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Introduction

Problem

Localization
of partially hidden targets
in an unknown cluttered environment
using a fleet of collaborative UAVs
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Introduction

Difficulties encountered

UAVs have limited ability to detect targets due to
limited field of view
presence of obstacles
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Introduction

Related work

Search and track problem: Collecting information and defining exploration strategies
Common hypotheses

Measurment noise modeled by realization of (Gaussian) random variables
Outliers or decoys accounted for by false alarm probabilities

Various search strategies [13, 10]
Optimal flight path design
Distributed MPC [14]
Game-theoretic approaches
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Introduction

Related work

Search process: usually based on probabilistic approaches
Performance usually sensitive to a priori information on pdfs describing

Process noise
Measurement noise

Alternative set membership approaches [1, 3, 7]
Only noise bounds considered
Point estimates → set estimates
Simplified measurement model in [7]
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Introduction

Proposed approach

Here, consider
Obstacles with unknown location
UAVs equipped with optical seekers and computer vision system (CVS)
Target detected and identified when located within field of view of seeker
Set-membership estimation technique as in [7, 5]
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Introduction

Outline

1 Hypotheses

2 Interpreting CVS information

3 Set-membership Estimator

4 Simulations - First part

5 Simulations - Second part

6 Summary
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Hypotheses

Agenda

1 Hypotheses

2 Interpreting CVS information

3 Set-membership Estimator

4 Simulations - First part

5 Simulations - Second part

6 Summary
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Hypotheses

Environment

Unknown Region of Interest (RoI) X0 cluttered with static obstacles
Flat ground Xg

Unknown but structured obstacle

Assumption related to obstacle shape So
m, m ∈ {1, . . . , No}

∀x ∈ So
m, ∀λ ∈ [0, 1] , λx + (1− λ) pg (x) ∈ So

m
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Hypotheses

Targets

N t mobile ground targets

For target j ∈
{
1, . . . , N t}, state xt

j,k

Orientation, speed, location of center of gravity xt
j,k ∈ R3

Target location: projection of xt
j,k on ground, xt,g

j,k = pg

(
xt
j,k

)

Target dynamic

xt,g
j,k+1 = f t

(
xt,g
j,k,v

t
j,k

)
with state perturbation vt

j,k ∈
[
vt].
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Hypotheses

Target - Shape

3D target shape St
(
xt
j,k

)
, usually unknown...

...but target category is known, i.e., cars, bus...

Assumption: Target shape contained in known cylinder Ct
(
xt,g
j,k

)
St
(
xt
j,k

)
⊂ Ct

(
xt,g
j,k

)
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Hypotheses

Target - Interaction

Assumption: Targets avoid collisions with obstacles and other targets

r-ground neighborhood of set S ⊂ Xg

Ng (S, r) = {x ∈ Xg | d (x,S) 6 r}

Target-Obstacle safety distance rto
s

xt,g
j,k /∈ Ng

(
pg (So

m) , rto
s

) Target-Target safety distance rtt
s

xt,g
`,k /∈ Ng

({
xt,g
j,k

}
, rtt

s

)
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Hypotheses

Measurements

Nu UAVs with state xu
i,k, i ∈ {1, . . . , Nu}, with embedded computer vision system

providing
Image Ii,k
Depth map Di,k [9]
Labeled pixels Li,k [4]
Bounding boxes around detected targets [11]
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Hypotheses

Measurements

How can this type of information be exploited by a set-membership estimator?
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Interpreting CVS information

Agenda

1 Hypotheses

2 Interpreting CVS information

3 Set-membership Estimator

4 Simulations - First part

5 Simulations - Second part

6 Summary
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Interpreting CVS information

CVS - Camera model

Pinhole model without distortion [2]

Camera known parameters:
optical center xc

i

Resolution Nc ×Nr

focal length fc, fr

horizontal/vertical aperture

Frame attached to UAV i camera: Fc
i

Optical axis
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Interpreting CVS information

CVS - Camera model

Using the pinhole model, we can
Project a point x onto CCD array

pFc
i

(
xF

c
i

)
= KxF

c
i /x
Fc

i
3

= (c, r)T

K being matrix of camera intrinsic parameters

Optical axis

Model light ray illuminating (c, r) by

v (c, r) = 1
ν (c, r)


(
Nc
2 − c

)
/fc(

Nr
2 − r

)
/fr

1


Set of light rays illuminating pixel (nr, nc): Vi (nr, nc)
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Interpreting CVS information

CVS - Depth map model

Hypotheses: Di (nr, nc) = D0
i,k (nr, nc) (1 + w)

range acquisition D0
i,k (nr, nc) ∈

{
ρ
(
xc
i,k,v

)
| v ∈ Vi,k (nr, nc)

}
unknown but bounded noise w ∈ [w,w]

where ρ
(
xc
i,k,v

)
is the distance between UAV i and environment along v

Depth-Map
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Interpreting CVS information

CVS - Depth map model
Using interval analysis

[Di,k] (nr, nc) =
[ 1

1 + w
,

1
1 + w

]
Di,k (nr, nc)

such that
D0
i,k (nr, nc) ∈ [Di,k] (nr, nc)
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Interpreting CVS information

CVS - Pixel Labels

Pixel labeled either
Ground Yg

i,k

Target Yt
i,k

Obstacle Yo
i,k

Unknown Yn
i,k

Model relating pixel labels to environment needed
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Interpreting CVS information

CVS - Pixel Labels

Hypothesis: If pixel (nr, nc) ∈ Yg
i,k labeled Ground, then

∀v ∈ Vi (nr, nc) , ρ (xc
i ,v) = dv (xc

i ,Xg)

where dv (xu
i ,Xg) is the distance between UAV and Ground along v
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Interpreting CVS information

CVS - Pixel Labels

Hypothesis: If pixel (nr, nc) ∈ Yo
i labeled Obstacle, then ∃m ∈ N o such that

∀v ∈ Vi (nr, nc) , ρ (xc
i ,v) = dv (xc

i ,So
m)
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Interpreting CVS information

CVS - Pixel Labels

Hypothesis: If pixel (nr, nc) ∈ Yt
i labeled Target, then ∃j ∈ N t such that

∀v ∈ Vi (nr, nc) , ρ (xu
i ,v) = dv

(
xu
i , St

j

(
xt
j

))
But: No target direct identification from single pixels
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Interpreting CVS information

CVS - Bounding boxes

Consider Yt
i,j ⊂ Yt

i ; for (nr, nc) ∈ Yt
i,j

∀v ∈ Vi (nr, nc) , ρ (xu
i ,v) = dv

(
xu
i , St

j

(
xt
j

))
If target j identified, i.e., j ∈ Dt

i , then we assume
Yt
i,j 6= ∅

CVS provides box
[
Yt
i,j

]
for target j

Yt
i,j ∩

[
Yt
i,j

]
6= ∅
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Interpreting CVS information

CVS - Negative information

Hypothesis:
xt,g
j ∈ F (xu

i ) =⇒
[
xc
i ,x

t,g
j

[
∩ St

(
xt
j

)
6= ∅

Consequently, Ground-labeled pixels cannot contain xt,g
j , j ∈

{
1, . . . , N t}.
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Interpreting CVS information

Problem formulation

UAV i exploits CVS measurements to
detect and identify targets
localize identified targets
update its knowledge (targets and obstacles)

UAV i evaluates at time tk
Xt
i,k containing locations of targets to detect

Xt
i,j,k containing target j location
Lt
i,k: list of identified targets

Then, UAV i updates its trajectory to minimize

Φ
(
X t
i,k,X

t
i,k

)
= φ

(
Xt
i,k ∪

⋃
j∈Lt

i,k
Xt
i,j,k

)
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Set-membership Estimator

Agenda

1 Hypotheses

2 Interpreting CVS information

3 Set-membership Estimator

4 Simulations - First part

5 Simulations - Second part

6 Summary
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Set-membership Estimator

Set-membership estimator
UAV i exploits at time tk available CVS measurements such as

depth-map [Di,k]
pixels labeled Ground Yg

i,k, Obstacle Yo
i,k, Target Yt

i,k

detected and identified targets Dt
i,k and associated bounding box

[
Yt
i,j

]
to characterize

set Xt,m
i,j,k containing location of identified target j,

sets free of targets,
while updating environmental knowledge

Time index k omitted in what follows
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Set-membership Estimator

Target Localization

Using Depth-map Di (nr, nc), consider

Pi ((nr, nc)) = {x ∈ X0 | ∃v ∈ Vi (nr, nc) , dv (xu
i ,x) ∈ [Di] (nr, nc)}

Pi ((nr, nc)) contains points of environment which
may have illuminated pixel (nr, nc)
have a distance to UAV i consistent with Di (nr, nc)
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Set-membership Estimator

Target Localization

Consider identified target j, i.e., j ∈ Dt
i

Consider

Pt
i,j =

{
Pi ((nr, nc)) | (nr, nc) ∈

[
Yt
i,j

]
∩ Yt

i

}

Since Yt
i,j ∩

[
Yt
i,j

]
6= ∅, then Pt

i,j ∩ St
j

(
xt
j

)
6= ∅

⇒ Robust to bad bounding box

100 200 300 400 500 600 700 800 900 1000

50

100

150

200

250

300

350

400

450

500

M. Zagar et al. (Univ. Paris-Saclay) UAVs with CVS ENSTA 2024 30 / 62



Set-membership Estimator

Target Localization

2D estimation: projection of Pt
i,j on the ground

pg (X): projection on the ground of a set X

pg

(
Pt
i,j

)
has no guarantee to contain xt,g

j

Pt
i,j obtained from points at vehicle surface

xt
j is inside the vehicle

⇒ Account for target shape
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Set-membership Estimator

Target Localization

Proposition: Since St
(
xt
j

)
⊂ Ct

(
xt,g
j

)
: if x ∈ St

(
xt
j

)
, then xt,g

j ∈ Ct
({

pg (x)
})

.

Consequently, since Pt
i,j ∩ St

j

(
xt
j

)
6= ∅, one has

xt,g
j ∈ Xt,m

i,j =
⋃

x∈pg(Pt
i,j)

pg

(
Ct ({x})

)
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Set-membership Estimator

Set free of target

UAV i exploits
pixels labeled Ground
pixels labeled Obstacle
set estimate Xt,m

i,j

as negative information to characterize
set Pg

i (Yg
i ) that cannot contain any target location at time tk

set Xo
i that never contain any target location

set Xt,m
i,j that cannot contain the location of targets in the vicinity of target j
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Set-membership Estimator

Set free of target - Ground

By combing
pixels labeled ground Yg

i

flat ground Xg

UAV field of view Fi (xu
i )

UAV i characterizes a set free of targets

Pg
i (Yg

i ) = {x ∈ Fi (xu
i ) ∩ Xg | pc (xu

i ,x) ∈ Yg
i }

pc (xu
i ,x) being the projection on CCD array of x
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Set-membership Estimator

Set free of target - Obstacle

For any pixel (nr, nc) ∈ Yo
i labeled Obstacle, one proves that ∃m ∈ N o such that

Pi ((nr, nc)) ∩ So
m 6= ∅

We assumed a Target-Obstacle safety distance rto
s

xt,g
j,k /∈ Ng

(
pg (So

m), rto
s

)
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Set-membership Estimator

Set free of target - Obstacle

UAV i characterizes

S
(
(nr, nc) , rto

s

)
=

⋂
x∈pg(Pi((nr,nc)))

Ng
(
{x} , rto

s

)

One is able to prove that

S
(
(nr, nc) , rto

s

)
⊂ Ng

(
pg (So

m) , rto
s

)
Consequently, the set estimate

Xo
i =

⋃
(nr,nc)∈Yo

i

S
(
(nr, nc) , rto

s

)

cannot contain any target location
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Set-membership Estimator
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Set-membership Estimator

Set free of target - Target

We assumed

xt,g
` /∈ Ng

({
xt,g
j

}
, rtt

s

)
But, we only know that xt,g

j ∈ Xt,m
i,j

Thus, with
Xt,m
i,j =

⋂
x∈Xt,m

i,j

Ng
(
{x} , rtt

s

)

one has Xt,m
i,j ⊂ Ng

({
xt,g
j

}
, rtt

s

)
⇒ Consequently, Xt,m

i,j cannot contain any target location except xt,g
j
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Set-membership Estimator

Hidden portion of the ground

The portion of the ground hidden behind
an obstacle
a target
an unidentified object

cannot be observed by UAV i

To approximate the hidden portion of the ground, UAV i evaluates

HCVS
i = Pg

i

(
Yo
i ∪ Yt

i ∪ Yn
i

)

M. Zagar et al. (Univ. Paris-Saclay) UAVs with CVS ENSTA 2024 38 / 62



Set-membership Estimator

Recursive set-membership target location estimator

Adaptation of the recursive set-membership state estimator proposed in [6]

Initialization:
List of identified targets Lt

i,0 = ∅
List of set estimates related to identified targets X t

i,0 = ∅

Set containing unidentified targets Xt
i,0 = Xg

Neighborhood of obstacles Xo
i,0 = ∅

The estimator consists of
Prediction: k − 1→ k | k − 1
Correction from CVS measurements: k | k − 1→ k | k
Correction after communication with neighboring UAVs: k | k → k
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i,0 = ∅
List of set estimates related to identified targets X t

i,0 = ∅

Set containing unidentified targets Xt
i,0 = Xg

Neighborhood of obstacles Xo
i,0 = ∅

The estimator consists of
Prediction: k − 1→ k | k − 1
Correction from CVS measurements: k | k − 1→ k | k
Correction after communication with neighboring UAVs: k | k → k
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Set-membership Estimator

Prediction of the evolution

k − 1→ k | k − 1→ k | k → k

UAV i characterizes

Xt
i,j,k|k−1 =

{
f t (x,v) ∈ Xg | x ∈ Xt

i,j,k−1,v ∈
[
vt
]}

After prediction, UAV i obtains Xt
i,j,k|k−1, X

t
i,k|k−1, and Xo

i,k|k−1
Obstacles are static: Xo

i,k|k−1 = Xo
i,k−1.
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Set-membership Estimator

Correction from measurements - obstacles

k − 1→ k | k − 1→ k | k → k

The set Xo
i,k is an inner-approximation of ⋃m∈N o Ng

(
pg (So

m) , rto
s

)
Thus, the update is

Xo
i,k|k = Xo

i,k|k−1 ∪ Xo
i,k
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Set-membership Estimator

Correction from measurements

Dt
i,k: List of target identified at time tk
Lt
i,k−1: List of previously identified targets

Thus: Lt
i,k|k = Lt

i,k−1 ∪ Dt
i,k

Several cases are considered
Target j is known but not currently identified ⇒ j ∈ Lt

i,k−1 \ Dt
i,k

Target j is known and currently identified ⇒ j ∈ Lt
i,k−1 ∩ Dt

i,k

Target j is unknown but currently identified ⇒ j ∈ Dt
i,k \ Lt

i,k−1

Target j is unknown and not currently identified ⇒ j /∈ Lt
i,k−1 ∪ Dt

i,k
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Set-membership Estimator

Correction from measurements - Case 1

Target j is known but not currently identified ⇒ j ∈ Lt
i,k−1 \ Dt

i,k

Consequently:
xt,g
j,k ∈ Xt

i,j,k|k−1

xt,g
j,k /∈ Pg

i,k

(
Yg

i,k

)
∪ Xo

i,k|k

xt,g
j,k /∈

⋃
`∈Dt

i,k
Xt,m

i,`,k

The correction of Xt
i,j,k|k−1 is

Xt
i,j,k|k = Xt

i,j,k|k−1 \

Pg
i,k

(
Yg
i,k

)
∪ Xo

i,k|k ∪
⋃

`∈Dt
i,k

Xt,m
i,`,k


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Set-membership Estimator

Correction after communication with neighbors

Exchange of information between UAV i and UAV `
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Set-membership Estimator

Mapping - Occupancy-Elevation Map

OEMMi,k is a regular 2D grid

Each cell is characterized by
a status
an elevation

Status:
Unexplored
Empty: no obstacle
Occupied: presence of an obstacle

Elevation: approximate obstacle height

M. Zagar et al. (Univ. Paris-Saclay) UAVs with CVS ENSTA 2024 45 / 62



Set-membership Estimator

Mapping - OEM

Pixels labeled Obstacles
Localized the obstacles
Estimate their height

Pixels labeled Ground
Detect the absence of obstacles
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Set-membership Estimator

OEM - Prediction of hidden ground
Occupied cells are used to approximate

obstacle shape
obstacle location

they can also be used to
evaluate the hidden portion of the ground [12]

UAV i uses its OEM to predict HCVS
i by evaluating HOEM

i (xu
i )
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Simulations - First part

Agenda

1 Hypotheses

2 Interpreting CVS information

3 Set-membership Estimator

4 Simulations - First part

5 Simulations - Second part

6 Summary
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Simulations - First part

Simulations

Simulation conditions
Targets: 5 identical cars
1 UAV
Processed image 360× 480
depth-map noise: 1%

Accuracy of localization in function of:
distance to UAV
depth-map noise

Image Segmentation
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Simulations - First part

Metrics

Metrics:
φ (X) area of X

φeR
(
Xt
i,j,k

)
=
√

φ
(
Xt

i,j,k

)
π

φc
(
Xt
i,j,k

)
=
∥∥∥c (Xt

i,j,k

)
− xt,g

j,k

∥∥∥
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Simulations - First part

Simulation - Set estimates

One single measurement, no obstacle

Xt
i,k|k−1 = Xg

Pg
i,k

(
Yg
i,k

)
Pt
i,j,k

Xt,m
i,j,k

Estimated target location:
Xt
i,j = Xt,m

i,j ∩ (Xg \ Pg
i (Yg

i ))
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Simulations - First part

Simulation - Performance
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Simulations - First part

Simulation - Depth map noise

Evaluation of the impact on the depth-map noise on the localization performance
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Simulations - Second part

Agenda

1 Hypotheses

2 Interpreting CVS information

3 Set-membership Estimator

4 Simulations - First part

5 Simulations - Second part

6 Summary
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Simulations - Second part

Simulations

Recursive estimation algorithm may then be applied.

Simulations via Webots and Matlab
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Simulations - Second part

Simulation conditions

Conditions
Nu = 4 UAVs
N t = 8 targets, speed vmax = 1 m/s
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Simulations - Second part

Simulation results
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Simulations - Second part

Simulation results
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Simulations - Second part

Simulation results
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Summary
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Summary

Summary

Development of a set-membership target location estimator that
exploits multiple CVS measurements
to characterize set estimates containing target location,
while accounting for negative information
and being robust to depth-map noise and bad target detection

CVS measurements are also used to
approximate/predict the hidden portion of the ground
2.5D mapping of the environment

Limitations:
Unjustified depth-map noise bounds
no target misidentification (False positive) [8]
no target non-detection (False negative)
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