Cartographie 3D dense et temps-réel à partir d'un système de vision monoculaire pour l'archéologie sous-marine

Maxime Ferrera

ONERA, The French Aerospace Lab

Gdr Robotique - Robotique, Patrimoine et Archéologie

06 février 2020

Maxime Ferrera

Gdr Robotique - Journée Robotique, Patrimoine et Archéologie - 06/02/2020

- PhD student from Nov. 2016 Dec. 2019 at ONERA and LIRMM
- PhD thesis topic : Vision-based Localization and 3D Mapping for Underwater Environments
- Supervisors : Dr. Julien Moras, Dr. Pauline Trouvé-Peloux (ONERA) and Dr. Vincent Creuze (LIRMM)

Context

Underwater Archaeology

- Many sites below 100 meters deep
- Not human-friendly environnements

Credit : DRASSM

Références

Conte<u>xt</u>

Robots to the rescue

- ROV : Remotely Operated Vehicles
- ROVs are used for deep surveys

Dense 3D Mapping

nclusion

Références

Context

Underwater Photogrammetry

Conte<u>xt</u>

Underwater Photogrammetry

Softwares : Photoscan, MicMac, Colmap, ...

Context

Underwater Photogrammetry

- Softwares : Photoscan, MicMac, Colmap, ...
- Heavy computation \rightarrow offline processing
- Results obtained days to weeks after the mission

Context

Underwater Photogrammetry

- Softwares : Photoscan, MicMac, Colmap, ...
- ► Heavy computation → offline processing
- Results obtained days to weeks after the mission

Objectives

Estimate accurate localization in real-time

- Produce dense 3D reconstructions
- Use low-cost sensors

Thesis proposal

SLAM from a Monocular Vision-based System

Designed Systems

Size : 33.4 \times 11.4 cm Depth rated : 100 m

On-board computation

- \rightarrow Autonomous and independent
- ightarrow No bandwidth issue

Size : 25.8 \times 8.9 cm Depth rated : 500 m

1 Underwater Monocular Visual SLAM

2 Multi-Sensor SLAM

3 Monocular Dense 3D Mapping

Visual-Inertial-Pressur<u>e SLAM</u>

Dense 3D Mapping

nclusion ____I

Références

Underwater Monocular Visual SLAM

SLAM by Structure-from-Motion

From pixel correspondences :

Localization \rightarrow 3D map

3D map \rightarrow Localization

Références

Underwater Monocular Visual SLAM

Problem Statement

- Estimate the pose of the camera at each new image
- Pose : $X_i = (R, t) \in \mathbb{SE}(3)$ | $R \in \mathbb{SO}(3)$ $t \in \mathbb{R}^3$
- \blacksquare Estimate the position of 3D landmarks : $\textbf{lm}_{j} \in \mathbb{R}^{3}$

Maxime Ferrera Gdr Robotique - Journée Robotique, Patrimoine et Archéologie - 06/02/2020

Underwater Monocular Visual SLAM

Tracking / Mapping : Two threads for efficient computation

Underwater Monocular Visual SLAM

Local Windowed Bundle Adjustment

Optimize most recent keyframes and 3D landmarks by minimization of reprojection errors :

$$\boldsymbol{\chi}^{*} = \operatorname*{arg\,min}_{\boldsymbol{\chi}} \left(\sum_{i \in \{\mathsf{KF}\}} \sum_{j \in \{\mathit{lm}\}} \rho\left(\mathbf{X}_{ij} - \pi\left(\mathbf{X}_{i}, \mathbf{lm}_{j} \right) \right) \right) \quad , \quad \boldsymbol{\chi} = \begin{bmatrix} \mathbf{X}_{\mathsf{KF}_{i}} & \mathbf{lm}_{j} \end{bmatrix}^{\mathsf{T}}$$

Dense 3D Mapping

nclusion _____

Références

Underwater Monocular Visual SLAM

UW-VO for localization during shipwreck exploration

1 Underwater Monocular Visual SLAM

2 Multi-Sensor SLAM

3 Monocular Dense 3D Mapping

SLAM from a Monocular Vision-based System

Tight Fusion : Insert other measurement modalities within the factor graph

Tight Fusion : Insert other measurement modalities within the factor graph

Fusion from Maximum Likelihood Estimation

$$\chi^{*} = \operatorname*{arg\,min}_{\chi} \left(\mathsf{E}_{\textit{visual}}\left(\chi\right) + \mathsf{E}_{\textit{depth}}\left(\chi\right) + \mathsf{E}_{\textit{IMU}}\left(\chi\right) \right)$$

E_{visual} : Energy term based on visual measurements
 E_{depth} : Energy term based on pressure measurements
 E_{IMU} : Energy term based on inertial measurements

Visual-Inertial-Pressur<u>e SLAM</u>

Low-cost MEMS-IMU Model

Angular Velocity measurements :

$$ilde{oldsymbol{\omega}}_{\scriptscriptstyle B}(t) = oldsymbol{\omega}_{\scriptscriptstyle B}(t) + oldsymbol{b}^g(t) + oldsymbol{\eta}^g$$

Linear Acceleration measurements :

$$ilde{\mathbf{a}}_{\scriptscriptstyle B}(t) = {\mathbf{R}}_{\scriptscriptstyle WB}(t)^{^{T}} \cdot ({\mathbf{a}}_{\scriptscriptstyle W}(t) - {\mathbf{g}}_{\scriptscriptstyle W}) + {\mathbf{b}}^{^{a}}(t) + \eta^{^{a}}$$

Low-cost MEMS-IMU Model

Angular Velocity measurements :

$$ilde{oldsymbol{\omega}}_{\scriptscriptstyle B}(t) = oldsymbol{\omega}_{\scriptscriptstyle B}(t) + oldsymbol{b}^g(t) + oldsymbol{\eta}^g$$

Linear Acceleration measurements :

$$ilde{\mathbf{a}}_{\scriptscriptstyle B}(t) = {\mathbf{R}}_{\scriptscriptstyle WB}(t)^{^{T}} \cdot ({\mathbf{a}}_{\scriptscriptstyle W}(t) - {\mathbf{g}}_{\scriptscriptstyle W}) + {\mathbf{b}}^{^{a}}(t) + \eta^{^{a}}$$

 Measurements corrupted by time-varying biases and zero-mean gaussian noise

IMU Preintegration

Summarize intra-keyframe IMU measurements as one measurement :

- Relative motion measurements : $\Delta \tilde{\mathbf{R}}_{BiBj}, \Delta \tilde{\mathbf{p}}_{BiBj}, \Delta \tilde{\mathbf{v}}_{BiBj}$
- Easy insertion in the Factor Graph formulation

New state to estimate :

$$\mathbf{X}_i = \begin{bmatrix} \mathbf{R}_{WBi} & \mathbf{p}_{WBi} & \mathbf{v}_{WBi} & \mathbf{b}_i^g & \mathbf{b}_i^a \end{bmatrix}^T$$

IMU Preintegration : Relative errors between keyframes

$$\begin{array}{ll} \mathbf{e}_{\Delta \mathbf{R}_{BiBj}} = \hat{\mathbf{R}}_{BiBj} \boxminus \Delta \tilde{\mathbf{R}}_{BiBj} & \mathbf{e}_{\Delta \mathbf{b}_{BiBj}^g} = \hat{\mathbf{b}}_{Bj}^g - \hat{\mathbf{b}}_{Bi}^g \\ \mathbf{e}_{\Delta \mathbf{p}_{BiBj}} = \hat{\mathbf{p}}_{BiBj} - \Delta \tilde{\mathbf{p}}_{BiBj} & \mathbf{e}_{\Delta \mathbf{b}_{BiBj}^a} = \hat{\mathbf{b}}_{Bj}^a - \hat{\mathbf{b}}_{Bi}^a \\ \mathbf{e}_{\Delta \mathbf{v}_{BiBj}} = \hat{\mathbf{v}}_{BiBj} - \Delta \tilde{\mathbf{v}}_{BiBj} & \mathbf{Random-walk \ biases} \end{array}$$

IMU Energy term

$$\begin{split} E_{IMU}\left(\boldsymbol{\chi}\right) &= \sum_{\mathfrak{K}^{*}} \begin{pmatrix} \mathbf{e}_{imu}(\mathbf{X}_{i},\mathbf{X}_{j})^{\mathsf{T}} \cdot \mathbf{\Sigma}_{BiBj}^{imu}^{-1} \cdot \mathbf{e}_{imu}(\mathbf{X}_{i},\mathbf{X}_{j}) \end{pmatrix} \\ \mathbf{e}_{imu}(\mathbf{X}_{i},\mathbf{X}_{j}) &= \begin{bmatrix} \mathbf{e}_{\Delta \mathbf{R}_{BiBj}} & \mathbf{e}_{\Delta \mathbf{p}_{BiBj}} & \mathbf{e}_{\Delta \mathbf{v}_{BiBj}} & \mathbf{e}_{\Delta \mathbf{b}_{BiBj}^{a}} \end{bmatrix}^{\mathsf{T}} \end{split}$$

Maxime Ferrera

Gdr Robotique - Journée Robotique, Patrimoine et Archéologie - 06/02/2020

Pressure Sensor

- \blacksquare Pressure measurements : pressure (Pa) \propto depth (m)
- Depth variation from starting point :

$$ilde{d}_i = {}_{
m raw} ilde{d}_i - {}_{
m raw} ilde{d}_0$$

Pressure Sensor

- Pressure measurements : pressure (Pa) \propto depth (m)
- Depth variation from starting point :

$$ilde{d}_i = {}_{\mathrm{raw}} ilde{d}_i - {}_{\mathrm{raw}} ilde{d}_0$$

Integration of absolute depth measurements :

$$E_{depth}(\mathbf{X}_i) = \|\tilde{d}_i - \hat{t}^{z}_{Wc_i}\|_{\sigma^2_{depth}}^2$$

Visual-Inertial-Pressur<u>e SLAM</u>

Visual-Inertial-Pressure Optimization

UW-VIP for localization with short loss of visual information

1 Underwater Monocular Visual SLAM

2 Multi-Sensor SLAM

Monocular Dense 3D Mapping

Dense 3D Mapping

onclusion

Références

Monocular Dense 3D Mapping

Dense 3D Mapping

- Densify the sparse 3D measurements
- Make use of optimized states : keyframes + 3D landmarks

Maxime Ferrera Gdr Robot

Depth Map Densification

Find 3D features nearest-neighbors from 2D Delaunay triangulation

• : pixels with known depth

Depth Map Densification

- Find 3D features nearest-neighbors from 2D Delaunay triangulation
- Depth value interpolation from Delaunay triangles

Depth Map Densification

- Find 3D features nearest-neighbors from 2D Delaunay triangulation
- Depth value interpolation from Delaunay triangles

(a) 2D Delaunay triangulation.

(b) 2D densified depth map.

nclusion

Références

Monocular Dense 3D Mapping

Online 3D Reconstruction

Online 3D Reconstruction in Complex Environment

Post-mission 3D Reconstruction

Conclusion

Conclusion

Experimental Validation

- Algorithms validated on the Tegra TX2
- All the methods run in real-time
- Release of a public dataset : AQUALOC

Dense 3D Mapping

iclusion Ré

Références

Conclusi<u>on</u>

AQUALOC Dataset: http://www.lirmm.fr/aqualoc/

FIGURE - ROV Dumbo (DRASSM / LIRMM)

FIGURE - ROV Perseo (Copetech SM - Credit : DRASSM / F. Osada)

- 17 sequences
- Synchronized measurements
- Harbor & Archaeological sites
- Comparative baselines from offline photogrammetry

Maxime Ferrera

Gdr Robotique - Journée Robotique, Patrimoine et Archéologie - 06/02/2020

Conclusion

Follow-up

 Collaboration with Stanford Robotics Lab on OceanOne

What's next?

- Add a loop-closure feature
- Manage localization updates in the 3D reconstruction

FIGURE - Ocean One - Stanford University

Related Publications I

Marcela CARVALHO, Maxime FERRERA, Alexandre BOULCH, Julien MORAS, Bertrand Le SAUX et Pauline TROUVÉ-PELOUX. "Technical Report : Co-learning of geometry and semantics for online 3D mapping". In : arXiv preprint arXiv :1911.01082 (2019).

- Maxime FERRERA, Alexandre BOULCH et Julien MORAS. "Fast Stereo Disparity Maps Refinement By Fusion of Data-Based And Model-Based Estimations". In : 3DV. 2019.
- Maxime FERRERA, Vincent CREUZE, Julien MORAS et Pauline TROUVÉ-PELOUX. "AQUALOC : An Underwater Dataset for Visual-Inertial-Pressure Localization.". In : The International Journal of Robotics Research. 2019.

Maxime FERRERA, Julien MORAS, Pauline TROUVÉ-PELOUX et Vincent CREUZE. "Localisation autonome basée vision d'un robot sous-marin et cartographie de précision". In : ORASIS. 2017.

Related Publications II

- Maxime FERRERA, Julien MORAS, Pauline TROUVÉ-PELOUX et Vincent CREUZE. "Odométrie Visuelle Monoculaire en Environnement Sous-Marin". In : Reconnaissance des Formes, Image, Apprentissage et Perception (RFIAP). 2018.
 - Maxime FERRERA, Julien Moras, Pauline TROUVÉ-PELOUX et Vincent CREUZE. "Real-Time Monocular Visual Odometry for Turbid and Dynamic Underwater Environments". In : Sensors. T. 19. 3. 2019.

Maxime FERRERA, Julien MORAS, Pauline TROUVÉ-PELOUX, Vincent CREUZE et Denis DÉGEZ. "The Aqualoc Dataset: Towards Real-Time Underwater Localization from a Visual-Inertial-Pressure Acquisition System". In : IROS Workshop - New Horizons for Underwater Intervention Missions : from Current Technologies to Future Applications. 2018.

Références

THANK YOU!

Contact:maxime.ferrera@gmail.com
Website:https://ferreram.github.io/
More videos:Aqualoc channel on Youtube