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Underwater wireless
communications



Underwater stationary sensor networks
(i.e., Eulerian ocean observations) ———
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Photo: Laura de Steur, Norwegian Polar Institute. Fram Strait Arctic Outflow Observatory.



Underwater mobile sensor networks
(i.e., Lagrangian ocean observations)
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BELLHOP(M) -CTD5toCTD7

Underwater acoustic communications
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* Underwater sound speed about 1500 m/s, dependent on physical
and chemical properties of the water

e Typical values for the center frequency, Fc from 2 kHz up to 60 kHz

* B=Fc/2, ultra-wideband communication systems

e Applications are delay tolerant, low data rate, over long distances o a0 w0 &0 w0 o0 0

Range (m)

9/24/2024 Seminar at ENSTA Bretagne 5

r 40

45

- 50

20

25

30

r 35

r 40

L 45

- 50

55

60

65

70



Underwater free space optical communications
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Fig. 1. End-to-End general Block Diagram of UWOC communication link.

Point-to-point communication systems
Underwater light speed about 2.25 108 m/s
Depending on water depth

Depending on water turbity

Applications are high data rate (up to 10 Mbps)
For short distances (up to 100 m)

Temperature: .l 2L Heading: 221° Camera: 0° Depth: 50.2 m
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WiFi used for underwater communications in magnetic
inductive plucks for wireless charging: automatic docking
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WiFi used for underwater communications in magnetic
inductive plucks for wireless charging
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Rates versus ra N8eS

in underwater wireless communications
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Underwater Acoustic Propagation Loss:
absorption and geometrical spreading law

SNR = SL — NL = Lg — PL — NL |
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Underwater Acoustic Propagation

Propagation loss (dB re 1 m2)

SNR = SLL — NLL = Lg — PLL — NL
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Rates vs ranges of underwater acoustic communications:
results based on propagation and noise modelling

20 dB contours
SINR modeling in 2 transmitters and one receiver scenario

— hase scenario
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Figure 5: Left: Range relationship at different center frequencies for an interferer source level of
170 dB re uPa’m?. Right: Range relationship at 10 kHz for different interferer source levels.
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Depth profiles of underwater optical propagation and

hydrological properties: measured light attenuation and

absorption coefficients in water as a function of depth
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Ambient light field at 0-30 m depth (i.e., background noise for the optical
comm system): Irradiance and diffuse attenuation coefficient
Ka(\) 2 [aw(A) + byot(N)]/ cos .
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Water physical optical properties measurements

Ambient Light Field Optical Properties ,scattering and absorption
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Ramses ACC-VIS hyperspectral irradiance sensor

SeaBird Sci. ac-s, underwater light absorption and
(TriOS Mess- und Datentechnik GmbH)

attenuation sensor.
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Ocean Lab facility at the Trondhjem Biological Station
TBS) NTNU

Galaxy S21 Ultra 5G
6:37 pm
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Rates vs ranges of FSO communications: effective rates
measured in experimental research

Rate (kbps) Distance (m)

Depth (m) 15 20 25 30 35
60 2005 | 2150 | 1000 0 0
70 2005 | 2185 | 2155 695 0
80 2065 | 2000 | 2280 [ 1935 0
90 2005 | 2215 | 2145 | 1565 0

Good connectivity from 10 m depth to 60 m depth with distances from 2 m up to 20 m.
Files of 10 MBytes were transferred in 5 s over 30 m distance in vertical link in August
2024, between SEASAM (@60 m depth) and X3 drones (@90 m depth).
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Physical Layer interoperability

Interoperability

in underwater wireless communications
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JANUS Stanag 4748

ADB (34 bit)
1 7 26

Figure Il. The structure of a JANUS packet
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SWIiG Level 1

SWIGAcoustic 64 bit packet
144 chips

Ver # Application Data Block
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324N0S
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Dual Channel Acoustic Protocol (DCAP

Code Fc (Hz) BW (Hz) Symbols/sec User throughput Sc?éi value FSw BW cd Symbolrate | Max bit rate
(bps) 0 65 Hz 1690 Hz 0.015385 sec 65 sps 28 bps
0 24000 6000 5000 4900 1 130 Hz 3380 Hz 0.00769 sec 130 sps 57 bps
1 24900 5100 4250 4165 2 195 Hz 5070 Hz 0.005128 sec 195 sps 85 bps
2 25600 4200 3500 3430 2 5t S0t To00ise — [ias  Tisioe
z z . sec sps ps
3 26500 3600 3000 2340 5 390 Hz 10140 Hz 0.002564 sec 390 sps 171 bps
4 27500 2400 2000 1960 6 455 Hz 11830 Hz 0.0022 sec 455 sps 199 bps
HSQPSK 26000 12000 10000 10000 7 520 Hz 13520 Hz 0.00192 sec 521 sps 228 bps

SMAC Center Frequency (Hz)

18795 | 19640

HDC Center Frequency (Hz)
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Received Normalized Power Spectral Densities
from two Software Defined Modems
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Packet delivery rates

TABLE I: PDR over 6 m and 115 m links in both communica- TABLE II: PDR at 6 m and at 115 m when the NORCE SDM
tion directions. These results are obtained by post-processing transmitted to the WSense one. These results are obtained by

o . | r 2 ( _ . 1
the recordings with the reference receiver software the WSense recerving software implementation of DCAP.
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Multimodality

in underwater wireless communications
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UNDINA milestone: Three payloads integrated into the robot
with the first implementation of the programmable protocol stack

l»luel.'e’

High data rate (Mbps)

Recharge power (150 W)

Control channel upload-offload data (1Gbps)

and positioning

9/24/2024 Seminar at ENSTA Bretagne 26



UNDINA milestone: Three payloads integrated into the robot
with the first implementation of the programmable protocol stack
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Functionalities that were verified and validated in August 2024

e Automatic docking by fusioning camera and DVL data.

* Positioning through a relay (without direct connectivity between USBL and drone to
position).

* Fly over (with automatic data transfer through opical modem).

* Hybrid communication and positioning system (HoPS) validated with status messages sent
by one drone while positioning all the drones in the water.

« Systematic tests of HoPS in open water in the fjord.

9/24/2024 Seminar at ENSTA Bretagne
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Conclusions

And open questions
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Lessons learnt and
perspectives

e X3 drones are an efficient and flexible
platform to perform rate vs range and
depth optical communication tests

* Optical modem performs satisfactorily for
the use cases in UNDINA (horizontal and
vertical close to sea bottom data
transmissions from the drones to the
benthic station).

* Run-off pollution increases attenuation at
surface but will also reduce ambient light
at depth.

* More systematic experiments are needed
to better delimit the rate vs range and
depths working regimes of the optical and
acoustic communications.
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Thanks & Questions
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