Autonomous Decision-Making with Incomplete Information and Safety Rules based on Non-Monotonic Reasoning

> <u>José-Luis Vilchis-Medina</u>, Charles Lesire-Cabaniols^a, Karen Godary-Dejean^b

ONERA – The French Aerospace Lab^a LIRMM, Université de Montpellier, CNRS^b

> ENSTA Bretagne November 16, 2023

Overview

1 Introduction

2 State of the art

3 Non-monotonic Reasoning

4 Contribution

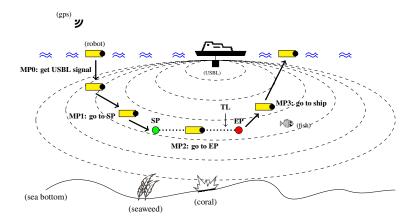
5 Simulation and Results

6 Conclusion

Simulation and Results 00000

Conclusion 000

Description of the robot


Underwater robot

- dimension 93cm L, 41cm W, 23cm H,
- micro-computer Intel Atom Z8000 processor,
- 4 batteries, 8 motors, weight \approx 30Kgs

Sensor name	ID	Protocol
Leak indicator	SOS-Leak-Sensor	Digital
Flasher	Led	Digital
Bar30	MS5837	i2c
IMU	BNO055	i2c
Camera	-	IP
GPS–Robot	DP0104	uart
Echo-sounder	Ping Sonar	uart
SeaTrac	X150 USBL Transponder	uart

Non-monotonic Reasoning

Contribution 00000000 imulation and Result 00000 Conclusion 000

Problematic

Generally, autonomous robots are confronted with unexpected situations due to multiples causes:

- changes in the environment,
- uncertain information,
- failures, etc.

Example (in our case):

temperature increase, water leakage, non geo-referenced location, exceeded depth, mission overrun time, drifting from transect line, etc.

Solution/Proposition

Goal reasoning: it is to decide on current information, while always considering the objective(s) and safety of the robot.

Overview

1 Introduction

2 State of the art

- 3 Non-monotonic Reasoning
- 4 Contribution
- **5** Simulation and Results
- 6 Conclusion

Simulation and Results 00000 Conclusion 000

State of the art

- KnowRob framework¹:
 - vague information treatment to perform tasks: "set the table", "clean up"...
 - Description Logic for knowledge representation,
 - central knowledge consultation via Prolog (classical proving theorems)
- Answer-Set Programming (ASP):
 - declarative programming and stable model paradigm²,
 - generally has difficulties to reason on all classes of stable models³,
 - does not support free variables and difficult to debug a program
- I proposed (on my Ph.D. thesis):
 - a formalization for modeling a solar glider's piloting behavior using a non-monotonic logic,
 - the use of Default Logic (DL) and Prolog (non-monotonic reasoner),
 - a framework for the study of resilient systems using DL.

¹Tenorth, Moritz, and Michael Beetz. "KnowRob: A knowledge processing infrastructure for cognition-enabled robots." (2013).

²Erdem, Esra, Erdi Aker, and Volkan Patoglu. "Answer set programming for collaborative housekeeping robotics: representation, reasoning, and execution." Intelligent Service Robotics 5.4 (2012): 275-291.

³Elkhatib, Omar, Enrico Pontelli, and Tran Cao Son. "ASP — PROLOG: A System for Reasoning about Answer Set Programs in Prolog." International Symposium on Practical Aspects of Declarative Languages. Springer, Berlin, Heidelberg, 2004.

Overview

1 Introduction

2 State of the art

3 Non-monotonic Reasoning

4 Contribution

5 Simulation and Results

6 Conclusion

State of the art

Non-monotonic Reasoning

Contribution 00000000 Simulation and Results 00000 Conclusion 000

Non-monotonic Reasoning

The most important proposal by:

J. McCarthy (Circumscription '80), R. Reiter (Default logic '80)...

- New information can invalidate previous conclusions,
- Resolve contradictions,
- Reasoning about knowledge,
- Rational conclusions from partial information.

Simulation and Results 00000

Conclusion 000

10

Non-monotonic Reasoning

The most important proposal by:

- J. McCarthy (Circumscription '80), R. Reiter (Default logic '80)...
 - New information can invalidate previous conclusions,
 - Resolve contradictions,
 - Reasoning about knowledge,
 - Rational conclusions from partial information.

Formally, monotonicity:

 $\begin{array}{c} A \rightarrow \omega \\ A \cup B \rightarrow \omega \end{array}$

Auto Dec-Mak w/ Incomp Info & Saf Rules based on Non-Mon Reasoning

JL Vilchis-Medina ENSTA Bretagne

Non-monotonic Reasoning

Contribution

Simulation and Results 00000 Conclusion 000

Default Logic [Reiter]

Definition

A default theory is a pair $\Delta = (D, W)$, where D is a set of defaults and W is a set of formulas in FOL.

- A default *d* is: $\frac{A(X):B(X)}{C(X)}$
- A(X), B(X), C(X) are well-formed formulas
- $X = (x_1, x_2, x_3, \dots, x_n)$ is a vector of free variables(non-quantified).

Intuitively a default means, "if A(X) is true, and there is no evidence that B(X) might be false, then C(X) can be true".

State of the art 00 Non-monotonic Reasoning

Contribution

Simulation and Results 00000 Conclusion 000

Default Logic [Reiter]

Definition

A default theory is a pair $\Delta = (D, W)$, where D is a set of defaults and W is a set of formulas in FOL.

- A default *d* is: $\frac{A(X):B(X)}{C(X)}$
- A(X), B(X), C(X) are well-formed formulas
- $X = (x_1, x_2, x_3, ..., x_n)$ is a vector of free variables(non-quantified).

Intuitively a default means, "if A(X) is true, and there is no evidence that B(X) might be false, then C(X) can be true".

Example (classical logic):

"All birds fly", $\forall X$, bird $(X) \rightarrow fly(X)$ (chickens, penguins, kiwis...!?)

Default Logic [Reiter]

Definition

A default theory is a pair $\Delta = (D, W)$, where D is a set of defaults and W is a set of formulas in FOL.

- A default *d* is: $\frac{A(X):B(X)}{C(X)}$
- A(X), B(X), C(X) are well-formed formulas
- $X = (x_1, x_2, x_3, \dots, x_n)$ is a vector of free variables(non-quantified).

Intuitively a default means, "if A(X) is true, and there is no evidence that B(X) might be false, then C(X) can be true".

Example (classical logic):

"All birds fly", $\forall X, bird(X) \rightarrow fly(X)$ (chickens, penguins, kiwis...!?)

$$\forall X, bird(X) \land \neg chicken(X) \lor \neg penguin(X) \lor \cdots \rightarrow fly(X)$$

Default Logic [Reiter]

Definition

A default theory is a pair $\Delta = (D, W)$, where D is a set of defaults and W is a set of formulas in FOL.

- A default *d* is: $\frac{A(X):B(X)}{C(X)}$
- A(X), B(X), C(X) are well-formed formulas
- $X = (x_1, x_2, x_3, \dots, x_n)$ is a vector of free variables(non-quantified).

Intuitively a default means, "if A(X) is true, and there is no evidence that B(X) might be false, then C(X) can be true".

Example (classical logic):

"All birds fly", $\forall X, bird(X) \rightarrow fly(X)$ (chickens, penguins, kiwis...!?)

 $\forall X, bird(X) \land \neg chicken(X) \lor \neg penguin(X) \lor \cdots \rightarrow fly(X)$

Example (Default logic):

"Normally, the birds fly", $D = \frac{bird(X):fly(X)}{fly(X)}$

 $W = \{ bird(tweety), penguin(tweety) \rightarrow bird(X), penguin(X) \rightarrow \neg fly(X)) \}$

State of the art 00 Non-monotonic Reasoning

Contribution 0000000C Simulation and Results 00000

Conclusion 000

Default Logic [Reiter]

Definition

 E^{Δ} is an extension of Δ iff:

- $E_0 = W$ and
- for i > 0, $E_{i+1} = Th(E_i) \cup \{C(X) \mid \frac{A(X):B(X)}{C(X)} \in D$, $A(X) \in E_i \land \neg B(X) \notin E^{\Delta}\}$
- $E^{\Delta} = \bigcup_{i=0}^{\infty} E_i$

Property

If every default of D is normal: $\frac{A(X):C(X)}{C(X)}$

 $\neg B \notin E^{\Delta}$ is replaced by $\neg C \notin E_i$

there is always one extension and help to perform greedy algorithm

Overview

1 Introduction

2 State of the art

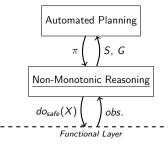
3 Non-monotonic Reasoning

4 Contribution

5 Simulation and Results

6 Conclusion

State of the art


Non-monotonic Reasoning

Contribution

mulation and Result

Conclusion 000

Contribution

Automated Plan .: FF algorithm

Non-Monotonic Reasoning model

 $\Delta = (D, W)$ where: $D = D_{est} \cup D_{safety} \cup D_{goal}$

 $W = W_{obs} \cup W_{est} \cup W_{safety} \cup D_{goal}$

Functional layer: representation of the robot capabilities and features (*skill model*) [LesireDG20]

Notation

observations: obs.; State and Goal: S, G; Sequences of actions: π ; safe actions applied: $do_{safe}(X)$

Non-monotonic Reasoning

Contribution

Simulation and Results 00000 Conclusion 000

Guidelines of the proposed model

Observations:

From *skill model* (resources states, skill execution statuses) $W_{obs} = \{at(home) \land \neg usbl_captured \land gps_captured \land on_surface \land \cdots \}$

Estimation theory:

Extended knowledge via NMR (non-obvious information)

$$\{\varphi_{\textit{loc}}, \varphi_{\textit{loc'}}\} \in W_{\textit{est}}$$

Auto Dec-Mak w/ Incomp Info & Saf Rules based on Non-Mon Reasoning

Simulation and Results 00000

Conclusion 000

Guidelines of the proposed model

Safety theory:

Emergency rules (critical failure: temperature increase, water leakage...)

• $\Delta_{safety} = (D_{safety}, W_{safety})$

•
$$\frac{A(X):do_{safe}(a)}{do_{safe}(a)}$$

$$\begin{split} d_{safe} &= \frac{safety_sensor_failure(X):do_{safe}(shut_down())}{do_{safe}(shut_down())} \\ d_{safe'} &= \frac{next_action(a):do_{safe}(a)}{do_{safe}(a)} \end{split}$$

•
$$A(X)
ightarrow do_{safe}(a)$$
 or $A(X)
ightarrow \neg do_{safe}(a)$

$$\varphi_{\mathsf{safe}} = \mathsf{low_energy} \to \mathsf{do}_{\mathsf{safe}}(\mathsf{shut_down}())$$

 $\varphi_{\mathsf{safe'}} = \neg \mathsf{localized} \land \mathsf{next_action}(\mathsf{transect}(X, Y)) \to \neg \mathsf{do}_{\mathsf{safe}}(\mathsf{transect}(X, Y))$

$$\{d_{safe}, d_{safe'}\} \in D_{safety}$$

 $\{\varphi_{safe}, \varphi_{safe'}\} \in W_{safety}$

Auto Dec-Mak w/ Incomp Info & Saf Rules based on Non-Mon Reasoning

Simulation and Results 00000

Conclusion 000

Guidelines of the proposed model

Goal theory:

Deriving the current mission objective

•
$$\Delta_{goal} = \left(D_{goal}, W_{goal} \right)$$

•
$$\frac{A(X):goal(Y)}{goal(Y)} \text{ or } \frac{A(X):\neg goal(Y)}{\neg goal(Y)}$$

$$d_{goal} = \frac{\top : goal(transect_done(p_A, p_B))}{goal(transect_done(p_A, p_B))}$$

$$d_{goal'} = \frac{\neg enough_energy(transect(p_A, p_B)) : \neg goal(transect_done(p_A, p_B))}{\neg goal(transect_done(p_A, p_B))}$$

•
$$A(X) \rightarrow goal(Y)$$
 or $A(X) \rightarrow \neg goal(Y)$

$$\begin{split} \varphi_{\textit{goal}} &= \neg \textit{localized} \rightarrow \neg \textit{goal}(\textit{transect_done}(X, Y) \\ \varphi_{\textit{goal'}} &= \textit{close_seabed} \rightarrow \textit{goal}(\textit{on_surface}) \end{split}$$

$$\{d_{goal}, d_{goal'}\} \in D_{goal}$$

 $\{\varphi_{goal}, \varphi_{goal'}\} \in W_{goal}$

State of the art

Non-monotonic Reasoning

Contribution

Simulation and Results 00000

Conclusion 000

Guidelines of the proposed model

Programming syntax used

% Languag	e
% on_surface	: remi is on surface (T) or in water (F)
% low_loc_precision	: localization precision is too low
% low_loc_precision_transec	t: localization precision is too low for transect
% timeout_task(X)	: X an action; action X has just timed out
%	(then aborted by the functional layer)
% low_energy	: energy under a safety threshold
% enough_energy(X)	: X an action; energy is sufficient to perform X
% collision	: collision (T / F)
% detected(X)	: specie X has been detected
% robot_task(X)	: X an action; robot is performing action X
% next_task(X)	: X an action; the planner has returned X as next action
% transect_done(X, Y)	: X, Y start/end locations
% at(X)	: X robot location
% timeout_mission	: timeout mission (T / F)

%----- ACTIONS
% go_boat
% go_surface
% init_usbl
% transect(X, Y)
% shut_down
% diagnose_motors

```
Introduction
0000
```

State of the art 00

Non-monotonic Reasoning

Contribution 0000000 Simulation and Results 00000

Conclusion 000

Guidelines of the proposed model

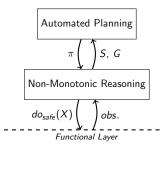
Programming syntax used

%%%%%%%%%%%%%%%%%%%%%% (D_safety)

```
cl('safety_sensor_problem', def, [safety_sensor_problem(_)], do_safe(shut_down), 100).
cl('do_action', def, [next_task(X)], do_safe(X), 100).
```

%%%%%%%%%%%%%%%%%%% (W_est)

```
cl('not_geoloc', dur, [-usbl_was_captured, -gps_was_captured], -localized, 0).
cl('precision_min',dur,[low_loc_precision], -localized, 0).
```


```
%%%%%%%%%%%%% (D_est)
cl('loc_by_def', def, [], localized, 0).
```

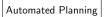
State of the art 00 Non-monotonic Reasoning

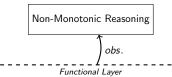
Contribution

Simulation and Results 00000 Conclusion 000

Non-monotonic Reasoning Process

Algorithm NMR process implemented


Require: $D, W \notin \emptyset$ **Ensure:** mission_done $\leftarrow \bot$, $W_{obs} \leftarrow \emptyset$ 1: repeat 2: $W_{obs} \leftarrow obs$ 3: $\Delta = (D, W)$ $E^{\Delta} = \{S, G, do_{safe}(a)\}$ 4: 5: if $\exists \{ do_{safe}(a) \} \subset E^{\Delta}$ then 6: Apply do_{safe}(a) 7: else if $\exists \{S, G\} \subset E^{\Delta}$ then 8: $\pi \leftarrow \text{AutomatedPlan}(S.G)$ 9: if $plan(\pi) = \top$ then 10: break 11. end if 12: $\Delta = (D, W) \cup \pi$ $E_{\pi}^{\Delta} = \{S, G, do_{safe}(a)\}$ 13: 14: if $\exists \{ do_{safe}(a) \} \subset E_{\pi}^{\Delta}$ then 15: Apply dosafe(a) 16: else 17: mission_done $\leftarrow \top$ 18. end if 19: end if 20: until ¬mission_done

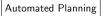

State of the art 00 Non-monotonic Reasoning

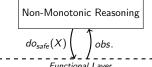
Contribution

Simulation and Results 00000 Conclusion 000

Non-monotonic Reasoning Process

Algorithm NMR process implemented


Require: $D, W \notin \emptyset$ **Ensure:** mission_done $\leftarrow \bot$, $W_{obs} \leftarrow \emptyset$ 1: repeat 2: $W_{obs} \leftarrow obs$ 3: $\Delta = (D, W)$ $E^{\Delta} = \{S, G, do_{safe}(a)\}$ 4: 5: if $\exists \{ do_{safe}(a) \} \subset E^{\Delta}$ then 6. Apply do_{safe}(a) 7: else if $\exists \{S, G\} \subset E^{\Delta}$ then 8: $\pi \leftarrow \text{AutomatedPlan}(S.G)$ 9: if $plan(\pi) = \top$ then 10: break 11. end if 12: $\Delta = (D, W) \cup \pi$ $E_{\pi}^{\Delta} = \{S, G, do_{safe}(a)\}$ 13: 14: if $\exists \{ do_{safe}(a) \} \subset E_{\pi}^{\Delta}$ then 15: Apply dosafa (a) 16: else 17: mission_done $\leftarrow \top$ 18. end if 19: end if 20: until ¬mission_done


State of the art

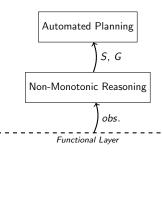
Non-monotonic Reasoning

Contribution 0000000 Simulation and Results

Non-monotonic Reasoning Process

Functional Layer

Algorithm NMR process implemented


Require: $D, W \notin \emptyset$ **Ensure:** mission_done $\leftarrow \bot$, $W_{obs} \leftarrow \emptyset$ 1: repeat 2: $W_{obs} \leftarrow obs$ 3: $\Delta = (D, W)$ $E^{\Delta} = \{S, G, do_{safe}(a)\}$ 4: 5: if $\exists \{ do_{safe}(a) \} \subset E^{\Delta}$ then 6. Apply do_{safe}(a) 7: else if $\exists \{S, G\} \subset E^{\Delta}$ then 8: $\pi \leftarrow \text{AutomatedPlan}(S.G)$ 9: if $plan(\pi) = \top$ then 10: break 11. end if 12: $\Delta = (D, W) \cup \pi$ $E_{\pi}^{\Delta} = \{S, G, do_{safe}(a)\}$ 13: 14: if $\exists \{ do_{safe}(a) \} \subset E_{\pi}^{\Delta}$ then 15: Apply dosafa (a) 16: else 17: mission_done $\leftarrow \top$ 18. end if 19: end if 20: until ¬mission_done

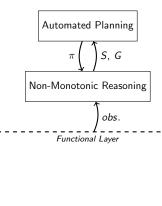
State of the art 00 Non-monotonic Reasoning

Contribution

Simulation and Results 00000 Conclusion 000

Non-monotonic Reasoning Process

Algorithm NMR process implemented


Require: $D, W \notin \emptyset$ **Ensure:** mission_done $\leftarrow \bot$, $W_{obs} \leftarrow \emptyset$ 1: repeat 2: $W_{obs} \leftarrow obs$ 3: $\Delta = (D, W)$ $E^{\Delta} = \{S, G, do_{safe}(a)\}$ 4: 5: if $\exists \{ do_{safe}(a) \} \subset E^{\Delta}$ then 6: Apply do_{safe}(a) 7: else if $\exists \{S, G\} \subset E^{\Delta}$ then 8: $\pi \leftarrow \text{AutomatedPlan}(S.G)$ 9: if $plan(\pi) = \top$ then 10: break 11. end if 12: $\Delta = (D, W) \cup \pi$ $E_{\pi}^{\Delta} = \{S, G, do_{safe}(a)\}$ 13: 14: if $\exists \{ do_{safe}(a) \} \subset E_{\pi}^{\Delta}$ then 15: Apply dosafe(a) 16: else 17: mission_done $\leftarrow \top$ 18. end if 19: end if 20: until ¬mission_done

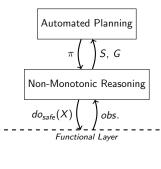
State of the art 00 Non-monotonic Reasoning

Contribution

Simulation and Results 00000 Conclusion 000

Non-monotonic Reasoning Process

Algorithm NMR process implemented


Require: $D, W \notin \emptyset$ **Ensure:** mission_done $\leftarrow \bot$, $W_{obs} \leftarrow \emptyset$ 1: repeat 2: $W_{obs} \leftarrow obs$ 3: $\Delta = (D, W)$ $E^{\Delta} = \{S, G, do_{safe}(a)\}$ 4: 5: if $\exists \{ do_{safe}(a) \} \subset E^{\Delta}$ then 6: Apply do_{safe}(a) 7: else if $\exists \{S, G\} \subset E^{\Delta}$ then 8: $\pi \leftarrow \text{AutomatedPlan}(S.G)$ 9: if $plan(\pi) = \top$ then 10: break 11. end if 12: $\Delta = (D, W) \cup \pi$ $E_{\pi}^{\Delta} = \{S, G, do_{safe}(a)\}$ 13: 14: if $\exists \{ do_{safe}(a) \} \subset E_{\pi}^{\Delta}$ then 15: Apply dosafe(a) 16: else 17: mission_done $\leftarrow \top$ 18. end if 19: end if 20: until ¬mission_done

State of the art 00 Non-monotonic Reasoning

Contribution

Simulation and Results 00000 Conclusion 000

Non-monotonic Reasoning Process

Algorithm NMR process implemented

Require: $D, W \notin \emptyset$ **Ensure:** mission_done $\leftarrow \bot$, $W_{obs} \leftarrow \emptyset$ 1: repeat 2: $W_{obs} \leftarrow obs$ 3: $\Delta = (D, W)$ $E^{\Delta} = \{S, G, do_{safe}(a)\}$ 4: 5: if $\exists \{ do_{safe}(a) \} \subset E^{\Delta}$ then 6: Apply do_{safe}(a) 7: else if $\exists \{S, G\} \subset E^{\Delta}$ then 8: $\pi \leftarrow \text{AutomatedPlan}(S.G)$ 9: if $plan(\pi) = \top$ then 10: break 11. end if 12: $\Delta = (D, W) \cup \pi$ $E_{\pi}^{\Delta} = \{S, G, do_{safe}(a)\}$ 13: 14: if $\exists \{ do_{safe}(a) \} \subset E_{\pi}^{\Delta}$ then 15: Apply dosafa (a) 16: else 17: mission_done $\leftarrow \top$ 18. end if 19: end if 20: until ¬mission_done

Overview

1 Introduction

2 State of the art

- 3 Non-monotonic Reasoning
- 4 Contribution
- **5** Simulation and Results

6 Conclusion

Simulation and Results 00000 Conclusion 000

Experimental Procedure

- Skills interface⁴ (model + manager)
 - operational and descriptive model of the robot
 - 3 data, 9 resources and 10 skills or actions
 - ROS2 middleware (Python/Prolog)
- Automated Plan. (FF algorithm)
- Default Theory (Prolog)
 - behaviors (goals + safety): modeled with 44 rules (17 normal defaults and 27 exceptions)
 - part of the behaviors came from a risk analysis⁵

Evaluation:

Two simulations were performed, calculation time for a simple as well as a complex problem was evaluated.

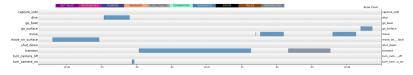
⁴Lesire, Charles, David Doose, and Christophe Grand. "Formalization of Robot Skills with Descriptive and Operational Models." IROS, 2020.

⁵Hereau, A., Godary-Dejean, K., Guiochet, J., & Crestani, D. (2021, May). A Fault Tolerant Control Architecture Based on Fault Trees for an Underwater Robot Executing Transect Missions. In International Conference on Robotics and Automation (ICRA 2021).

Introduction	
0000	

State of the art

Non-monotonic Reasoning


Contribution

Simulation and Results

Conclusion 000

31

Simulation and Results

Figure: low localization timeline

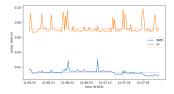


Figure: low localization computation time

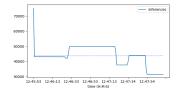
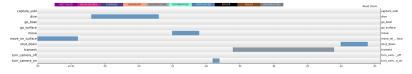


Figure: low localization inferences

Introduction	
0000	

State of the art


Non-monotonic Reasoning

Contribution

Simulation and Results

Conclusion 000

Simulation and Results

Figure: shutdown timeline

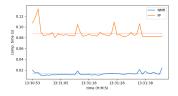


Figure: shutdown computation time

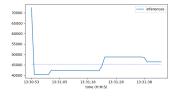


Figure: shutdown inference

State of the art

Non-monotonic Reasoning

Contribution

Simulation and Results

Conclusion 000

Simulation and Results

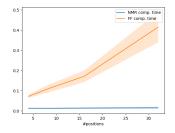


Figure: computation time of 32 positions

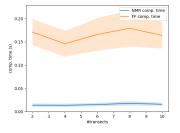


Figure: computation time of goals

Auto Dec-Mak w/ Incomp Info & Saf Rules based on Non-Mon Reasoning

JL Vilchis-Medina E

Overview

1 Introduction

2 State of the art

3 Non-monotonic Reasoning

4 Contribution

5 Simulation and Results

6 Conclusion

State of the art 00 Non-monotonic Reasoning

Contribution

mulation and Result

Conclusion

- New decision-making architecture based on a non-monotonic logic:
 - Goal reasoning,
 - Safety rules management
- Default logic is a promising tool for tackling problems that have non-monotonic behavior,
- Model guidelines for use in others applications,
- Practical verification of model complexity (quasi-linear) with 44 rules (17 defaults and 27 exceptions)

Future work:

Multi-agents systems, autonomous agents, other applications...

State of the art 00

Non-monotonic Reasoning

Contribution 00000000 Simulation and Results 00000

Conclusion 000

Thank you for your attention,

Questions ?6

⁶email: jose.vilchis@ensta-bretagne.fr

Auto Dec-Mak w/ Incomp Info & Saf Rules based on Non-Mon Reasoning

JL Vilchis-Medina ENSTA Bretagne 36