Dessin rapide à haute résolution de courbes et surfaces algébriques

Nuwan Herath Mudiyanselage avec Guillaume Moroz et Marc Pouget

Guillaume Moroz

Marc Pouget

Inria Nancy-Grand Est / Loria GAMBLE

- géométrie algorithmique
- approche probabiliste
- combinatoire
- calcul formel
- géométrie hyperbolique

Guillaume Moroz

Marc Pouget

Inria Nancy-Grand Est / Loria GAMBLE

• géométrie algorithmique

- approche probabiliste
- combinatoire
- calcul formel
- géométrie hyperbolique

Vue d'ensemble

Dessin de courbes implicites

3 Notre approche

④ Évaluation multipoint rapide

Dessin de courbes implicites

Problème du dessin de courbe implicite

Problème général

Représentation discrète d'une courbe implicite sur une grille fixe

- Entrée:
 - fonction F
 - résolution N
 - fenêtre de visualisation

Courbe implicite définie comme l'ensemble solution

$$\{(x,y)\in\mathbb{R}^2\mid F(x,y)=0\}$$

• Sortie: dessin (ensemble de pixels)

Problème du dessin de courbe implicite

Notre objectif

Représentation discrète d'une courbe algébrique sur une grille fixe

• Entrée:

- ► polynôme bivarié *P* de degré partiel *d*
- résolution N
- $\blacktriangleright \ \text{fenêtre} \ [-1,1] \times [-1,1]$

Courbe algébrique définie comme l'ensemble solution

$$\{(x,y)\in\mathbb{R}^2\mid P(x,y)=0\}$$

• Sortie: dessin (ensemble de pixels)

Objectif : dessin rapide à haute résolution de courbes algébriques de haut degré

- $d pprox 100 \longrightarrow d^2 pprox 10\ 000$ monômes
- $N \approx 1~000$

Pourquoi des courbes algébriques de haut degré ?

Objectif de la visualisation : avoir une meilleure intuition et une meilleure compréhension de données

En robotique, l'espace de configuration peut être de grande dimension

 $\mathbb{R}^N \to \mathbb{R}^M$

Opérations sur des variétés algébriques :

- coupe
- projection

Robots industriels de KUKA par Mixabest (CC BY-SA 3.0)

Correction du dessin

Pour des raisons numériques, il peut y avoir :

• des pixels faux négatifs

Correction du dessin

Pour des raisons numériques, il peut y avoir :

- des pixels faux négatifs
- des pixels faux positifs

État de l'art

L'idée

L'idée

L'idée

L'idée

L'idée

L'idée

L'idée

Complexité

Complexité (nombre d'opérations élémentaires) Évaluation naïve

 $\theta(d^2N^2)$

d degré partiel *N* résolution de la grille

Complexité arithmétique de marching squares

Avec évaluation partielle de P(x, y), en supposant d < N

 $\theta(dN^2)$

Lent pour de hautes résolutions...

Peut-on avoir un algorithme en O(dN) ?

Méthodes fournissant une correction topologique

Subdivision 2D adaptative avec arithmétique d'intervalles

- [Snyder, 1992]
- [Plantinga & Vegter, 2004]
- [Burr et al., 2008]
- [Lin & Yap, 2011]
- . . .

Décomposition algébrique cylindrique (CAD)

- [Gonzalez-Vega & Necula, 2002]
- [Eigenwillig et al., 2007]
- [Alberti et al., 2008]
- [Cheng et al., 2009]
- [Kobel & Sagraloff, 2015]
- [Diatta et al., 2018]

[Lin & Yap, 2011]

https://isotop.gamble.loria.fr/

• . .

Notre approche

Propriété d'inclusion

$$P(X) = 2X^3 - X^2 - 1.5X + 0.75$$

How to compute P(I) for I = [-1, 1]?

P(I) = [-0.75, 1.06...]

Propriété d'inclusion

$$P(X) = 2X^3 - X^2 - 1.5X + 0.75$$

How to compute P(I) for I = [-1, 1]?

$$\Box P(I) = 2[-1,1]^3 - [-1,1]^2 - 1.5[-1,1] + 0.75$$

= [-5.25,5.25]

P(I) = [-0.75, 1.06...]

Propriété d'inclusion

-1

$$P(X) = 2X^3 - X^2 - 1.5X + 0.75$$

How to compute P(I) for I = [-1, 1]?

Avec la méthode d'Horner :

 $\square P(I) = ((2[-1,1]-1)[-1,1]-1.5)[-1,1] + 0.75$ = [-3.75, 5.25] $P(I) \subset \square P(I)$

P(I) = [-0.75, 1.06...]

Propriété de convergence

Convergence en un point With $x \in [a, b]$

$$\lim_{[a,b]\longrightarrow[x,x]=\{x\}} \Box P([a,b]) = P(x)$$

Notre approche : intersections garanties avec la grille

Subdivision adaptative

Nouvelle approche: évaluation le long de fibres

 \Rightarrow La rendre rapide et fournir des garanties

Deux algorithmes

Dessin d'arêtes

- évaluation en X nœuds de Tchebychev évaluation multipoint avec IDCT
- subdivision en Y méthode naïve d'isolation de racines

Dessin de pixels

- évaluation en X nœuds de Tchebychev évaluation multipoint avec IDCT approximation de Taylor
- *subdivision in Y* méthode naïve d'isolation de racines

Garanties Pixels faux positifs et faux négatifs Garanties Pixels faux positifs seulement

Subdivisions le long d'une fibre $P(x_k, Y) = \sum a_j Y^j$

Un exemple

$$X^2 + Y^2 - 1 = 0$$

Résolution N = 64

Allumage de pixels Dessin d'arêtes

Allumage de pixels Dessin d'arêtes

• Détecter la traversée entre deux nœuds consécutifs de la grille

Allumage de pixels Dessin d'arêtes

- Détecter la traversée entre deux nœuds consécutifs de la grille
- Allumer les pixels adjacents

Allumage de pixels Dessin de pixels

- Détecter la traversée dans un pixel de la grille
- Allumer ce pixel

Pixels faux positifs et faux négatifs Dessin d'arêtes

Des pixels incorrects :

• Faux négatif quand une composante connexe se trouve dans un pixel

Pixels faux positifs et faux négatifs Dessin d'arêtes

Des pixels incorrects :

- Faux négatif quand une composante connexe se trouve dans un pixel
- Faux positif quand l'évaluation sur le bord d'un pixel est proche de zéro Cela se produit pour un segment *S* quand

$$0\in \Box P(S)+[-E,E]$$

Certification des segments qui ne sont pas traversés :

Pixels faux positifs et faux négatifs Dessin de pixels

Des pixels incorrects :

- Faux négatif quand une composante connexe se trouve dans un pixel
- Faux positif quand l'évaluation sur le bord d'un pixel est proche de zéro Cela se produit pour un segment *S* quand

$$0\in \Box P(S)+[-E,E]$$

Certification des segments qui ne sont pas traversés :

Évaluation multipoint rapide

Un prérequis pour l'évaluation multipoint rapide

Polynômes de Tchebychev

Definition

Les polynômes de Tchebychev (T_k) vérifient $\forall k \in \mathbb{N}, T_k(\cos \theta) = \cos(k\theta)$

Les trois premiers polynômes de Tchebychev

$$egin{aligned} \cos(0 \cdot heta) &= 1 & & & T_0 &= 1 \ \cos(1 \cdot heta) &= \cos(heta) & & & T_1 &= X \ \cos(2 \cdot heta) &= 2\cos(heta)^2 - 1 & & & T_2 &= 2X^2 - 1 \end{aligned}$$

Un prérequis pour l'évaluation multipoint rapide

Polynômes de Tchebychev

Definition

Les polynômes de Tchebychev (T_k) vérifient $\forall k \in \mathbb{N}, T_k(\cos \theta) = \cos(k\theta)$

Lemma

Un polynôme arbitraire p de degré d peut être écrit en fonction des polynômes de Tchebychev :

$$p(X) = \sum_{k=0}^{d} \alpha_k T_k(X)$$

Un prérequis pour l'évaluation multipoint rapide

Polynômes de Tchebychev

Definition

Les polynômes de Tchebychev (T_k) vérifient $\forall k \in \mathbb{N}, T_k(\cos \theta) = \cos(k\theta)$

Lemma

Un polynôme arbitraire p de degré d peut être écrit en fonction des polynômes de Tchebychev :

$$p(X) = \sum_{k=0}^{d} \alpha_k T_k(X)$$

Lemma

Pour $N \in \mathbb{N}$, un polynôme p de degré d peut être évalué aux nœuds de Tchebychev $(c_n)_{0 \le n \le N-1}$ en utilisant l'IDCT:

$$(p(c_n))_{0 \le n \le N-1} = \frac{1}{2}(\alpha_0, \dots, \alpha_0) + \mathsf{IDCT}((\alpha_k)_{0 \le k \le N-1})$$

Un prérequis pour l'évaluation multipoint rapide Nœuds de Tchebychev

Definition

Pour $N \in \mathbb{N}$, les nœuds de Tchebychev sont

$$c_n = \cos\left(\frac{2n+1}{2N}\pi\right), \ n = 0, \dots, N-1$$

Ce sont les racines de T_N

Transformée en Cosinus Discrète Inverse (IDCT): $\alpha_k \rightarrow x_n$

 \Rightarrow Rapide grâce à l'algorithme de Transformée de Fourier Rapide (FFT) en $O(N \log_2 N)$ [Makhoul, 1980]

Transformée en Cosinus Discrète Inverse (IDCT): $\alpha_k \rightarrow x_n$

 $\Rightarrow \text{Rapide grâce à l'algorithme de Transformée de Fourier Rapide (FFT) en } O(N \log_2 N)$ [Makhoul, 1980]

$$\rho(c_n) = \sum_{k=0}^{N-1} \alpha_k T_k \left(\cos\left(\frac{2n+1}{2N}\pi\right) \right)$$

Transformée en Cosinus Discrète Inverse (IDCT): $\alpha_k \rightarrow x_n$

 $\Rightarrow \text{Rapide grâce à l'algorithme de Transformée de Fourier Rapide (FFT) en } O(N \log_2 N)$ [Makhoul, 1980]

$$p(c_n) = \sum_{k=0}^{N-1} \alpha_k T_k \left(\cos\left(\frac{2n+1}{2N}\pi\right) \right) = \sum_{k=0}^{N-1} \alpha_k \cos\left[\frac{\pi k(2n+1)}{2N}\right]$$

Transformée en Cosinus Discrète Inverse (IDCT): $\alpha_k \rightarrow x_n$

⇒ Rapide grâce à l'algorithme de Transformée de Fourier Rapide (FFT) en $O(N \log_2 N)$ [Makhoul, 1980]

$$p(c_n) = \frac{1}{2}\alpha_0 + \frac{1}{2}\alpha_0 + \sum_{k=1}^{N-1} \alpha_k \cos\left[\frac{\pi k(2n+1)}{2N}\right]$$
$$(p(c_n))_{0 \le n \le N-1} = \frac{1}{2}(\alpha_0, \dots, \alpha_0) + \mathsf{IDCT}((\alpha_k)_{0 \le k \le N-1})$$

Erreur de l'IDCT

[Makhoul, 1980] et [Brisebarre et al., 2020, Theorem 3.4] conduisent à

Theorem (H., Moroz, Pouget, 2022)

Assume radix-2, precision-p arithmetic, with rounding unit $u = 2^{-p}$. Let \hat{x} be the computed 2^n -point IDCT of $\alpha \in \mathbb{C}^{2^n}$, and let x be the exact value. Then

 $\|\widehat{x}-x\|_{\infty}=n\|\alpha\|_{\infty}O(u).$

Table: IDCT error bounds for p = 53 (double precision)

$N = 2^n$	1,024	2,048	4,096	8, 192	16,384	32,768
$\ \widehat{x} - x\ _{\infty} / \ \alpha\ _{\infty}$	7.97e-15	8.84e-15	9.72e-15	1.06e-14	1.15e-14	1.23e-14

Algorithmes

$$P(X, Y) = \sum \left(\sum_{i,j} X^{i}\right) Y^{j} = \sum_{i,j} p_{j}(X) Y^{j}$$
$$p_{j}(X) = \sum_{i,j} a_{i,j} X^{i} = \sum_{i,j} \alpha_{i,j} T_{i}(X)$$
$$(p_{j}(c_{n}))_{0 \le n \le N-1} = \frac{1}{2} (\alpha_{0,j}, \dots, \alpha_{0,j}) + \mathsf{IDCT}((\alpha_{k,j})_{0 \le k \le N-1})$$

Illustration

Illustration

Illustration

Illustration

Illustration

évaluation multipoint avec IDCT en X**autour de** $c_0, c_1 \dots$

subdivision en Y

évaluation multipoint avec IDCT + approximation de Taylor en X

subdivision in Y

Développement de Taylor des polynômes partiels de $P(X, Y) = \sum p_j(X)Y^j$

$$\left| p(c_n + r) - \left(p(c_n) + rp'(c_n) + \dots + rac{r^m}{m!} p^{(m)}(c_n)
ight)
ight| \leq \max_{l_{c_n}} \left| p^{(m+1)} \left| rac{|r|^{(m+1)}}{(m+1)!}
ight|$$

évaluation multipoint avec IDCT + approximation de Taylor en X

subdivision in Y

Développement de Taylor des polynômes partiels de $P(X, Y) = \sum p_j(X)Y^j$

$$\left| p(c_n + r) - \left(p(c_n) + rp'(c_n) + \dots + \frac{r^m}{m!} p^{(m)}(c_n) \right) \right| \leq \max_{l_{c_n}} \left| p^{(m+1)} \right| \frac{|r|^{(m+1)}}{(m+1)!}$$

évaluation multipoint avec IDCT + approximation de Taylor en X

subdivision in Y

Développement de Taylor des polynômes partiels de $P(X, Y) = \sum p_j(X)Y^j$

$$\left| p(c_n + r) - \left(p(c_n) + rp'(c_n) + \dots + \frac{r^m}{m!} p^{(m)}(c_n) \right) \right| \leq \max_{l_{c_n}} \left| p^{(m+1)} \right| \frac{|r|^{(m+1)}}{(m+1)!}$$

Complexité

Complexité arithmétique

approximation de Taylor multipoint et subdivision $O(md^3 + mdN \log_2(N) + dNT)$

d degré partiel *N* résolution

T nombre maximal de nœuds des arbres de subdivision sur toutes les bandes verticales

Avec un nombre constant de branches dans la fenêtre, on attend $T = O(\log_2(N))$

Classification des pixels

- traversé : bleu
- non traversé : blanc
- indécidable : jaune

Dessin pour deux familles de polynômes

Expériences sur des courbes lisses \longrightarrow polynômes aléatoires $\xi_{i,j}$: coefficients aléatoires dans [-100, 100]

Polynôme Kac

Polynôme Kostlan-Shub-Smale (KSS)

Dessin pour deux familles de polynômes

Figure: Polynôme Kac de degré d = 110 à une résolution N = 1 024, $\frac{b}{b+i} = 24\%$

Dessin pour deux familles de polynômes

Figure: Polynôme KSS de degré d = 40 à une résolution de N = 1 024, $\frac{b}{b+i} = 19\%$

Comparaison aux logiciels de l'état de l'art

Nos méthodes

- $\bullet\,$ dessin d'arêtes $\rightarrow\,$ arêtes englobant la courbe
- ${\, \bullet \,}$ dessin de pixels \rightarrow pixels englobant la courbe

Des méthodes similaires

- $\bullet\,$ scikit / NumPy $\rightarrow\,$ marching squares
- $\bullet~{\sf MATLAB} \to {\sf m\acute{e}thode}$ utilisée non trouvée
- $\bullet~\mbox{ImplicitEquations} \rightarrow \mbox{subdivision}~\mbox{2D}~\mbox{adaptative}$

Une méthode topologiquement correcte

 $\bullet~$ lsotop $\rightarrow~$ décomposition algébrique cylindrique

faux positifs et faux négatifs faux positifs

> faux négatifs faux négatifs ? faux positifs

Mesures de temps

Comparaison pour un polynomial

Temps d'exécution pour un polynôme Kac de degré 40 (en secondes)

Mesures de temps

Comparaison pour un polynomial

Temps d'exécution pour un polynôme Kac de degré 40 (en secondes)

scikit: $O(dN^2)$

Nos méthodes : O(dNT)comme attendu $T = O(\log_2(N))$

pas de garantie lent quand d et N sont grands

garanties rapide quand d et N sont grands

Résultat pour une courbe singulière

Courbe : $dfold_{8,1}$ du Challenge 14 d'Oliver Labs[13][37] (d = 18)

Conclusion

Contributions

- Deux algorithmes
 - arêtes englobantes
 - pixels englobants
- Algorithmes rapides pour les courbes et surfaces implicites en hautes résolutions : plus rapide que marching squares et marching cubes
- Meilleures garanties sur le dessin que marching squares
- Capables de gérer les hauts degrés (d > 20) et les hautes résolutions (N > 1 000)