

Robex Seminar

Interval-based fault-detection of GNSS signal using land-based cameras for remote ship piloting operations

Morgan Louédec, Solène Boudot, Dimitrios Papageorgiou1 & Roberto Galeazzi 11th September 2025

Outline

Context - Remote pilotage in harbour environment

Tools - Interval analysis

Design of a Fault detection method with tubes

Experimental application

Results

Outline

Context - Remote pilotage in harbour environment

Tools - Interval analysis

Design of a Fault detection method with tubes

Experimental application

Results

SLGreen project

The Benefits ot remote pilotage

Remote piloting:

- Increase safety, by avoiding risky ladder boarding, which is the most common boarding method
- Reduce fuel consumption. Pilot's ships are not used. Cargo ships do not have to stop for boarding

Figure 1: DanPilot's ship

Figure 2: Ladder boarding

Perception & Communication, the challenges of remote pilotage

Remote pilot's perception relies on Maritime sensors

Large Data Visualization

Problem – detecting falsification in the transmission during a docking manoeuvre using land-based sensors

Figure 3: The ship docks near the Land Sensor Platform

Figure 4: Data Flow

Tools - Interval analysis

Outline

Tools - Interval analysis

Tools - Interval analysis

Tubes

A n-dimensional tube $[\mathbf{x}](\cdot): \mathbb{R} \to \mathbb{IR}^n$ is a time dependent n-dimensional box. A trajectory $\boldsymbol{x}(\cdot)$ belongs to the tube $[\boldsymbol{x}](\cdot)$ if $\forall t \in \mathbb{R} : \boldsymbol{x}(t) \in [\boldsymbol{x}](t)$.

Figure 5: One-dimensional tube enclosing a trajectory $x^*(\cdot)$ plotted in orange. The figure shows two interval evaluations: $[x]([t_1])$ and $[x](t_2)$

Evaluation of delay between tubes (Raphael Voges)

Figure 6: We aim to find the set of all $\tau \in [\tau]$ such that both tubes overlap for every point in time. This requirement is fulfilled for the exemplary $[\tau] = [\tau, \overline{\tau}]$ at time t_1 since $[a](t_1)$ and $[b](t_1 + [\tau])$ share a common intersection (green interval).

Offset Constrain Satisfactory Problem (CSP)

The offset Constraint Satisfaction Problem (CSP) is a system of infinite constraints defined as

$$\mathcal{H}_{\mathsf{offset}}: \begin{cases} \mathsf{Variables:} & \tau, \boldsymbol{x}\left(\cdot\right), \boldsymbol{y}\left(\cdot\right) \\ \mathsf{Constraints:} & \forall t \in [t]: \boldsymbol{x}\left(t\right) = \boldsymbol{y}\left(t + \tau\right) \\ \mathsf{Domain:} & [\tau], [\boldsymbol{x}]\left(\cdot\right), [\boldsymbol{y}]\left(\cdot\right) \end{cases} \tag{1}$$

with the offset domain $[\tau]$ and the tubes domains $[x](\cdot)$ and $[v](\cdot)$ defined on the time interval [t]. The offset τ and the trajectories $\boldsymbol{x}(\cdot)$ and $\boldsymbol{v}(\cdot)$ are contained in their respective domain.

The solution set of \mathcal{H}_{offset} is defined as

$$\mathbb{S}_{\text{offset}} = \left\{ (\tau, \boldsymbol{x}(\cdot), \boldsymbol{y}(\cdot)) \in [\tau] \times [\boldsymbol{x}](\cdot) \times [\boldsymbol{y}](\cdot) | \forall t \in [t] : \boldsymbol{x}(t) = \boldsymbol{y}(t+\tau) \right\}. \tag{2}$$

The contractor of the CSP

The operator

$$C_{\text{offset}}: \begin{pmatrix} [\tau] \\ [\boldsymbol{x}](\cdot) \\ [\boldsymbol{y}](\cdot) \end{pmatrix} \rightarrow \begin{pmatrix} [\tau'] \\ [\boldsymbol{x}'](\cdot) \\ [\boldsymbol{y}'](\cdot) \end{pmatrix}$$
(3)

is a contractor for the CSP $\mathcal{H}_{\text{offset}}$ if it replaces the domains $([\tau], [\mathbf{x}](\cdot), [\mathbf{y}](\cdot))$ by smaller domains $([\tau'], [\mathbf{x}'](\cdot), [\mathbf{y}'](\cdot)) \subseteq ([\tau], [\mathbf{x}](\cdot), [\mathbf{y}](\cdot))$ such that

$$\mathbb{S}_{\mathsf{offset}} \subseteq ([\tau'], [\mathbf{x}'](\cdot), [\mathbf{y}'](\cdot)). \tag{4}$$

Theoretical Problem description

Hypothesis: consider the ship trajectory $\mathbf{x}(.)$, the land-based estimation tube $[\hat{\mathbf{x}}_h](.)$ and the ship-based estimation tube $[\hat{x}_a](.)$. $[\hat{x}_b](.)$ is trustworthy, i.e. $\forall t \in \mathbb{R}, \mathbf{x}(t) \in [\hat{\mathbf{x}}_b](t)$. $[\hat{\mathbf{x}}_a](t)$ has a fault at time t if and only if $\mathbf{x}(t) \notin [\hat{\mathbf{x}}_a](t)$. Let

 $\mathcal{D} = \{t \in \mathbb{R} | \mathbf{x}(t) \notin [\hat{\mathbf{x}}_a](t)\}$ be the set of fault times.

At every time, three hypothesis are considered:

- $\mathcal{H}_0: \mathbf{x}(t) \in [\hat{\mathbf{x}}_a](t)$ (no fault)
- $\mathcal{H}_1: \mathbf{x}(t) + \mathbf{f}(t) \in [\hat{\mathbf{x}}_a](t)$ (value fault with the fault $\mathbf{f}(t) \in \mathbb{R}^n$)
- $\mathcal{H}_2: \mathbf{x}(t+\tau) \in [\hat{\mathbf{x}}_a](t)$ (delay fault with the delay $\tau \in \mathbb{R}$)

Problem: evaluate \mathcal{D} and the hypothesis \mathcal{H}_1 and \mathcal{H}_2 .

Design of a Fault detection method with tubes

Outline

Design of a Fault detection method with tubes

Fault detection with the overlapping function

The overlapping function is defined by

$$o_l : \mathbb{IR}^n \times \mathbb{IR}^n \to [0, 1]$$

$$([\boldsymbol{a}], [\boldsymbol{b}]) \to \frac{\operatorname{Vol}([\boldsymbol{a}] \cap [\boldsymbol{b}])}{\operatorname{Vol}([\boldsymbol{a}])},$$
(5)

It can invalidate \mathcal{H}_0 with the following

$$(o_l([\hat{\boldsymbol{x}}_a](t), [\hat{\boldsymbol{x}}_b](t)) = 0) \Rightarrow t \in \mathcal{D} \text{ (fault)}$$
(6)

and one can obtain an inner enclosure of the fault time set

$$\underline{\mathcal{D}} := \left\{ t \in \mathbb{R} | o_l([\hat{\boldsymbol{x}}_a](t), [\hat{\boldsymbol{x}}_b](t)) = 0 \right\}. \tag{7}$$

Evaluation of the fault value with a residual tube

Consider the residual tube $[\mathbf{r}](.) = [\hat{\mathbf{x}}_a](.) - [\hat{\mathbf{x}}_b](.)$. $\forall t \in \mathcal{D}$, consider the fault value $\mathbf{f}(t)$ such that $\boldsymbol{x}(t) + \boldsymbol{f}(t) \in [\hat{\boldsymbol{x}}_a](t)$. Then one has

$$\forall t \in \mathcal{D}, \mathbf{f}(t) \in [\mathbf{r}](t)$$
(8)

Delay evaluation

Consider delay CSP

$$\mathcal{H}_{\text{Offset}}: \begin{cases} \text{Variables:} & \tau, \mathbf{x}_{a}(\cdot), \mathbf{x}_{b}(\cdot) \\ \text{Constraints:} & \forall t \in [t] : \mathbf{x}_{a}(t) = \mathbf{x}_{b}(t+\tau) \\ \text{Domain:} & [\tau], [\mathbf{x}_{a}](\cdot), [\mathbf{x}_{b}](\cdot) \end{cases} \tag{9}$$

with a contractor $\mathcal{C}_{\text{offset}}$ and an initial delay estimation $[\tau]$. Let

$$([\tau'], [\boldsymbol{x}'_{a}](\cdot), [\boldsymbol{x}'_{b}](\cdot)) = \mathcal{C}_{\text{offset}}([\tau], [\boldsymbol{x}_{a}](\cdot), [\boldsymbol{x}_{b}](\cdot))$$
(10)

Then, one has $\tau \in [\tau']$. Moreover, if $[\tau'] = \emptyset$, then the solution set $\mathbb{S}_{\text{offset}}$ is empty which means that the fault of $[x_a](\cdot)$ cannot be caused by a delay - the hypothesis \mathcal{H}_2 is false.

Outline

Experimental application

Method extension to synchronous hybrid systems
Camera view

Figure 7: Land-based platform

Figure 8: harbour bus

Stereo vision

Images 1 - the ship is close

Images 2 - the ship is far

Uncertainty of stereo localisation

The uncertainty of the estimated position \hat{x}_{stereo} is evaluated with the uncertainty box $[\hat{\boldsymbol{x}}_{\text{stereo}}]$ given by

$$[\hat{\boldsymbol{x}}_{\text{stereo}}] = \begin{bmatrix} \frac{[f] \cdot [b]}{[d]} \\ \left(\frac{[u] - [C_x]}{[d]} + \frac{1}{2}\right) \cdot [b] \end{bmatrix}, \tag{11}$$

with the uncertainty intervals of the centre of the detection box in the left image $\mathbf{p} = [u, v] \in \mathbb{Z}^2$, the optical centre of the camera $\mathbf{c} = [C_x, C_v] \in \mathbb{Z}^2$, the baseline b, and the focal length f.

Dataset

Artificial data degradation

3 scenarios are considered:

- Scenario 0 no artificial data degradation
- Scenario 1 during Docking 1, a value fault starts at time $t_1 = 380$ s with the value

$$\mathbf{f}(t) = \begin{bmatrix} 0.5 \,\mathrm{m} \cdot (t - t_1) \\ 15 \,\mathrm{m} \end{bmatrix}, \tag{12}$$

added to $[\hat{x}_a](.)$

• Scenario 2 - during Docking 2, a delay fault start at time $t_2 = 1600$ s with a delay $\tau = 60$ s applied on $[\hat{\boldsymbol{x}}_a]$ (.)

Results

Outline

Results

Results

Docking 1 - Scenario 0

Figure 9: With small exception, there is an intersection between the estimation tubes $[\hat{x}_a]$ (.) from the ship and $[\hat{\mathbf{x}}_b]$ (.) the land sensor platform.

Docking 1 - Scenario 1

Figure 10: The overlapping function is null on the time intervals $[t_1] = [394, 548]$ and $[t_2] = [553, 557]$. Moreover an empty delay interval $[\tau'] = \emptyset$ is evaluated with $\mathcal{C}_{\text{offset}}$.

Results

Docking 2 - Scenario 0

Figure 11: Compared to docking 1, there are more disjoint times when the ship is leaving the docking station (t > 1750 s).

Docking 2 - Scenario 2

Figure 12: The overlapping function is null on the time intervals $[t_3] = [1611, 1679], [t_4] = [1746, 1752]$ and $[t_5] = [1755, 1801]$. Moreover, the initial delay interval $[\tau] = [0, 100]$, is contracted into $[\tau'] = [52, 77]$

Overlapping function

Figure 13: Overlapping function for the different scenarios.

Results

Using Kalman filtering on the stereo tracking

Figure 14: The stereo tubed are obtained via Kalman filtering to remove outliers. Docking 1 is illustrated by the first row. Docking 2 by the second

Kalman filtering - Overlapping function

Figure 15: Overlapping function with Kalman filtering.

Results

Conclusion

- The GNSS data faults can be detected with visual localisation. Low Precision. sensors can validate high precision measurements.
- Stochastic fault detection methods would have likely given similar results. The tube-based method has less false alarms.
- The camera setup requires an optimisation between the focal length, the field of view and the baseline
- The results reflect the small data size (<200 samples from each data source).

This work was accepted for the ICMASS Conference 2025.

Future work will broaden data validation to integrate additional sensing modalities, and will explore distributed validation architectures in multi-vessel environments.