

)
.([a]−m(a))

After rewriting we get a linear expressions of the form:
[xn+1] = vn + Anrn

Fighting the wrapping effect (Löhner’s method):

13 / 30

Motivation for new guaranteed integration methods

Benefit of the well-known properties of Runge-Kutta methods, e.g.
Stability: A-stable, L-Stable, Algebraic stable;
Avoid spurious fixed-point;
Preservation of algebraic invariant, e.g.,:

ẋ = f (t, x) with x(0) = x0 and such that g(x(t); x0) = 0∀t ≥ 0

A better adoption of the guaranteed integration methods by the
engineers

14 / 30

Representation of sets of values

1 Context

2 Numerical solution of IVP

3 Guaranteed numerical integration: Taylor methods

4 Representation of sets of values

5 Guaranteed numerical integration: Runge-Kutta methods

6 Conclusion

15 / 30

Representation of sets

Extension of interval arithmetic to reduce the dependency issue.

[a, b] + [c, d] = [a + c, b + d]

x = [0, 1] ⇒ x − x = [−1, 1]

Main idea: parametric variables w.r.t. a set of noise symbols εi
with εi ∈ [−1, 1].

x = x0 + x1ε1 + x3ε3
y = y0 + y1ε1 + y2ε2

This representation encodes the linear relation between noise
symbols and variables and allows for precise linear transformation.
What is a noise symbol ?

Initial uncertainty: [a, b]→ a+b
2 + b−a

2 ε
Non-linear operations and round-off errors.

16 / 30

Geometric representation

Given m variables x1, x2, . . . , xm, an affine set

x j = x j
0 +

n∑
i=1

x j
i εi

is a zonotope Z = γ(x1, . . . , xm).

Example: x = 20− 4ε1 + 2ε3 + 3ε4 y = 10− 2ε1 + ε2 − ε4

17 / 30

Affine sets arithmetic
Linear operations

Given an affine set

x = x0 +
n∑

i=1
xiεi y = y0 +

n∑
i=1

yiεi

Affine operations: α, β, γ are constants

αx + βy + γ = αx0 + βy0 + γ

n∑
i=1

(αxi + βyi)εi

Multiplication

x × y = x0y0 +
n∑

i=1
(y0xi + x0yi)εi +

n∑
i=1

xiεi

n∑
i=1

yiεi

= x0y0 +
n∑

i=1
(y0xi + x0yi)εi + rn+1εn+1

Other operations (sin, cos, . . .) are computed using Taylor series.
Union, intersection and inclusion test can also be defined.

18 / 30

Implementation

Goal of the implementation
1 Sound with respect to floating-point operations.
2 Efficient by limiting the number of noise symbols.

Floating-point operations:
when we add two coefficients xi and yj , the result is approximated.
we want to measure and collect this error
error free transformations: error e attached to a ⊕ b is

e = (a 	 (s 	 (s 	 a)))⊕ (b 	 (s 	 a)) .

collect the error: each time e 6= 0, we create a new noise symbol.

19 / 30

Implementation

Goal of the implementation
1 Sound with respect to floating-point operations.
2 Efficient by limiting the number of noise symbols.

Efficiency:
one new symbol per non-linear computation and error-prone
floating-point operation.
we chose a sparse representation of the coefficients attached to
each variable.
we only keep coefficients that are larger than a given threshold.

→ others are accumulated into a new noise symbol.

19 / 30

Examples: the strength of affine forms

Double integrators:

ẍ = u with x(0) = 0, ẋ(0) = 0, u ∈ [−1, 1]

20 / 30

Examples: the strength of affine forms

Oscillator:

ẋ = −v v̇ = x − u with x(0) = 0, v(0) = 0, u ∈ [−1, 1]

20 / 30

Guaranteed numerical integration:
Runge-Kutta methods

1 Context

2 Numerical solution of IVP

3 Guaranteed numerical integration: Taylor methods

4 Representation of sets of values

5 Guaranteed numerical integration: Runge-Kutta methods

6 Conclusion

21 / 30

Runge-Kutta methods
s-stage Runge-Kutta methods are described by a Butcher tableau:

c1 a11 a12 · · · a1s
...

...
...

...
cs as1 as2 · · · ass

b1 b2 · · · bs

b′
1 b′

2 · · · b′
s (optional)

i

j

Which induces the following recurrence:

ki = f
(
tn + cihn, xn + h

s∑
j=1

aijkj

)
xn+1 = xn + h

s∑
i=1

biki (3)

Explicit method (ERK) if aij = 0 is i ≤ j
Diagonal Implicit method (DIRK) if aij = 0 is i ≤ j and at least
one aii 6= 0
Singly Diagonal implicit method (SDIRK) if aij = 0 is i ≤ j and all
aii = γ are identical.
Implicit method (IRK) otherwise

22 / 30

Examples of Runge-Kutta methods: ERK

Single-step fixed step-size explicit Runge-Kutta method

e.g. Euler’s method is defined by:

k1 = f (tn, xn)

xn+1 = xn + h1k1

0
1

e.g. Heun’s method is defined by:

k1 = f (tn, xn)

k2 = f (tn + hn, xn + h1k1)

xn+1 = xn + h
(
1
2k1 +

1
2k2
)

0
1 1

1
2

1
2

23 / 30

Examples of Runge-Kutta methods: ERK

Single-step variable step-size explicit Runge-Kutta method

e.g. Bogacki-Shampine (ode23) is defined by:

k1 = f (tn, xn)

k2 = f (tn +
1
2hn, xn +

1
2hk1)

k3 = f (tn +
3
4hn, xn +

3
4hk2)

xn+1 = xn + h
(
2
9k1 +

1
3k2 +

4
9k3
)

k4 = f (tn + 1hn, xn+1)

zn+1 = xn + h
(

7
24k1 +

1
4k2 +

1
3k3 +

1
8k4
)

0
1
2

1
2

3
4 0 3

4
1 2

9
1
3

4
9

2
9

1
3

4
9

7
24

1
4

1
3

1
8

Remark: the step-size h is adapted following ‖ xn+1 − zn+1 ‖

23 / 30

Examples of Runge-Kutta methods: IRK

Single-step fixed step-size implicit Runge-Kutta method

e.g. Runge-Kutta Gauss method (order 4) is defined by:

k1 = f
(

tn +

(
1
2 −
√
3
6

)
hn, xn + h

(
1
4k1 +

(
1
4 −
√
3
6

)
k2
))

(4a)

k2 = f
(

tn +

(
1
2 +

√
3
6

)
hn, xn + h

((
1
4 +

√
3
6

)
k1 +

1
4k2
))

(4b)

xn+1 = xn + h
(1
2k1 +

1
2k2
)

(4c)

Remark: A non-linear system of equations must be solved at each step.

Remark 2: this kind of methods is not considered here.

23 / 30

Bounding the truncation error1

Goal: to bound the truncation error ‖ x(ti ; x0)− xi ‖

Order condition of Runge-Kutta method
A method is of order p iff the p + 1 first coefficients of the Taylor
expansion of the solution and the Taylor expansion of the numerical
methods are equal.

The truncation error is defined by:

x(tn; x0)− xn =
hp+1

n
(p + 1)!

(
f (p) (ξ, x(ξ))− dp+1φ

dtp+1 (η)

)
ξ ∈]tk , tk+1[and η ∈]tn, tn+1[. (5)

with φ(t) = xn + (t − tn)
∑s

i=1 biki (t).

Problem: bounding the term f (p) (ξ, x(ξ)) (Solution: Picard-Lindelöf
operator)

1“Enclosing Temporal Evolution of Dynamical Systems Using Numerical Methods”, NFM’13
24 / 30

Main algorithm

Input:
a Butcher tableau of the explicit Runge-Kutta methods
the order p of the method
the problem f to solve s.t. ẋ = f (x)
the initial conditions [x0]

Preliminaries:
Compute the p-th derivatives of f
Compute the p + 1-th derivatives of φ

The main steps are (in a loop):
1 From [xn] apply explicit Runge-Kutta methods φ to compute [x̂n+1]
2 Apply Picard-Lindelöf to compute [x̃]
3 If truncation error E below of a tolerance ε then goto 5
4 Else reduce step-size h/2 and goto 1
5 [xn+1] = [x̂n+1] + E and
6 update step-size h in function to E and goto 1

Remark: even fixed-step explicit Runge-Kutta methods are transformer
into variable-step guaranteed methods.

25 / 30

Example: a chemical reaction

Consider the IVP:
ẏ = z

ż = z2 − 3
0.001 + y2

with
{
y(0) = 10
z(0) = 0

It admits a discontinuity in the solution around t = 35.

34.6 34.8 35 35.2 35.4
−25

−20

−15

−10

−5

lower bound
upper bound

26 / 30

Example: sail boat

init x = [0,1];
init y = [0,1]; # initial position
init theta = 0;
init deltav = 0.5;
init deltag = 0;
init v = 2;
init omega = 0;

u1 = -0.5;
u2 = 0;

Physical model
x’ = v * cos(theta);
y’ = v * sin(theta) - beta * vent;
theta’ = omega;
deltav’ = u1;
deltag’ = u2;
v’ = (fv * sin(deltav) - fg * sin(deltag) - alphaf * v) / m;
omega’ = (fv * (long - rv * cos(deltav)) -

rg * fg * cos(deltag) - alphatheta * omega) / j;

fv=alphav*vent*cos(theta+deltav)-alphav*v*sin(deltav);
fg=alphag*vitesse*sin(deltag);

output(x,y);

27 / 30

Example: sail boat

28 / 30

Conclusion

1 Context

2 Numerical solution of IVP

3 Guaranteed numerical integration: Taylor methods

4 Representation of sets of values

5 Guaranteed numerical integration: Runge-Kutta methods

6 Conclusion

29 / 30

Conclusion

Guaranteed numerical solution of IVP based on:
affine arithmetic
well known numerical scheme: explicit Runge-Kutta methods

Future work
Consider implicit Runge-Kutta methods.
Consider multi-step methods as Adams-Bashworth, BDF, etc.
Consider DAE e.g., F (x , ẋ , y) = 0.
Consider delayed differential equations.

30 / 30

	Context
	Numerical solution of IVP
	Guaranteed numerical integration: Taylor methods
	Representation of sets of values
	Guaranteed numerical integration: Runge-Kutta methods
	Conclusion

