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1. Introduction and Motivation

The capabilities of an aircraft in terms of speed, load, and 
altitude are referred to as its flight envelope.

Ensuring that an aircraft remains within its flight envelope 
is essential to prevent loss of control (LoC).

Envelope protection currently entails preventing specific 
constraint violations.

The present work is devoted to methods that prevent 
constraint violations based on reference governors.
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1. Augment rather than replace an existing nominal 
controller.

2. Inactive if no danger of constraint violation.
3. ‘Easy’ to implement / Fast online computations.
4. Special properties.
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Preliminaries on conventional Reference 
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Preliminaries on conventional Reference 
Governors

𝑥 𝑘 + 1 = 𝐴𝑥 𝑘 + 𝐵𝑣(𝑘)
𝑦 𝑘 = 𝐶 𝑥 𝑘 + 𝐷 𝑣(k)

.𝑦 𝑘|𝑣, 𝑥 = 𝐶 𝐴!𝑥 𝑘 + 𝐶 (𝐼 − 𝐴)"#(𝐼 − 𝐴!)𝐵𝑣 + 𝐷 𝑣

3𝑂$ = 𝑣, 𝑥 | .𝑦 𝑘|𝑣, 𝑥 ∈ 𝑌, 𝑘 = 0…𝑘∗ ∩ 𝑂&

𝑂& = 𝑣, 𝑥 |:𝑦' ∈ (1 − 𝜖)𝑌

Prediction

Maximum Output Admissible Set (MOAS)

where
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Preliminaries on conventional Reference 
Governors
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Preliminaries on conventional Reference 
Governors
<O$ computation is based on two ingredients:

- Every time we compute the next value of the output, we add 
and therefore stack some linear inequality constraints, 

- Every time we add these new linear inequality constraints, we 
check if they are redundant with the previous ones. In case, 
they are all redundant, we stop the algorithm.
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Limitations of the Conventional Reference 
Governors

Nonlinear constraints
It is ‘hard’ to eliminate redundant constraints

Parametric uncertainties
It is ‘hard’ to propagate the constraints through the 

uncertain dynamics
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Constraints elimination and nonlinearities

𝑥 𝑘 + 1 = 𝐴𝑥 𝑘 + 𝐵𝑣

𝑦 𝑘 =>
()#

*

𝐶(
𝑥(𝑘)
𝑣

(
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Given a set defined by some polynomial inequality constraints,  how do you efficiently
determine that a new polynomial inequality constraint is redundant or not?

A Cotorruelo, I Kolmanovsky, E Garone, “A sum-of-squares-based procedure to approximate
the Pontryagin difference of basic semi-algebraic sets”, Automatica 135, 109783, 2022.
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Constraints propagation through uncertain 
dynamics
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𝑥 𝑘 + 1 = 𝐴 𝑈 𝑥 𝑘 + 𝐵 𝑈 𝑣
𝑦 𝑘 = 𝐶 𝑥 𝑘 + 𝐷 𝑣
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The Quadrotor Model

Translation equations of motion involving aerodynamic 
effects:

𝑣̇ = −𝑔𝑒+ + 𝑐𝑅𝑒+ − 𝑅𝐷𝑅,𝑣 − 𝑅𝐶Ω

Rotational equations of motion:
𝐽Ω̇ = −Ω×𝐽Ω − 𝜏- + 𝜏 − 𝐴𝑅,𝑣 − 𝐵Ω

Assumptions:
• the propellers are rigid (i.e., 𝐶 = 0),
• the collective thrust remains equal to the commanded collective thrust,
• the yaw angle 𝜓 and its derivatives remain equal to 0,
• the drone flies at a constant altitude 𝑧,
• the pitch and roll angles are small all the time, and
• the inertia matrix is diagonal and 𝐽!! = 𝐽"".
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Trajectory Tracking

Introduce change of coordinates to decouple the 𝑥 and 𝑦
dynamics:

𝑢# = 𝜏# − 𝑎##𝑣. − 𝑏#/𝑞 − 𝑎#+ 𝜃𝑣. − 𝜙𝑣0 ,
𝑢/ = 𝜏/ − 𝑎//𝑣0 − 𝑏/#𝑝 − 𝑎/+ 𝜃𝑣. − 𝜙𝑣0 .

Which results in the longitudinal and lateral motions:
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Longitudinal

𝑥̇ = 𝑣.
𝑣̇. = 𝑔𝜃 − 𝑑.𝑣.

𝜃̇ = 𝑞
𝐽00𝑞̇ = 𝑢/ − 𝑎/#𝑣. − 𝑏//𝑞

Lateral

𝑦̇ = 𝑣0
𝑣̇0 = −𝑔𝜙 − 𝑑0𝑣0

𝜙̇ = 𝑝
𝐽..𝑝̇ = 𝑢# − 𝑎#/𝑣0 − 𝑏##𝑝
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Longitudinal Tracking

𝑢/ can be specified such that the 𝑣. dynamics enjoy suitable 
asymptotic tracking properties

𝑢/ = −𝐾123𝑋123 +
4!!
5 𝑘#𝜈123.

Defining 𝑋123 = 𝑣. 𝜃 𝑞 ,, the pre-stabilized system can be 
rewritten as

𝑋̇123 = 𝐴123𝑋123 + 𝐵123𝜈123.

𝑢/ is designed such that when 𝜈123 is constant, then 𝑣.
asymptotically tracks the constant 𝜈123, but when
𝑘#𝜈123= 𝑟/(𝑡), then 𝑥 asymptotically tracks 𝑥6.

𝑥6(𝑡) is the desired reference trajectory for 𝑥(𝑡) to track.
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Lateral Tracking

Equivalent measures can be taken in the lateral direction where it 
can be found that

𝑢# ≔ −𝐾178𝑋178 −
𝐽..
𝑔
𝑘#𝜈178

where 𝑋178 ≔ 𝑣0 𝜙 𝑝 ,

and the pre-stabilized system can be rewritten as 

𝑋̇178 = 𝐴178𝑋178 + 𝐵178𝜈178.
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Propeller Thrust Limitations

The collective thrust and torques are given by:
𝑚𝑐
𝜏#
𝜏/
𝜏+

= 𝑀9::

𝑇#
𝑇/
𝑇+
𝑇;

where the control effectiveness matrix 𝑀9:: is invertible and 
is one of a quadrotor operating in the cross configuration.

The following constraints are then enforced:

𝑀!""
#$

𝑚𝑐
𝜏$
𝜏%
𝜏&

= 𝑀!""
#$

𝑚𝑔 −𝑚𝑑'𝜃𝑣' +𝑚𝑑(𝜙𝑣(
−𝐾)*++𝑋)*+ −

,!!
-
𝑘$𝜈)*+ + 𝑎$$𝜈' + 𝑏$%𝑞 + 𝑎$&(𝜃𝑣' − 𝜙𝑣()

−𝐾)./𝑋)./ −
,""
-
𝑘$𝜈)./ + 𝑎%%𝜈( + 𝑏%$𝑝 + 𝑎%&(𝜃𝑣' − 𝜙𝑣()

𝑎&$𝑣' + 𝑎&%𝑣( + 𝑎&&(𝜃𝑣' − 𝜙𝑣()

𝜖 0, 𝑇0*' 1
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2. Proposed solution: a Reference Governor 
for Polynomial Constraints
Considering the previously established dynamics

𝑋̇123 = 𝐴123𝑋123 + 𝐵123𝜈123
𝑋̇178 = 𝐴178𝑋178 + 𝐵178𝜈178.

Additionally, the reference dynamics are defined by
𝜈̇123 = −𝛽𝜈123 𝜈̇178 = −𝛽𝜈178.

Discretizing the system and augmenting the state such that
\

Z ≔ [ 𝑋123, 𝑋178, 𝜈123, 𝜈178 , 𝑋123, 𝑋178, 𝜈123, 𝜈178 / ]

the system now takes the form
Z(k + 1) = Φ𝑍(𝑘)

where the polynomial constraints are now expressed as linear 
constraints.
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Algorithms

MOAS computation
1-Compute<O$,="
2-Compute <O$,=

Reference Governor updates
1- Initialization by solving a nonlinear optimization problem
2- Bisection algorithm

20/45



School of Engineering School of Engineering 

Numerical Results

MOAS computations:

First Step:

Dim(𝑍#) = 8
(O$,&2 is finitely determined in 84 iterations and is defined by 252 linear 
inequality constraints. 

Second Step:

Dim(Z) = 36
(O$,& is finitely determined in 142 iterations and is defined by 390 linear 
inequality constraints. 
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Numerical Results

Consider the following cases:

Case 1: Starting close to the reference trajectory and following it at 
moderate speed. 

[𝑥(0), 𝑦(0)] = [x'(0), 𝑦((0)] + [0.5, 0.5]m
𝜔 = 1 𝑟𝑎𝑑/𝑠

Case 2: Starting far from the reference trajectory and following it at 
moderate speed.

[𝑥(0), 𝑦(0)] = [x'(0), 𝑦((0)] + [2.0, 2.0]m
𝜔 = 1 𝑟𝑎𝑑/𝑠

Case 3: Starting close to the reference trajectory and following it at high 
speed

[𝑥(0), 𝑦(0)] = [x'(0), 𝑦((0)] + [0.5, 0.5]m
𝜔 = 2 𝑟𝑎𝑑/𝑠
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Numerical Results

Same cases while following a more complex trajectory (Figure ‘8’)

Case 1b: Starting close to the reference trajectory and following it at 
moderate speed. 

[𝑥(0), 𝑦(0)] = [x'(0), 𝑦((0)] + [0.5, 0.5]m
𝜔 = 1 𝑟𝑎𝑑/𝑠

Case 2b: Starting far from the reference trajectory and following it at 
moderate speed.

[𝑥(0), 𝑦(0)] = [x'(0), 𝑦((0)] + [2.0, 2.0]m
𝜔 = 1 𝑟𝑎𝑑/𝑠

Case 3b: Starting close to the reference trajectory and following it at 
high speed

[𝑥(0), 𝑦(0)] = [x'(0), 𝑦((0)] + [0.5, 0.5]m
𝜔 = 2 𝑟𝑎𝑑/𝑠
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Numerical Results: Case 1
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Numerical Results: Case 1
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Numerical Results: Case 2
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Numerical Results: Case 2
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Numerical Results: Case 3
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Numerical Results: Case 3
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Numerical results: Case 1b
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Numerical results: Case 2b
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Numerical results: Case 3b
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3. Extension: a Reference Governor for 
Uncertain Polynomial Constraints
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Constraints propagation through uncertain 
dynamics

𝑥 𝑘 + 1 = 𝐴 𝑈 𝑥 𝑘 + 𝐵 𝑈 𝑣
𝑦 𝑘 = 𝐶𝑥 𝑘 + 𝐷𝑣
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Constraints propagation through uncertain 
dynamics
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𝑥 𝑘 + 1 = 𝐴𝑥 𝑘 + 𝐵𝑣
𝑦 𝑘 = 𝐶 𝑈 𝑥 𝑘 + 𝐷 𝑈 𝑣
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Model-free Control

• Summary of key results in [1]:

• Ultra Local model:

• If     =1, then

• If     =2, then

• Controller:

36/45

z: output
: measurement of z

u: input
: unknown dynamics

e: error

[1]:Fliess, M. and Join, C. (2013). Model-free control. International Journal of Control, 86(12), 2228–2252.
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Uncertain quadrotor dynamics

We have the following longitudinal and lateral motions 
where 𝑑. and 𝑑0 are uncertain.
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Longitudinal

𝑥̇ = 𝑣.
𝑣̇. = 𝑔𝜃 − 𝑑.𝑣.

𝜃̇ = 𝑞
𝐽00𝑞̇ = 𝑢/ − 𝑎/#𝑣. − 𝑏//𝑞

Lateral

𝑦̇ = 𝑣0
𝑣̇0 = −𝑔𝜙 − 𝑑0𝑣0

𝜙̇ = 𝑝
𝐽..𝑝̇ = 𝑢# − 𝑎#/𝑣0 − 𝑏##𝑝
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Robust Longitudinal Tracking using MFC

𝑣.
(+) = 5

4!!
𝑢/ + 𝐹/

𝑢/ = −𝐾123𝑋123 +
4!!
5 (𝑘#𝜈123 − c𝐹/)

Defining 𝑋123 = 𝑣. 𝜃 𝑞 ,, the pre-stabilized system can be 
rewritten as

𝑋̇123 = 𝐴123𝑋123 + 𝐵123(𝜈123+𝑑/)

𝑢/ is designed such that when 𝜈123 is constant, then 𝑣.
asymptotically tracks the constant 𝜈123, but when
𝑘#𝜈123= 𝑟/(𝑡), then 𝑥 asymptotically tracks 𝑥6.

𝑥6(𝑡) is the desired reference trajectory for 𝑥(𝑡) to track.
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Robust Lateral Tracking using MFC

Equivalent measures can be taken in the lateral direction where it 
can be found that

𝑢# ≔ −𝐾178𝑋178 −
𝐽..
𝑔
(𝑘#𝜈178 + c𝐹#)

where 𝑋178 ≔ 𝑣0 𝜙 𝑝 ,

and the pre-stabilized system can be rewritten as 

𝑋̇178 = 𝐴178𝑋178 + 𝐵178(𝜈178+𝑑#)
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Propeller Thrust Limitations

The following constraints are then enforced:

𝑀!""
#$

𝑚𝑔 −𝑚𝑑'𝜃𝑣' +𝑚𝑑(𝜙𝑣(

−𝐾)*++𝑋)*+ −
𝐽''
𝑔 (𝑘$𝜈)*+ + ;𝐹$)+ 𝑎$$𝜈' + 𝑏$%𝑞 + 𝑎$&(𝜃𝑣' − 𝜙𝑣()

−𝐾)./𝑋)./ −
𝐽((
𝑔
(𝑘$𝜈)./ − ;𝐹%) + 𝑎%%𝜈( + 𝑏%$𝑝 + 𝑎%&(𝜃𝑣' − 𝜙𝑣()

𝑎&$𝑣' + 𝑎&%𝑣( + 𝑎&&(𝜃𝑣' − 𝜙𝑣()

𝜖 0, 𝑇0*' 1

which is the same as:

𝑀!""
#$

𝑚𝑔 −𝑚𝑑'𝜃𝑣' +𝑚𝑑(𝜙𝑣(

−𝐾)*++𝑋)*+ −
𝐽''
𝑔 (𝑘$(𝜈)*+ + 𝑑$) + 𝐹$) + 𝑎$$𝜈' + 𝑏$%𝑞 + 𝑎$&(𝜃𝑣' − 𝜙𝑣()

−𝐾)./𝑋)./ −
𝐽((
𝑔
(𝑘$(𝜈)./+𝑑%) − 𝐹%) + 𝑎%%𝜈( + 𝑏%$𝑝 + 𝑎%&(𝜃𝑣' − 𝜙𝑣()

𝑎&$𝑣' + 𝑎&%𝑣( + 𝑎&&(𝜃𝑣' − 𝜙𝑣()

𝜖 0, 𝑇0*' 1
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Numerical Results

MOAS computations:

First Step:
Dim(𝑍#) = 8
(𝑂$,&2 is finitely determined in 84 iterations and is defined by 252 linear 
inequality constraints 

Second Step:

Dim(Z) = 36
Dim(U) = 6
(𝑂$,& is finitely determined in 2 iterations and is defined by 702 linear 
inequality constraints 
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Numerical Results: Uncertain Case I
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Numerical Results: Uncertain Case 2
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Numerical Results: Uncertain Case 3
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Conclusions

45/45

The methods employed were shown to be capable of ‘robustly’ 
protecting the flight envelope of a quadrotor following high-

speed trajectories.

The method proposed is based on the computation a ‘safe’ 
forward invariant set in which the state (and reference) of the 

quadrotor must remain while tracking a given trajectory.

The method was recently extended to account for some 
parametric uncertainties.
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Conclusions

Future work includes expanding to more complex trajectories, 
including model uncertainties and/ or disturbances, and real-time 
implementation on a physical drone.
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