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Description of the robot
Underwater robot
® dimension 93cm L, 41cm W, 23cm H,
® micro-computer Intel Atom Z8000 processor,
® 4 batteries, 8 motors, weight ~30Kgs
[ Sensor name | 1D [ Protocol |
Leak indicator | SOS-Leak-Sensor Digital
Flasher Led Digital
Bar30 MS5837 i2c
IMU BNOO055 i2c
Camera - IP
GPS-Robot DP0104 uart
Echo-sounder Ping Sonar uart
SeaTrac X150 USBL uart
Transponder
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Example of a normal mission : “transect”
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Introduction Non-monotonic Reasoning
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Problematic

Generally, autonomous robots are confronted with unexpected situations
due to multiples causes:

® changes in the environment,
® uncertain information,

® failures, etc.

Example (in our case):

temperature increase, water leakage, non geo-referenced location,
exceeded depth, mission overrun time, drifting from transect line, etc.
Solution /Proposition

Goal reasoning: it is to decide on current information, while always
considering the objective(s) and safety of the robot.
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State of the art

e KnowRob framework?!:

® vague information treatment to perform tasks: “set the table”,
“clean up”. ..
Description Logic for knowledge representation,
central knowledge consultation via Prolog (classical proving
theorems)
® Answer-Set Programming (ASP):
¢ declarative programming and stable model paradigm?,
® generally has difficulties to reason on all classes of stable models®,
® does not support free variables and difficult to debug a program
® | proposed (on my Ph.D. thesis):
® a formalization for modeling a solar glider’s piloting behavior using a
non-monotonic logic,
® the use of Default Logic (DL) and Prolog (non-monotonic reasoner),
® a framework for the study of resilient systems using DL.

lTenorth, Moritz, and Michael Beetz. “KnowRob: A knowledge processing infrastructure for cognition-enabled robots.” (2013).

Erdem, Esra, Erdi Aker, and Volkan Patoglu. " Answer set programming for collaborative housekeeping robotics: representation,
reasoning, and execution.” Intelligent Service Robotics 5.4 (2012): 275-291.

Elkhatib, Omar, Enrico Pontelli, and Tran Cao Son. "ASP — PROLOG: A System for Reasoning about Answer Set Programs in
Prolog.” International Symposium on Practical Aspects of Declarative Languages. Springer, Berlin, Heidelberg, 2004.
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Non-monotonic Reasoning

The most important proposal by:
J. McCarthy (Circumscription '80), R. Reiter (Default logic

® New information can invalidate previous conclusions,

80). ..
® Resolve contradictions,

® Reasoning about knowledge,

® Rational conclusions from partial information.
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Non-monotonic Reasoning

The most important proposal by:

J. McCarthy (Circumscription '80), R. Reiter (Default logic '80). ..
® New information can invalidate previous conclusions,
® Resolve contradictions,
® Reasoning about knowledge,

® Rational conclusions from partial information.

Formally, monotonicity:

A—w
AUB — w
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Default Logic [Reiter]

Definition
A default theory is a pair A = (D, W), where D is a set of defaults and
W is a set of formulas in FOL.
o A default d is: %
® A(X), B(X), C(X) are well-formed formulas
® X = (x1,%,X3,...,Xn) is a vector of free variables(non-quantified).

Intuitively a default means, “if A(X) is true, and there is no evidence
that B(X) might be false, then C(X) can be true”.
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Default Logic [Reiter]

Definition _ _ .
A default theory is a pair A = (D, W), where D is a set of defaults and
W is a set of formulas in FOL.

® A default d is: %
® A(X), B(X), C(X) are well-formed formulas
® X = (x1,%,X3,...,Xn) is a vector of free variables(non-quantified).
Intuitively a default means, “if A(X) is true, and there is no evidence

that B(X) might be false, then C(X) can be true”.

Example (classical logic):
“All birds fly”, VX, bird(X) — fly(X) (chickens, penguins, kiwis. ..!7?)
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Default Logic [Reiter]

Definition _ _ .
A default theory is a pair A = (D, W), where D is a set of defaults and
W is a set of formulas in FOL.

* A default d is: %

® A(X), B(X), C(X) are well-formed formulas

® X = (x1,x2,X3,...,Xpn) is a vector of free variables(non-quantified).

Intuitively a default means, “if A(X) is true, and there is no evidence
that B(X) might be false, then C(X) can be true”.

Example (classical logic):
“All birds fly”, VX, bird(X) — fly(X) (chickens, penguins, kiwis...!?)

VX, bird(X) A —chicken(X) V —penguin(X) V - -+ — fly(X)
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Default Logic [Reiter]

Definition _ _ _
A default theory is a pair A = (D, W), where D is a set of defaults and
W is a set of formulas in FOL.

* A default d is: 20JE)
® A(X), B(X), C(X) are well-formed formulas
® X = (x1,x2,X3,...,Xpn) is a vector of free variables(non-quantified).

Intuitively a default means, “if A(X) is true, and there is no evidence
that B(X) might be false, then C(X) can be true”.

Example (classical logic):
“All birds fly”, VX, bird(X) — fly(X) (chickens, penguins, kiwis...!?)

VX, bird(X) A —chicken(X) V —penguin(X) V - -+ — fly(X)

Example (Default logic):
“Normally, the birds fly”, D = %

W = {bird(tweety), penguin(tweety) — bird(X), penguin(X) — —fly(X))}
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Definition
E2 is an extension of A iff:
® Fr, =W and
o fori >0, 1 = Th(E;) U{C(X) | 285X € D,
A(X) € EiA-B(X) ¢ EA}

o EA =X, E
Property
If every default of D is normal: %

-B ¢ E” is replaced by -C ¢ E;

there is always one extension and help to perform greedy algorithm
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Contribution
Automated Plan.: FF algorithm
Automated Planning Non-Monotonic Reasoning model
”( ,)5, G A = (D, W) where:

D= Dest U Dsafety U Dgoa/
W = Wops U West U Wsafety U Dgoa/

Non-Monotonic Reasoning

dosafe(X)g )obs. . .
__________ Vv_/__________ Functional layer: representation of
Functional Layer the robot capabilities and features
(skill model) [LesireDG20]

Notation
observations: obs.; State and Goal: S, G; Sequences of actions: 7;
safe actions applied: dog,r(X)
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Guidelines of the proposed model

Observations:
From skill model (resources states, skill execution statuses)
Wops = {at(home) A —usbl_captured N gps_captured A on_surface A - - - }

Estimation theory:

Extended knowledge via NMR (non-obvious information)
° Aest.“ - (Desta West)

T:localized H
[ ] p—
dioc = papas® (localized by default)

® pjc = —usbl_was_captured N\ —gps_was_captured — —localized
® vcr = low_loc_precision — —localized

dloc S Dest
{Soloca (P/oc’} € West
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Guidelines of the proposed model
Safety theory:

Emergency rules (critical failure: temperature increase, water
leakage. ..)

® Asafety = (Dsafetw Wsafety)
o A(X):dosr(a)
dosafe(a)

safety _sensor _failure(X) : dosafe (shut_down())

dsate =
" dosste (shut_down())
next_action(a) : dosaf.(a)
Aoarer =
dosafe(a)

® A(X) — dosare(a) or A(X) — —dosare(a)

(psafe = low_energy — dosae(shut_down())
Qearer = Tlocalized N next_action(transect(X, Y)) — —dose(transect(X, Y))

{dsafe7 dsafe’} S Dsafety
{Sosafev (Psafe’} S Wsafety
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Guidelines of the proposed model

Goal theory:
Deriving the current mission objective
Agoa/ = (Dgoa/a Wgoa/)

o A(X):goal(Y) A(X):—goal(Y)
goal(Y) —goal(Y)

T : goal(transect_done(pa, pg))

do =
goa! goal(transect_done(pa, pg))

Simulation and Results
00000

—enough_energy(transect(pa, pg)) : —goal(transect_done(pa, pg))

dgoa/’ =

® A(X) — goal(Y) or A(X) — —goal(Y)

@goal = —localized — —goal(transect_done(X, Y)

Pgoat’ = close_seabed — goal(on_surface)

{dgoala dgoal’} € Dgoal
{@goa/a @goal’} S Wgoal
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Guidelines of the proposed model

Programming syntax used

et Language

% on_surface : remi s on surface (T) or in water (F)

7% low_loc_precision : localization precision is too low

7% low_loc_precision_transect: localization precision is too low for transect
% timeout_task(X) : X an action; action X has just timed out

A (then aborted by the functional layer)

% lou_energy : energy under a safety threshold

7 enough_energy (X) : X an action; energy is sufficient to perform X
7 collision : collision (T / F)

J detected(X) : specie X has been detected

7% robot_task(X) : X an action; robot is performing action X

7 next_task(X) : X an action; the planner has returned X as next action
% transect_done(X, Y) : X, Y start/end locations

7 at(X) : X robot location

% timeout_mission : timeout mission (T / F)

% ACTIONS

% go_boat

>

go_surface
init_usbl
transect (X, Y)
shut_doun
diagnose_motors

BN
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Guidelines of the proposed model

Programming syntax used

TIXTRTIRTRTTTL LD %% (W_safety)

cl('depth_problem',dur, [sensor_problem(depth)], do_safe(shut_down), 100).
cl('controllability',dur, [-control_actuators], do_safe(shut_down), 100). %(safe)
c1('SW_mods_active',dur, [-sw_mods], do_safe(shut_down), 100). /(safe5)
cl('problem_motors',dur, [-all_motors_ok], do_safe(diagnose_motors), 100).
cl('collision',dur, [collision], do_safe(shut_down), 100). /(safe8)
cl('low_energy_total',dur, [low_energyl, do_safe(shut_down), 100).
cl('not_loc_do_other',dur, [-localized, next_task(transect(_,_))],do_safe(shut_down),100).

TABLTIIIRIIAAALLLLS (D_safety)
cl('safety_sensor_problem', def, [safety_sensor_problem(_)], do_safe(shut_down), 100).
cl('do_action', def, [next_task(X)], do_safe(X), 100).

TRBLTITIIIIIIALLILS (W_est)

cl('not_geoloc', dur, [-usbl_was_captured, -gps_was_captured], -localized, 0).
cl('precision_min',dur, [low_loc_precision], -localized, 0).
IAXLTRTIRILIAALLHLS (D_est)

cl('loc_by_def', def, [], localized, 0).

TXXTRTRLRLRTLLLBAAALL  (D_goal)

cl('sensor_problem', def, [sensor_problem(_)], goal(on_surface), 45).
cl('video_problem', def, [sensor_problem(video)], -goal(on_surface), 55).
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Non-monotonic Reasoning Contribution

Non-monotonic Reasoning Process

Algorithm NMR process implemented

Require: D, W &
Ensure: mission_done < L, Wps < 0

1: repeat
2: W,ps < obs
Automated Planning 33 A=(D,W)
4: EA = {57 G, dosafe(a)}
5. if 3 {dosr(a)} C E2 then
77 S, G 6: Apply dosre(a)
7:  elseif 3 {S,G} C E® then
. . 8: 7 < AutomatedPlan(S,G)
‘ Non-Monotonic Reasoning 0 if plan(r) — T then
10: break
dous0) [ ot A L AR
Functional Layer 13: Eﬁ = {5, G, dogre(a)}
14: if 3 {dosr(a)} C E2 then
15: Apply dosafe(a)
16: else
17: mission_done < T
18: end if
19: end if

20: until —~mission_done
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Non-monotonic Reasoning Contribution

Non-monotonic Reasoning Process

Algorithm NMR process implemented

Require: D, W &
Ensure: mission_done < L, Wps < 0

1: repeat
2: W,ps < obs
Automated Planning 33 A=(D,W)
4: EA = {57 G, dosafe(a)}
5. if 3 {dosr(a)} C E2 then
6: Apply dosare(a)
7:  elseif 3 {S,G} C E® then
. . 8: 7 < AutomatedPlan(S,G)
‘ Non-Monotonic Reasoning 0 if plan(r) — T then
10: break
b 11: end if
obs. 12: A=(D,W)Ur
Functional Layer 13: Eﬁ = {5, G, dosare(a)}
14: if 3 {dosr(a)} C E2 then
15: Apply dosafe(a)
16: else
17: mission_done <+ T
18: end if
19: end if

20: until —~mission_done
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Non-monotonic Reasoning Contribution

Non-monotonic Reasoning Process

Algorithm NMR process implemented

Require: D, W &

Ensure: mission_done < L, Wps < 0
1: repeat

2 W,ps < obs

3 A=(D,W)

4 EA = {57 G, dosafe(a)}

5. if 3 {dosr(a)} C E2 then

6: Apply dosare(a)

7.

8

9

Automated Planning

else if 3 {S, G} C E2 then
7 < AutomatedPlan(S,G)

‘ Non-Monotonic Reasoning if plan(x) = T then

10.: break
dous0) [ ot A L AR
—————————— B . A _
Functional Layer 13: E7r = {5, G, dosafe(a)}

14: if 3 {dosr(a)} C E2 then
15: Apply dosafe(a)
16: else
17: mission_done < T
18: end if
19: end if

20: until —~mission_done
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Algorithm NMR process implemented

Require: D, W &
Ensure: mission_done < L, Wps < 0

1: repeat
2: W,ps < obs
Automated Planning 33 A=(D,W)
4: EA = {57 G, dosafe(a)}
5. if 3 {dosr(a)} C E2 then
S, G 6: Apply dosre(a)
7:  elseif 3 {S,G} C E® then
. . 8: 7 < AutomatedPlan(S,G)
‘ Non-Monotonic Reasoning 0 if plan(r) — T then
10: break
b 11: end if
obs 12: A=(D,W)Ur
Functional Layer 13: Eﬁ = {5, G, dosre(a)}
14: if 3 {dosr(a)} C E2 then
15: Apply dosafe(a)
16: else
17: mission_done <+ T
18: end if
19: end if

20: until —~mission_done
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Simulation and Results
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Experimental Procedure

e Skills interface* (model + manager)
® operational and descriptive model of the robot
® 3 data, 9 resources and 10 skills or actions
® ROS2 middleware (Python/Prolog)

e Automated Plan. (FF algorithm)
e Default Theory (Prolog)
® behaviors (goals + safety): modeled with 44 rules (17 normal

defaults and 27 exceptions)
® part of the behaviors came from a risk analysis®

Evaluation:
Two simulations were performed, calculation time for a simple as well as

a complex problem was evaluated.

4Lesire, Charles, David Doose, and Christophe Grand. " Formalization of Robot Skills with Descriptive and Operational Models.”
IROS, 2020.
Hereau, A., Godary-Dejean, K., Guiochet, J., & Crestani, D. (2021, May). A Fault Tolerant Control Architecture Based on Fault
Trees for an Underwater Robot Executing Transect Missions. In International Conference on Robotics and Automation (ICRA 2021).
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Conclusion

® New decision-making architecture based on a non-monotonic logic:

® Goal reasoning,
® Safety rules management

Default logic is a promising tool for tackling problems that have
non-monotonic behavior,

Model guidelines for use in others applications,

® Practical verification of model complexity (quasi-linear) with 44 rules
(17 defaults and 27 exceptions)

Future work:
Multi-agents systems, autonomous agents, other applications. ..
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Thank you for your attention,

Questions 7°

Semail: jose.vilchis@ensta-bretagne.fr
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