
Mobile robotics: Guidance

https://www.ensta-bretagne.fr/robmooc/

Luc Jaulin

April 24, 2025

https://www.ensta-bretagne.fr/robmooc/

Luc Jaulin Mobile robotics: Guidance

Page 2 of 126

Contents

1 Introduction to feedback linearization 7

1.1 Controlling an integrator chain . 7

1.1.1 Proportional-derivative controller . 7

1.1.2 Proportional-integral-derivative controller . 9

1.2 Introductory example . 9

1.3 Dubins car . 11

2 Feedback linearization, singularities and sliding modes 17

2.1 Lie derivatives . 17

2.1.1 De�nition . 17

2.1.2 Relative degree . 18

2.2 Principle of the feedback linearization control . 19

2.2.1 Principle . 19

2.2.2 Di�erential delay matrix . 21

2.2.3 Singularities . 21

2.3 Dubins car . 23

2.4 Controlling a tricycle . 25

2.4.1 Speed and heading control . 25

2.4.2 Position control . 26

2.4.3 Choosing another output . 27

2.5 Sailboat . 27

2.5.1 Polar curve . 28

2.5.2 Di�erential delay . 29

2.5.3 The method of feedback linearization . 30

2.5.4 Polar curve control . 32

2.6 Sliding mode . 33

2.7 Kinematic model and dynamic model . 35

2.7.1 Principle . 35

2.7.2 Example of the inverted rod pendulum . 36

2.7.2.1 Dynamic model . 37

2.7.2.2 Kinematic model . 37

2.7.3 Servo-motors . 39

3

Luc Jaulin Mobile robotics: Guidance

3 Model-free control 55

3.1 Model-free control of a robot cart . 56

3.1.1 Proportional heading and speed controller . 56

3.1.2 Proportional-derivative heading controller . 57

3.2 Learning a model from data . 58

3.2.1 Principle . 58

3.2.2 Mechanical systems . 59

3.2.3 Interpolation . 59

3.2.4 Learning . 61

4 Vehicles 71

4.1 Skate car . 71

4.1.1 Model . 72

4.1.2 Sinusoidal control . 73

4.1.3 Maximum thrust control . 74

4.1.4 Simpli�cation of the fast dynamics . 76

4.2 Sailboat . 77

4.2.1 Problem . 77

4.2.2 Controller . 79

4.2.3 Navigation . 85

4.2.4 Experiment . 86

5 Guidance 101

5.1 Guidance on a sphere . 101

5.2 Arti�cial potential �eld method . 104

6 Path planning 117

6.1 Path planning . 117

6.1.1 Simple example . 117

6.1.2 Bézier polynomials . 118

6.2 Voronoi diagram . 119

Page 4 of 126

Introduction

A mobile robot can be de�ned as a mechanical system capable of moving in its environment in

an autonomous manner. For that purpose, it must be equipped with:

� sensors that will collect knowledge of its surroundings (which it is more or less aware of) and

determine its location ;

� actuators which will allow it to move ;

� an intelligence (or algorithm, regulator), which will allow it to compute, based on the data

gathered by the sensors, the commands to send to the actuators in order to perform a given

task.

Finally, to this we must add the environment of the robot which corresponds to the world in which it

evolves and its mission which is the task it has to accomplish. Mobile robots are constantly evolving,

mainly from the beginning of the 2000s, in military domains (airborne drones [1], underwater robots

[2], etc.), for medical purposes and agricultural �elds. They are in particularly high demand for

performing tasks considered to be painful or dangerous to humans. This is the case for instance

in mine-clearing operations, the search for black boxes of damaged aircraft on the ocean bed and

planetary exploration. Arti�cial satellites, launchers (such as Ariane V), driverless subways and

elevators are examples of mobile robots. Airliners, trains and cars evolve in a continuous fashion

towards more and more autonomous systems and will very probably become mobile robots in the

following decades.

Mobile robotics is the discipline which looks at the design of mobile robots [3]. It is based on other

disciplines such as automatic control, signal processing, mechanics, computing and electronics. The

aim of this book is to give an overview of the tools and methods for the control of mobile robots. The

robots will be modeled by state equations, i.e., �rst order (mostly non-linear) di�erential equations.

These state equations can be obtained by using the laws of mechanics. It is not in our objectives to

teach the methods of robot modeling (refer to [4] and [5] for more information on the subject), merely

to recall its principles. By modeling, we mean obtaining the state equations. This step is essential

for simulating robots as well as designing controllers. Mobile robots are strongly nonlinear systems

and only a nonlinear approach allows the construction of e�cient controllers. This construction is

the subject of Chapters 1 and 3. Chapter 1 is mainly based on control methods that rely on the

utilization of the robot model. This approach will make use of the concept of feedback linearization

which will be introduced and illustrated through numerous examples. Chapter 3 presents more

5

Luc Jaulin Mobile robotics: Guidance

pragmatic methods which do not use the state model of the robot and which will be referred to as

without model or mimetic. The approach uses a more intuitive representation of the robot and is

adapted to situations in which the robots are relatively simple to remotely control, such as in the

case of cars, sailing boats or airplanes. Chapter 5 is concerned with the guidance and is placed at

a higher level than control. In other words, it focuses on guiding and supervising the system which

is already under control by the tools presented in Chapters 1 and 3. There will therefore be an

emphasis on �nding the instruction to give to the controller in order for the robot to accomplish its

given task. The guidance will then have to take into account the knowledge of the surroundings, the

presence of obstacles and the roundness of the Earth. The non-linear control and guidance methods

require good knowledge of the state variables of the system, such as those which de�ne the position

of the robot. Here, we will assume that the state variables are exactly known. In practice, these

state variables should be estimated from the sensors.

Page 6 of 126

Chapter 1

Introduction to feedback linearization

Due to their multiple rotation capabilities, robots are considered to be strongly nonlinear systems.

In this chapter, we will look at designing nonlinear controllers in order to constrain the state vector

of the robot to follow a �xed forward path or to remain within a determined area of its workspace. In

contrast to the linear approach, which o�ers a general methodology but is limited to the neighborhood

of a point of the state space [6] [5], nonlinear approaches only apply to limited classes of systems, but

they allow to extend the e�ective operating range of the system. Indeed, there is no general method

of globally stabilizing nonlinear systems [7]. However, there is a multitude of methods that apply to

particular cases [8] [9]. The aim of this chapter is to present one of the more representative theoretical

methods (whereas in the following chapter, we will be looking at more pragmatic approaches). This

method is called feedback linearization and it requires knowledge of an accurate and reliable state

machine for our robot. The robots considered here are mechanical systems whose modeling can be

found in [4]. We will assume in this chapter that the state vector is entirely known. In practice, it

has to be approximated from sensor measurements.

1.1 Controlling an integrator chain

As we will show further on in this chapter, feedback linearization leads to the problem of

controlling a system which is composed of several integrator chains decoupled from one another.

In this paragraph we will therefore consider an integrator chain whose input u and output y are

linked together by the di�erential equation:

y(n) = u.

1.1.1 Proportional-derivative controller

Let us �rst of all stabilize this system using a proportional-derivative controller of the type:

u = α0 (w − y) + α1 (ẇ − ẏ) + · · ·+ αn−1

(
w(n−1) − y(n−1)

)
+ w(n),

where w is the wanted setpoint for y. Let us note that w may depend on time. The fact that this

controller requires the di�erentials of y is not a problem within the frame de�ned by the feedback

7

Luc Jaulin Mobile robotics: Guidance

linearization. Indeed, all of these derivatives can be described as analytic functions of the state x of

the system and the input u. Concerning the setpoint w(t), it is chosen by the user and an analytic

expression of w(t) may be assumed to be known (for instance w(t) = sin(t)). Thus, calculating

the di�erentials of w is done in a formal manner and no sensitivity of the di�erential operator with

respect to the noise has to be feared.

The feedback system is described by the di�erential equation:

y(n) = u = α0 (w − y) + α1 (ẇ − ẏ) + · · ·+ αn−1

(
w(n−1) − y(n−1)

)
+ w(n).

If we de�ne the error e between the setpoint w and the output y as e = w−y, this equation becomes:

e(n) + αn−1e
(n−1) + · · ·+ α1ė+ α0e = 0.

This di�erential equation is called the error dynamics equation. Its characteristic polynomial, given

by:

P (s) = sn + αn−1s
n−1 + · · ·+ α1s+ α0, (1.1)

can thus be chosen arbitrarily among the polynomials of degree n. Of course, we will choose all roots

with a negative real part, in order to ensure the stability of the system. For instance, if n = 3 and if

we want all the poles to be equal to −1, we will take:

s3 + α2s
2 + α1s+ α0 = (s+ 1)3 = s3 + 3s2 + 3s+ 1.

Whence:

α2 = 3, α1 = 3, α0 = 1.

The controller obtained is then given by:

u = (w − y) + 3 (ẇ − ẏ) + 3 (ẅ − ÿ) +
...
w .

Remark 1. In this book, we will choose, for reasons of simplicity, to position all our poles at -1. The

previous reasoning, applied for various degrees n, leads us to the following controls:

n = 1 u = (w − y) + ẇ

n = 2 u = (w − y) + 2 (ẇ − ẏ) + ẅ

n = 3 u = (w − y) + 3 (ẇ − ẏ) + 3 (ẅ − ÿ) +
...
w

n = 4 u = (w − y) + 4 (ẇ − ẏ) + 6 (ẅ − ÿ) + 4 (
...
w − ...

y) +
....
w .

(1.2)

Notice that the coe�cients correspond to those of Pascal's triangle

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

Page 8 of 126

Luc Jaulin Mobile robotics: Guidance

1.1.2 Proportional-integral-derivative controller

In order to compensate for the constant disturbances, we may decide to add an integral term.

We then obtain a PID (proportional-integral-derivative) controller, which is of the form:

u = α−1

∫ t

τ=0

(w(τ)− y(τ)) dτ (1.3)

+ α0 (w − y) + α1 (ẇ − ẏ) + · · ·+ αn−1

(
w(n−1) − y(n−1)

)
+ w(n).

The feedback system is described by the di�erential equation:

y(n) = α−1

∫ t

τ=0

(w(τ)− y(τ)) dτ

+ α0 (w − y) + α1 (ẇ − ẏ) + · · ·+ αn−1

(
w(n−1) − y(n−1)

)
+ w(n).

Hence, by di�erentiating once:

e(n+1) + αn−1e
(n) + · · ·+ α1ë+ α0ė+ α−1e = 0.

The characteristic polynomial:

P (s) = sn+1 + αn−1s
n + · · ·+ α1s

2 + α0s+ α−1

can be chosen arbitrarily, as with the proportional-derivative controller.

1.2 Introductory example

Before giving the principles of feedback linearization, we will consider an introductory example.

Let us take the pendulum of Figure 1.1. The input of this system is the torque u exerted on the

pendulum.

Figure 1.1: Simple pendulum with state vector x = (x1, x2)

Page 9 of 126

Luc Jaulin Mobile robotics: Guidance

Its state representation is assumed to be:
(
ẋ1
ẋ2

)
=

(
x2

− sinx1 + u

)
y = x1

It represents a normalized model in which the coe�cients (mass, gravity, length) have all been set to

1. We would like the position x1 (t) of the pendulum to be equal to some setpoint w (t) which may

vary over time. By using a feedback linearization method, explained later, we would like to have

a state feedback controller such that the error e = w − x1 converges towards 0 as exp (−t) (which
means that we place the poles at −1). Let us di�erentiate y until the input u appears. We have:

ẏ = x2
ÿ = − sinx1 + u.

Let us choose:

u = sinx1 + v, (1.4)

where v corresponds to the new, so-called intermediate input. We obtain

ÿ = v. (1.5)

Such a feedback is called linearizing feedback because it transforms the nonlinear system into a linear

system. The system obtained in this way can be stabilized by standard linear techniques. Let us

take as an example a proportional-derivative controller:

v = (w − y) + 2 (ẇ − ẏ) + ẅ

= (w − x1) + 2 (ẇ − x2) + ẅ.

By injecting this expression of v into (1.5), we obtain:

ÿ = (w − x1) + 2 (ẇ − x2) + ẅ.

Which yields:

e+ 2ė+ ë = 0

where e = w − x1 is the error between the position of the pendulum and its setpoint. The complete

controller is expressed by:

u
(1.4)
= sinx1 + (w − x1) + 2 (ẇ − x2) + ẅ.

If we now want the angle x1 of the pendulum to be equal to sin t once the transient regime has

passed, we simply need to take w (t) = sin t. Thus, ẇ (t) = cos t and ẅ = − sin t. Consequently, the

controller is given by:

u = sinx1 + (sin t− x1) + 2 (cos t− x2)− sin t.

In this very simple example, we can see that the proposed controller is nonlinear and depends on

time. No approximation arising from linearization has been performed. Of course, a linearization

has been done by a �rst feedback in order to make the system linear, but this linearization did not

introduce any approximation.

Page 10 of 126

Luc Jaulin Mobile robotics: Guidance

1.3 Dubins car

Consider a robot (a Dubins car) described by the following state equations:
ẋ1 = x4 · cosx3
ẋ2 = x4 · sinx3
ẋ3 = u1
ẋ4 = u2

where x4 is the speed of the cart, x3 its orientation and (x1, x2) the coordinates of its center (see

Figure 1.2).

Figure 1.2: Cart (also called Dubin's car)

The state vector is x = (x1, x2, x3, x4). We would like to compute a controller for the robot to

describe the Lissajou trajectory:{
w1(t) = R sin t

w2(t) = R cos(2t)

For this, we use a feedback linearizing method. We de�ne the output

y =

(
x1
x2

)
We have:

ẏ =

(
x4 · cosx3
x4 · sinx3

)
ÿ =

(
u2 cosx3 − u1x4 sinx3
u2 sinx3 + u1x4 cosx3

)
=

(
−x4 sinx3 cosx3
x4 cosx3 sinx3

)
︸ ︷︷ ︸

A(x)

(
u1
u2

)

If we take as input:

u = A−1(x) ·
(
v1
v2

)
Page 11 of 126

Luc Jaulin Mobile robotics: Guidance

where v = (v1, v2) is the new input vector, we obtain the linear system:

ÿ = v.

Let us transform this system so that all our poles are at −1. Following (1.2), we obtain:

v = (w − y) + 2 · (ẇ − ẏ) + ẅ

=

(
w −

(
x1
x2

))
+ 2 ·

(
ẇ −

(
x4 cosx3
x4 sinx3

))
+ ẅ

If we de�ne the error vector e = (e1, e2) = w − y, the error dynamics are written as:

e+ 2ė+ ë = 0

which is stable and quickly converges towards 0. The controller will therefore be:

u = A−1(x) ·
((

w −
(
x1
x2

))
+ 2 ·

(
ẇ −

(
x4 cosx3
x4 sinx3

))
+ ẅ

)
(1.6)

with

w =

(
R sin t

R cos(2t)

)
ẇ =

(
R cos t

−2R sin(2t)

)
ẅ =

(
−R sin t

−4R cos(2t)

)

Page 12 of 126

Exercises

Exercise 1.� Crank

See the correction video at http://youtu.be/7xVTNTZvp7Y

Let us consider the manipulator robot, or crank of Figure 1.3 (on the left). This robot is composed

of two arms of length ℓ1 and ℓ2. Its two degrees of freedom denoted by x1 and x2 are represented on

the �gure. The inputs u1, u2 of the system are the angular speeds of the arms (i.e., u1 = ẋ1, u2 = ẋ2).

We will take as output the vector y = (y1, y2) corresponding to the end of the second arm.

1) Give the state equations of the robot. We will take the state vector x = (x1, x2) .

2) We would like y to follow a setpoint w describing a target circle (on the right of Figure 1.3).

This setpoint satis�es:

w = c+ r ·
(

cos t

sin t

)
.

Figure 1.3: Manipulator robot whose end e�ector must follow a circle

Give the expression of a control law that allows to perform this task. We will use a feedback

linearization method and we will place the poles at −1.

3) Study the singularities of the control.

4) Let us consider the case ℓ1 = ℓ2, c = (3, 4) and r = 1. For which values of ℓ1 are we certain to

be able to move freely on the target circle, without encountering singularities ?

5) Write a program illustrating this control law.

Exercise 2.� The three pools

13

http://youtu.be/7xVTNTZvp7Y

Luc Jaulin Mobile robotics: Guidance

See the correction video at http://youtu.be/r1OG7iHloWk

Let us consider a �ow system with three pools as represented on Figure 1.4.

Figure 1.4: System composed of three pools containing water and connected by two channels

This system is described by the following state equations:

ḣ1 = −α (h1)− α (h1 − h2) + u1
ḣ2 = α (h1 − h2)− α (h2 − h3)

ḣ3 = −α (h3) + α (h2 − h3) + u2
y1 = h1
y2 = h3

where α(h) = a·sign(h)
√

2g|h|, with a = 0.4. We have chosen our outputs here to be the water

levels in the �rst and third pools.

1) Propose a feedback that would make the system linear and decoupled.

2) Propose a proportional-integral controller for the linearized system.

3) Give the state equations of the obtained controller.

4) Write a program that simulates the system and its control law.

Exercise 3.� Train robot

See the correction video at http://youtu.be/ZSbqGhCmmtU

Let us consider a robot A (on the left of Figure 1.5) described by the following state equations

(tank model):
ẋa = va cos θa
ẏa = va sin θa
θ̇a = ua1
v̇a = ua2

where va is the speed of the robot, θa its orientation and (xa, ya) the coordinates of its center. We

assume to be able to measure the state variables of our robot with very high precision.

1) Calculate ẍa, ÿa in function of xa, ya, va, θa, ua1, ua2.

Page 14 of 126

http://youtu.be/r1OG7iHloWk
http://youtu.be/ZSbqGhCmmtU

Luc Jaulin Mobile robotics: Guidance

2) Propose a controller that allows to follow the trajectory:{
x̂a(t) = Lx sin(ωt)

ŷa(t) = Ly cos(ωt)

with ω = 0.1, Lx = 15 and Ly = 7. A feedback linearization method must be used for this. Illustrate

the behavior of your controller with a program.

Figure 1.5: Our robot (with eyes) following a vehicle (here a car) whose state equations are unknown.

This car has a target point (small white circle) that we must stick to

3) A second robot B of the same type as A wishes to follow robot A (see Figure 1.6). We de�ne

a target point with coordinates (x̂b, ŷb) in order for robot B (on the left of the �gure) to be able to

follow robot A. We can send it the information associated with the target point wirelessly.

Figure 1.6: Robot B (dotted) has to follow robot A

This point will be positioned at the rear of robot A at a distance ℓ of our reference point (xa, ya).

Give the expression of these quantities in function of the state of robot A.

4) Simulate this second vehicle B together with its controller following robot A.

5) Add a third robot C that follows B with the same principle. Simulate the entire system.

6) Given that in this exercise the reference path is precisely known, propose a controller that will

allow robots B and C to precisely follow robot A.

Page 15 of 126

Luc Jaulin Mobile robotics: Guidance

Page 16 of 126

Chapter 2

Feedback linearization, singularities and

sliding modes

In this chapter, we provide an approach to build controllers for mobile robots with an evolution

described by nonlinear state equations. The principle is perform a �rst loop to linearize the system,

this is the reason why the approach the approach is said to be based on a feedback linearization.

Then, we build a second loop to make the robot follow a desired trajectory. The control error is

shown to converge exponentially to zero.

2.1 Lie derivatives

2.1.1 De�nition

Given a vector �eld f : Rn → Rn corresponding to a state equation of the form ẋ = f(x), and a

function h : Rn → R, we de�ne the Lie derivative [7] of h along f as

Lfh(x) =
dh

dx
(x) · f(x).

We can de�ne recursively the ith order Lie derivative by

Lifh(x) = LfLi−1
f h(x) =

d(Li−1
f h)

dx
(x) · f(x).

To understand the meaning of the Lie derivatives, let us consider the system{
ẋ = f(x)

y = h(x)

We have

y = L0
fh(x)

ẏ = Lfh(x)

ÿ = L2
fh(x)

...
...

...

y(i) = Lifh(x)

17

Luc Jaulin Mobile robotics: Guidance

Therefore, Lifh(x) represents the ith derivative of the quantity y(t) = h(x(t)) with respect to t,

assuming that x(t) follows a trajectory consistent with the state equation. The main di�culty with

these notations is that all variables y, ẏ, . . . , y(i) are here functions of x. This dependency with respect

to t is �ltered by the fact that x satis�es the state equation and depends on time.

Linearity. It is trivial to check that

Liαf+βgh = α · Lifh+ β · Ligh
Lif (αh1 + βh2) = α · Lifh1 + β · Lifh2

2.1.2 Relative degree

Consider the system described by the following state equations{
ẋ = f(x) + g(x) · u = f(x) + g1(x) · u1 + · · ·+ gm(x) · um
y = h(x)

where u ∈ Rm is the vector of controls (or the vector of actuators), x ∈ Rn is the state vector and

y ∈ Rm is the output vector. The functions f ,g, h are assumed to be smooth. The vector �elds that

are involved in this representation are f(x),g1(x), . . . ,gm(x).

The derivative of the output y with respect to t is

ẏ = Lf+g1·u1+···+gm·umh

= Lfh+ u1 · Lg1h+ · · ·+ um · Lgmh

In this expression, ẏ is a function of x and u.

Assume now that ẏ does not depend on u, i.e., for all j, Lgj
h = 0. In this case, ẏ(x,u) = ẏ(x).

We have

ẏ(x) = Lfh(x)

ÿ(x,u) = d
dt
ẏ(x)

= Lf ẏ(x) + u1 · Lg1 ẏ(x) + · · ·+ um · Lgm ẏ(x)

= L2
fh(x) + u1 · Lg1Lfh(x) + · · ·+ um · LgmLfh(x)

Again, if for all j, Lgj
Lfh(x) = 0, we can write

ẏ(x) = Lfh(x)

ÿ(x) = L2
fh(x)...

y (x,u) = L3
fh(x) + u1 · Lg1L2

fh(x) + · · ·+ um · LgmL2
fh(x)

Relative degree. The relative degree relative for the output y, with respect to the input uj,

j = 1, . . . ,m, is the smallest integer k such that

∃j,Lgj
Lk−1

f h(x) ̸= 0.

In this case, we have

y(j) = Ljfh(x) if j < k

y(k) = Lkf h(x) + u1 · Lg1Lk−1
f h(x) + · · ·+ um · LgmLk−1

f h(x)
(2.1)

Page 18 of 126

Luc Jaulin Mobile robotics: Guidance

Example 2. Consider the system described by:{
ẋ = xu+ x3

y = 2x.

Without using the concept of Lie derivatives, we can write

y = 2x

ẏ = 2ẋ = 2xu+ 2x3

ÿ = 2ẋu+ 2xu̇+ 6ẋx2 = 2(xu+ x3)u+ 2xu̇+ 6(xu+ x3)x2.

We have a relative degree k = 1 for the output y since u appears in the expression of ẏ. We

can therefore have ẏ from x, without using digital di�erentiators. This is not the case for ÿ because

having u with a high level of precision does not mean that we have u̇. If we use the notations of the

Lie derivatives, we get{
ẋ = f(x) + g(x) · u = x3 + xu

y = h(x) = 2x.

and

y(x) = L0
fh(x) = 2x

ẏ(x, u) = Lfh(x) + u · Lgh(x) = 2x3 + 2xu.

For this simple example, the notion of Lie derivative seems useless. It is needed mainly for large

systems, when we use symbolic calculus.

2.2 Principle of the feedback linearization control

2.2.1 Principle

Let us consider the nonlinear system described by:{
ẋ = f(x) + g(x)u

y = h(x)
(2.2)

where the number of inputs and the number of outputs are both equal to m. The idea of the method

of feedback linearization is to transform the system using a controller of the type u = r(x,v), where v

is the new input, also of dimension m. This operation requires that the state is completely accessible.

If this is not the case, we need to build an observer in a nonlinear context,. Since the state is assumed

to be accessible, the vector y must not be considered a sensor output, but rather as the vector of the

setpoint variables.

In order to perform this transformation, we need to express the successive derivatives of each of

the yi in function of the state and of the input. We stop di�erentiating yi as soon as the inputs begin

to be involved in the expression of the derivative.

Page 19 of 126

Luc Jaulin Mobile robotics: Guidance

From (2.1), we have

 y
(k1)
1
...

y
(km)
m

 =

 Lg1Lk1−1
f h1(x) · · · LgmLk1−1

f h1(x)
...

...

Lg1Lkm−1
f hm(x) · · · LgmLkm−1

f hm(x)

︸ ︷︷ ︸

=A(x)

· u+

Lk1f h1(x)

Lkmf hm(x)

︸ ︷︷ ︸

=b(x)

(2.3)

where ki denotes the relative degree of yi.

Under the hypothesis that the matrix A(x) is invertible, the transformation

u = A−1 (x) · (v − b (x)) (2.4)

where v is our new input (see Figure 2.1), forms a linear system SL of m inputs to m outputs

described by the di�erential equations:

SL :

y
(k1)
1 = v1
... =

...

y
(km)
m = vm

Figure 2.1: The nonlinear system, once transformed, becomes linear and decoupled ; and therefore

becomes easy to control

This system is linear and completely decoupled (i.e., each input vi acts on one and only one

output yi). It is therefore very simple to control using standard linear techniques. Here, the system

to control is composed of decoupled integrator chains, we will use m PID (proportional-integral-

derivative) controllers whose principles we have already recalled in Section 1.1. Let us note that in

order to use such controller, it is necessary to have the derivatives of the outputs. Since we assumed

to have access to all the state variables xi of the system, a formal expression of these derivatives in

function of xi is easily obtained by using the state equations.

Remark 3. Robots are called redundant if they have more inputs than necessary, i.e., if dimu > dimy.

In this case, the matrix A (x) is rectangular. In order to apply the transformation in (2.4), we may

Page 20 of 126

Luc Jaulin Mobile robotics: Guidance

use a Moore-Penrose pseudoinverse. If A is of full rank (i.e., its rank is equal to dimy), this pseudo-

inverse is given by:

A† = AT ·
(
A ·AT

)−1
.

We will therefore have:

dimv = dimy < dimu

and we are in a situation identical to that if the square robot (i.e., non-redundant).

2.2.2 Di�erential delay matrix

We call di�erential delay rij separating the input uj from the output yi the number of times

we need to di�erentiate yi in order to make uj appear. The matrix R of the rij is called the

di�erential delay matrix. When plainly reading the state equations, this matrix can be obtained

without calculation, simply by counting the number of integrators each input uj must be subjected

to in order to algebraically a�ect the output yi (some examples are discussed in more detail in the

exercises). The relative degree for each output can be obtained by taking the minimum of each row.

Let us take for example:

R =

 1 2 2

3 4 3

4 ∞ 2

 .

The associated system is composed of three inputs, three outputs and the relative degrees

(components in bold in the preceding formula) are k1 = 1, k2 = 3, k3 = 2. If there is a j such that

∀i, rij > ki (or equivalently if a column has no element in bold), the matrix R is called unbalanced.

In our example, it is unbalanced since there is a j (here j = 2) such that ∀i, rij > ki. If the matrix is

unbalanced, then for all i, y
(ki)
i does not depend on uj. In this case, the jth column of A(x) will be

zero and A(x) will always be singular. Thus, the transformation (2.4) will have no meaning. One

method to overcome this is to delay some of the inputs uj by adding one or more integrators in front

of the system. Adding an integrator in front of the jth input amounts to adding 1 to the jth column

of R. In our example, if we add an integrator in front of u1, we obtain:

R =

 2 2 2

4 4 3

5 ∞ 2

 .

The relative degrees become k1 = 2, k2 = 3, k3 = 2 and the matrix R becomes balanced.

2.2.3 Singularities

The matrix A(x) involved in feedback (2.4) may not be invertible. Sometimes, for all x, A (x)

is singular. In this case, we say that we have a structural singularity. When it is not the case, the

Page 21 of 126

Luc Jaulin Mobile robotics: Guidance

values for x such that det (A (x)) = 0 are called singularities. Although they generally form a set

of zero measures in the state space, studying singularities is fundamental since they are sometimes

impossible to avoid. We call set of acceptable outputs of the system (2.2) the quantity:

Sy = {y ∈ Rm | ∃x ∈ Rn,∃u ∈ Rm, f(x) + g(x) · u = 0,y = h(x)} .

The set Sy is therefore composed, by the projection on Rm, of a di�erentiable manifold (or surface) of

dimension m (since we have m+ n equations for 2m+ n variables). Thus, except for the degenerate

case, Sy is a subset of Rm with a non-empty interior and an exterior.

In order to properly understand this, consider the example of a cart on rails as represented on

Figure 2.2. This cart can be propelled by a horizontal ventilator whose angle of thrust can be

controlled. But be careful, the rotation speed of the ventilator is �xed.

Figure 2.2: Robot cart propelled by a ventilator

The state equations that model this system are given by:
ẋ1 = u

ẋ2 = cos x1 − x2
y = x2

where x1 is the ventilator's angle of thrust, x2 is the speed of the cart. Let us note that we have

taken into account a viscous friction force. The set of acceptable outputs is:

Sy = {y | ∃x1,∃x2, ∃u, u = 0, cosx1 − x2 = 0, y = x2}
= {y | ∃x1, cosx1 = y} = [−1, 1].

This means that we will not be able to stabilize the cart at a speed that is strictly superior to 1, in

absolute value. Let us apply a feedback linearizing method. We have:

ẏ = cosx1 − x2

ÿ = − (sinx1)u− cosx1 + x2

and therefore, the linearizing controller is given by:

u =
−1

sinx1
(v + cosx1 − x2) .

The feedback system therefore has the following equation:

ÿ = v.

Page 22 of 126

Luc Jaulin Mobile robotics: Guidance

It may appear that any value for y can be reached, since v can be chosen arbitrarily. This would be

correct, if we would not have the singularity that appears when sinx1 = 0. Let us take, for example,

v (t) = 1 and x(0) =
(
π
3
, 0
)
. We should have:

ÿ(t) = v (t) = 1

ẏ(t) = ẏ (0) +

∫ t

0

ÿ(τ)dτ = cosx1(0)− x2(0) + t =
1

2
+ t

y(t) = y (0) +

∫ t

0

ẏ(τ)dτ = x2 (0) + t2 +
1

2
t = t2 +

1

2
t

which is physically impossible. This is what happens when we apply such a controller: the input

u directs the angle of the ventilator towards the correct direction, and the equation ÿ = v is then

satis�ed, at least in the very beginning. Then x1 is canceled out and the singularity is reached. The

equation ÿ = v can no longer be satis�ed. For some systems, it can happen that such a singularity

can be crossed. This is not the case here.

2.3 Dubins car

Consider the Dubins car is described by the state equations:
ẋ = u1 cos θ

ẏ = u1 sin θ

θ̇ = u2.

Let us choose as output the vector y = (x, y). The method of feedback linearization leads to a matrix

A(x) which is still singular. As it was explained in Section 2.2.2, this can be predicted without any

calculation simply by observing the di�erential delay matrix:

R =

(
1 2

1 2

)
.

This matrix contains a column whose elements never correspond to the minimum of the related row

(i.e., a column without elements in bold). We will illustrate how to get out of such a situation by

adding integrators in front of certain inputs. Let us for instance add an integrator, whose state

variable will be denoted by z, in front of the �rst input. Recall that adding an integrator in front of

the jth input of the system means delaying this input and therefore adding 1 to all the elements of

column j of R. The matrix R is then balanced. We obtain a new system described by
ẋ = z cos θ

ẏ = z sin θ

θ̇ = u2
ż = c1.

Page 23 of 126

Luc Jaulin Mobile robotics: Guidance

We have{
ẍ = ż cos θ − zθ̇ sin θ = c1 cos θ − zu2 sin θ

ÿ = ż sin θ + zθ̇ cos θ = c1 sin θ + zu2 cos θ

i.e., (
ẍ

ÿ

)
=

(
cos θ −z sin θ
sin θ z cos θ

)(
c1
u2

)
.

The matrix is not singular, except in the unlikely case where the variable z is zero (here, z can be

understood as the speed of the vehicle). The method of feedback linearization can therefore work.

Let us take:(
c1
u2

)
=

(
cos θ −z sin θ
sin θ z cos θ

)−1(
v1
v2

)
=

(
cos θ sin θ

− sin θ
z

cos θ
z

)(
v1
v2

)
in order to have a feedback system of the form:(

ẍ

ÿ

)
=

(
v1
v2

)
.

Figure 2.3 illustrates the feedback linearization that we have just performed.

Figure 2.3: Dynamic feedback linearization

In order to have all the poles at −1, we need to take (see Equation 1.2 page 8):(
c1
u2

)
=

(
cos θ sin θ

− sin θ
z

cos θ
z

)(
(xd − x) + 2 (ẋd − z cos θ) + ẍd
(yd − y) + 2 (ẏd − z sin θ) + ÿd

)
The state equations of the controller are therefore:

ż = (cos θ) (xd − x+ 2 (ẋd − z cos θ) + ẍd) + (sin θ) (yd − y + 2 (ẏd − z sin θ) + ÿd)

u1 = z

u2 = − sin θ
z

(xd − x+ 2 (ẋd − z cos θ) + ẍd) +
cos θ
z

· (yd − y + 2 (ẏd − z sin θ) + ÿd)

Page 24 of 126

Luc Jaulin Mobile robotics: Guidance

2.4 Controlling a tricycle

2.4.1 Speed and heading control

Let us consider the tricycle represented in Figure 2.4. Its evolution equation is given by:
ẋ

ẏ

θ̇

v̇

δ̇

 =

v cos δ cos θ

v cos δ sin θ

v sin δ

u1
u2

Figure 2.4: Tricycle robot to be controlled

We have assumed here that the distance between the center of the rear axle and the axis of

the front wheel was equal to 1 m. Let us choose as output the vector y = (v, θ) . The �rst-order

derivatives of the outputs y1 and y2 are expressed by:

ẏ1 = v̇ = u1,

ẏ2 = θ̇ = v sin δ.

Since the derivative ẏ2 of y2 does not involve the input, we may di�erentiate it once more:

ÿ2 = v̇ sin δ + vδ̇ cos δ = u1 sin δ + u2v cos δ.

The expressions for ẏ1 and ÿ2 can be rewritten in matrix form:(
ẏ1
ÿ2

)
=

(
1 0

sin δ v cos δ

)
︸ ︷︷ ︸

A(x)

(
u1
u2

)
.

By setting the feedback u = A−1 (x) v, where v is the new input, our feedback system is rewritten

as:

SL :

(
ẏ1
ÿ2

)
=

(
v1
v2

)
Page 25 of 126

Luc Jaulin Mobile robotics: Guidance

and therefore becomes linear and decoupled. We now have two decoupled monovariate systems.

The �rst, of order 1, can be stabilized by a proportional controller. As for the second, second-order

system, a proportional-derivative controller is best adapted. If w = (w1, w2) represents the setpoint

for y, this controller is expressed by:{
v1 = (w1 − y1) + ẇ1

v2 = (w2 − y2) + 2 (ẇ2 − ẏ2) + ẅ2

if we want all our poles to be equal to −1 (see Equation (1.2)). Therefore the equations of a state

feedback controller for our nonlinear system are given by:

u =

(
1 0

sin δ v cos δ

)−1(
(w1 − v) + ẇ1

w2 − θ + 2
(
ẇ2 − v sin δ

L

)
+ ẅ2

)
(2.5)

Let us note that this controller does not have a state variable. It is therefore a static controller.

Remark 4. Since:

det (A (x)) = v cos δ

can be zero, there are singularities for which the control u is not de�ned. Appropriate processing

has to be provided when such singularities are encountered by the system.

2.4.2 Position control

Let us now try to make our tricycle follow a desired trajectory (xd, yd). For this, let us choose as

output the vector y = (x, y) . We have:

ẋ = v cos δ cos θ

ẍ = v̇ cos δ cos θ − vδ̇ sin δ cos θ − vθ̇ cos δ sin θ

= u1 cos δ cos θ − vu2 sin δ cos θ − v2 sin δ cos δ sin θ

ẏ = v cos δ sin θ

ÿ = v̇ cos δ sin θ − vδ̇ sin δ sin θ + vθ̇ cos δ cos θ

u1 cos δ sin θ − vu2 sin δ sin θ + v2 sin δ cos δ cos θ

Thus:(
ẍ

ÿ

)
=

(
cos δ cos θ −v sin δ cos θ
cos δ sin θ −v sin δ sin θ

)
︸ ︷︷ ︸

A(x)

(
u1
u2

)
+

(
−v2 sin δ cos δ sin θ
v2 sin δ cos δ cos θ

)
︸ ︷︷ ︸ .

b(x)

However, the determinant of A(x) is zero since the two columns of the matrix A(x) are collinear

to the vector (cos θ, sin θ). This means that the controllable part of the acceleration is forcibly in

the vehicle heading direction. Thus, ẍ and ÿ will not be independently controllable. The method of

feedback linearization can therefore not be applied.

Page 26 of 126

Luc Jaulin Mobile robotics: Guidance

2.4.3 Choosing another output

In order to avoid having a singular matrix A(x), let us now choose the center of the front wheel

as output. We have:

y =

(
x+ cos θ

y + sin θ

)
.

By di�erentiating once, we have:

(
ẏ1
ẏ2

)
=

(
ẋ− θ̇ sin θ

ẏ + θ̇ cos θ

)
= v

(
cos δ cos θ − sin δ sin θ

cos δ sin θ + sin δ cos θ

)
= v

(
cos (δ + θ)

sin (δ + θ)

)

Di�erentiating again, we obtain:

(
ÿ1
ÿ2

)
=

(
v̇ cos (δ + θ)− v

(
δ̇ + θ̇

)
sin (δ + θ)

v̇ sin (δ + θ) + v cos (δ + θ)

)
=

(
u1 cos (δ + θ)− v (u2 + v sin δ) sin (δ + θ)

u1 sin (δ + θ) + v (u2 + v sin δ) cos (δ + θ)

)

And therefore(
ÿ1
ÿ2

)
=

(
cos (δ + θ) −v sin (δ + θ)

sin (δ + θ) v cos (δ + θ)

)
︸ ︷︷ ︸

A(x)

(
u1
u2

)
+ v2 sin δ

(
− sin (δ + θ)

cos (δ + θ)

)
︸ ︷︷ ︸

b(x)

The determinant of A(x) is never equal to zero, except when v = 0. The linearizing control is

therefore u = A−1 (x) · (v − b(x)) . And thus the tricycle control (the one that places all the poles

at −1) is expressed by:

u = A−1 (x)

(((
xd
yd

)
−
(
x+ cos θ

y + sin θ

))
+ 2

((
ẋd
ẏd

)
−
(
v cos (δ + θ)

v sin (δ + θ)

))
+

(
ẍd
ÿd

)
− b(x)

)

where w = (xd, yd) is the desired trajectory for the output y.

2.5 Sailboat

Automatic control for sailing robots [10] is a complex problem given the strong nonlinearities

implied in the evolution of the system. Here we will consider the sailboat of Figure 2.5 whose state

Page 27 of 126

Luc Jaulin Mobile robotics: Guidance

equations [4] are given by:

ẋ = v cos θ

ẏ = v sin θ − 1

θ̇ = ω

δ̇s = u1
δ̇r = u2
v̇ = fs sin δs − fr sin δr − v

ω̇ = (1− cos δs) · fs − cos δr · fr − ω

fs = cos(θ + δs)− v sin δs
fr = v sin δr

(2.6)

This is of course a normalized model in which many coe�cients (masses, lengths, etc.) have been

set to 1 in order to simplify the following developments. The state vector x = (x, y, θ, δs, δr, v, ω), of

dimension 7, is composed of:

� position coordinates, i.e., the x, y coordinates of the sailboat's center of gravity, the orientation

θ, and the angles δs and δr of the sail and the rudder ;

� kinematic coordinates v and ω representing respectively the speed of the center of gravity and

the angular speed of the boat.

The inputs u1 and u2 of the system are the derivative of the angles δs and δr. The letters
′s′ and ′r′

refer to the sail and the rudder, respectively.

Figure 2.5: Sailing robot to be controlled

2.5.1 Polar curve

Let us take as outputs y = (θ, v). The polar curve is the set of acceptable outputs (refer to

paragraph 2.2.3), i.e., the set Sy of all pairs (θ, v) over which we are able to stabilize. In stationary

regime, we have:

θ̇ = 0, δ̇s = 0, δ̇r = 0, v̇ = 0, ω̇ = 0

Page 28 of 126

Luc Jaulin Mobile robotics: Guidance

Thus, following the state equations in (2.6), we obtain:

Sy = {(θ, v) | fs sin δs − fr sin δr − v = 0

(1− cos δs) fs − cos δrfr = 0

fs = cos (θ + δs)− v sin δs
fr = v sin δr }

An interval calculation method [11] allows us to obtain the estimation of Figure 2.6.

Figure 2.6: Internal frame (in light grey) and external frame (in dark grey) of the polar curve

2.5.2 Di�erential delay

We may associate to the state equations of our sailboat a di�erential delay graph between the

variables (see Figure 2.7). Within this graph, a solid arrow can be interpreted, depending on the

reader, either as a cause and e�ect relationship, a di�erential delay, or a state equation. A dotted

arrow represents an algebraic (and not a di�erential) dependency. On the graph, we can distinguish

two types of variables: the state variables, pointed at by solid arrows and link variables (in grey),

pointed at by dotted arrows. The derivative of a state variable is expressed as an algebraic function

of all the variables which are directly before it. Likewise, a link variable is an algebraic function of

the variables which are directly before it.

The di�erential delay between a variable and an input uj is thus the minimum number of solid

arrows to traverse in order to reach this variable from uj. Just as in [4], let us take as output the

vector y = (δs, θ). The di�erential delay matrix is:

R =

(
1 ∞
3 3

)
.

The in�nity here can be interpreted as the fact that there is no causal connection that links u2 to δs.

The relative degrees are therefore k1 = 1 and k2 = 3.

Page 29 of 126

Luc Jaulin Mobile robotics: Guidance

Figure 2.7: Graph of the di�erential delays for the sailing robot

2.5.3 The method of feedback linearization

Let us recall that the outputs (these are actually setpoint variables) chosen are the sail opening

y1 = δs and the heading y2 = θ. In order to apply a feedback linearization method, we �rst of all

need to di�erentiate the outputs as many times as the relative degree requires it, i.e., three times for

θ and once for δs. By looking at the di�erential dependency graph, we can observe that in order to

express
...
θ in function of x and u, we need to do the same with ω̈, ω̇, δ̇r, δ̇s, ḟr, ḟs, v̇. This yields:

v̇ = fs sin δs − fr sin δr − v

ḟs = − (ω + u1) sin (θ + δs)− v̇ sin δs − vu1 cos δs
ḟr = v̇ sin δr + vu2 cos δr
ω̇ = (1− cos δs) · fs − cos δr · fr − ω

ω̈ = u1 sin δs · fs + (1− cos δs) · ḟs + u2 sin δr · fr − cos δr · ḟr − ω̇...
θ = ω̈

We have:(
ẏ1
...
y 2

)
=

(
δ̇s...
θ

)
=

(
1 0

fs sin δs fr sin δr

)
︸ ︷︷ ︸

A1(x)

(
u1
u2

)

+

(
0 0

1− cos δs − cos δr

)
︸ ︷︷ ︸

A2(x)

(
ḟs
ḟr

)
+

(
0

−ω̇

)
︸ ︷︷ ︸

b1(x)

However:(
ḟs
ḟr

)
=

(
− (sin (θ + δs) + v cos δs) 0

0 v cos δr

)
︸ ︷︷ ︸

A3(x)

(
u1
u2

)

+

(
−ω sin (θ + δs) + v̇ sin δs

v̇ sin δr

)
︸ ︷︷ ︸

b2(x)

Page 30 of 126

Luc Jaulin Mobile robotics: Guidance

And thus we have a relation of the form:(
ẏ1
...
y 2

)
= A1u+A2 (A3u+ b2) + b1

= (A1 +A2A3)u+A2b2 + b1 = Au+ b

In order to set (ẏ1,
...
y 2) to a certain setpoint v = (v1, v2) , we need to take:

u = A−1(x) (v − b (x)) .

The system looped in this manner is governed by the di�erential equations:

SL :

{
ẏ1 = v1
...
y 2 = v2

(2.7)

which are linear and decoupled. The linearized system is of order 4 instead of 7. We have thus lost

control over three variables which happen to be x, y and v. The loss of control over x and y was

predictable (we want the boat to advance and therefore it is only natural that this corresponds to

an instability for these two variables x and y). As for the loss of control over v, this is without

consequence since the associated dynamics are stable. How indeed would it be possible to design

a boat that would be able to keep a �xed heading and sail opening, without its speed converging

towards a �nite value ?

Let us now determine the singularities of our linearizing feedback loop. By calculating the

expression of A(x), we can show that:

det (A(x)) = fr sin δr − v cos2 δr
(2.6)
= v

(
2 sin2 δr − 1

)
.

We have a singularity when this quantity is equal to zero, i.e., if:

v = 0 or δr =
π

4
+ k

π

2
. (2.8)

The singularity corresponding to v = 0 is relatively simple to understand: when the boat is not

advancing, we can no longer control it. The condition on the rudder angle δr is more delicate to

interpret. Indeed, the condition δr = ±π
4
translates to a maximal rotation. Any action on the rudder

when δr = ±π
4
translates to a slower rotation. This is what this singularity means.

We are dealing with two decoupled monovariate systems here. Let us denote by w = (w1, w2)

the setpoint for y. We will sometimes write w = (δ̂s, θ̂) in order to recall that w1 and w2 are the

setpoints corresponding to the sail opening angle and the heading. Let us choose the proportional

and derivative controller given by:{
v1 = (w1 − y1) + ẇ1

v2 = (w2 − y2) + 3 (ẇ2 − ẏ2) + 3 (ẅ2 − ÿ2) +
...
w 2

which allows all poles of the feedback system to be equal to −1 (see (1.2)). By assuming that the

setpoint w is constant, the state equations of the state feedback controller for our nonlinear system

are given by:

u = A−1(x)

((
w1 − δs

w2 − θ − 3θ̇ − 3θ̈

)
− b (x)

)
. (2.9)

Page 31 of 126

Luc Jaulin Mobile robotics: Guidance

But θ̇ and θ̈ are analytic functions of the state x. Indeed, we have:

θ̇ = ω

θ̈ = (1− cos δs) fs − cos δrfr − ω

Equation (2.9) can therefore be written in the form:

u = r (x,w) = r
(
x, δ̂s, θ̂

)
(2.10)

This controller is static since it does not have a state variable.

2.5.4 Polar curve control

In some situations, the boater does not want complete autonomy of his boat, only steering

assistance. He does not wish to decide the angle of the sails, but simply its speed and heading. In

summary, he would like to choose a point on the polar curve and it is up to the controller to perform

low-level control. In cruising regime, we have:
0 = f̄s sin δ̄s − f̄r sin δ̄r − v̄

0 =
(
1− cos δ̄s

)
· f̄s − cos δ̄r · f̄r

f̄s = cos
(
θ̄ + δ̄s

)
− v̄ sin δ̄s

f̄r = v̄ sin δ̄r

If
(
θ̄, v̄
)
is in the polar curve, we can calculate

(
f̄r, δ̄r, f̄s, δ̄s

)
(there is at least one solution, by

de�nition of the polar curve). Thus, it is su�cient to inject
(
θ̄, δ̄s

)
in controller (2.10) in order to

preform our control. Figure 2.8 illustrates the docking of a sailboat in a harbor using this approach

[11].

Figure 2.8: By using a linearizing controller, the robot docks in its place in the harbor ; the polar

curve is represented on the top right corner

Page 32 of 126

Luc Jaulin Mobile robotics: Guidance

2.6 Sliding mode

Sliding mode is a set of control methods that belong to the family of feedback linearization

techniques. Assume that the system to be controlled has the form{
ẋ = f (x) + g (x) · u
y = h (x)

where dim u = dim y. Recall that, after computing some derivatives (see Formula (2.3)), we get y
(k1)
1
...

y
(km)
m

 = A (x) · u+ b(x).

This means that, if A (x) is invertible, we can chose y(k) = (y
(k1)
1 , . . . , y

(km)
m) = (v1, . . . , vm) = v

independently. For this, it su�ces to take

u = A−1 (x) (v − b(x)) = ϕ(x, v1, . . . , vm).

Now, it remains to choose the vector we want for v = (y
(k1)
1 , . . . , y

(km)
m) to achieve our control goal.

Two di�erent types of approach can be considered for this purpose. The �rst one is the proportional

and derivative control approach seen previously in this chapter. The second one is the sliding surface

method that will be explained in this section.

For simplicity and without loss of generality, let us assume that we have a single input and a

single output, i.e., dim u = dim y = 1. We take

u =
v − b(x)

a (x)
= ϕ (x, v) (2.11)

to have

v = y(k).

Proportional and derivative control method. We choose y(k) such that:

y
(k)
d − y(k)︸ ︷︷ ︸

e(k)

+ αk−1(y
(k−1)
d − y(k−1))︸ ︷︷ ︸

e(k−1)

+ · · ·+ α1(ẏd − ẏ)︸ ︷︷ ︸
ė

+ α0(yd − y︸ ︷︷ ︸)
e

= 0.

If the αi are well chosen, then, y (t) will quickly be equal to the desired output y (t). Equivalently,

the error e = yd − y converges toward 0. The corresponding feedback is{
u = ϕ (x, v)

v = y
(k)
d +

∑k−1
i=0 αi · (y

(i)
d − Lif (y))

as illustrated by Figure 2.9.

Page 33 of 126

Luc Jaulin Mobile robotics: Guidance

Figure 2.9: Controller based on feedback linearization

Sliding mode method. Instead of choosing a dynamic for y of order k, we choose a dynamic

of order k − 1:

y
(k−1)
d − y(k−1)︸ ︷︷ ︸

e(k−1)

+ αk−2(y
(k−2)
d − y(k−2))︸ ︷︷ ︸

e(k−2)

+ · · ·+ α1(ẏd − ẏ)︸ ︷︷ ︸
ė

+ α0(yd − y︸ ︷︷ ︸)
e︸ ︷︷ ︸

s(x,t)

= 0.

i.e.,

s (x, t) =
k−1∑
i=0

αi · (y(i)d − Lif (y))

where αk−1 = 1. This equation corresponds to the dynamics of the error, but can also be interpreted

as a surface of dimension k−1 of the k-dimensional space (y, ẏ, ÿ, . . . , y(k−1)). This surface is moving

when yd is time dependent. We were able to write this surface under the form s (x, t) = 0 because

the elements (y, ẏ, ÿ, . . . , y(k−1)) are all functions of x which is not the case for y(k) which depends on

both x and u. More precisely, we have a relation of the form
y

ẏ
...

y(k−1)

 =

L0

f (y)

L1
f (y)
...

Lk−1
f (y)

 = ψ(x).

Figure 2.10: If the trajectory x(t) slides on the surface s(x, t) = 0, the desired error equation is

satis�ed

Page 34 of 126

Luc Jaulin Mobile robotics: Guidance

Now, it remains to choose what we have to put for v. The principle of sliding mode is to bring

the system to this surface s(x, t) and to stay on it. If we achieve this goal, then the error yd − y will

have the required dynamics. To converge to the surface, we may take (see (2.11)){
u = ϕ (x, v)

v = K · sign (s(x, t))

where K > 0 is large. If s > 0, it means that y(k−1) is too small and we have to increase it. Since

v = y(k) we should take K positive.

Figure 2.11: Sliding mode controller

One important feature of sliding mode is that we do not need to insert an integral e�ect to

compensate constant perturbations and the controller is robust with respect to many types of

perturbation. Indeed, any perturbation that would make escape the system from the sliding surface

yields an immediate and strong reaction from the controller that bring it back to the surface. On the

other hand, a sliding mode control generates a behavior with a high-frequency and non-deterministic

switching control signal that causes the system to chatter in a small neighborhood of the sliding

surface.

2.7 Kinematic model and dynamic model

2.7.1 Principle

The dynamic model for the robot are of the form:

ẋ = f(x,u)

where u is the vector of the external forces (that are under our control). The function f involves

dynamic coe�cients (such as masses, inertial moments, coe�cients of friction, etc.) as well as

geometric coe�cients (such as lengths). The dynamic coe�cients are generally not well known and

can change in time with wear or usage. If we now take as new input the vector a of the desired

accelerations at the application points of the forces (in the direction of the forces), we obtain a new

model, referred to as kinematic, of the form:

ẋ = φ (x, a)

Page 35 of 126

Luc Jaulin Mobile robotics: Guidance

but in this new model most of the dynamic coe�cients have disappeared. It is possible to switch

from a dynamic model to a kinematic model using a so-called high-gain controller, of the form:

u = K · (a− am)

where K is a very large real number and am is the vector of measured accelerations. It depends on

both x, u, i.e., there exist a function h such that

am = h(x,u)

Thus, we have:

ẋ = f (x, K · (a− h(x,u))) ⇔ ẋ = φ(x, a).

as illustrated by Figure 2.12. If K is large enough, we can assume that a = am.

Figure 2.12: The loop transforms a dynamic model into a kinematic model

The simple high-gain feedback has allowed us to get rid of numerous dynamic parameters and

switch from an uncertain system to a reliable one, with well-known geometric coe�cients. This

high-gain feedback is known in electronics as an operational ampli�er, where it is used with the same

idea of robustness.

Switching from a dynamic model to a kinematic one has the following advantages:

� the linearizing controller developed in this chapter requires using a reliable model such as a

kinematic model. If the coe�cients (which are not measured) are not well known (such as in

the case of dynamic systems), the linearizing controller will not work in practice ;

� the kinematic model is easier to put into equations. It is not necessary to have a dynamic

model to obtain the latter ;

� the servo-motors (see paragraph 2.7.3) are cheap and easy to �nd. They incorporate this

high-gain controller. We may see them as mechanical operational ampli�ers.

We will illustrate the concept in the following paragraph, through the example of the inverted rod

pendulum.

2.7.2 Example of the inverted rod pendulum

Let us consider the inverted rod pendulum, composed of a pendulum in an unstable equilibrium

on top of a moving cart, as represented on Figure 2.13.

Page 36 of 126

Luc Jaulin Mobile robotics: Guidance

2.7.2.1 Dynamic model

The quantity u is the force exerted on the cart of mass mc, s indicates the position of the cart, θ

is the angle between the rod and the vertical direction. The state equations are written in the form:

d
dt

s

θ

ṡ

θ̇

 =

ṡ

θ̇
−mr sin θ(ℓθ̇2−g cos θ)

mc+mr sin2 θ
sin θ((mc+mr)g−mrℓθ̇2 cos θ)

ℓ(mc+mr sin2 θ)

+

0

0
1

mc+mr sin2 θ
cos θ

ℓ(mc+mr sin2 θ)

u. (2.12)

Figure 2.13: Inverted rod pendulum to be modeled and controlled

2.7.2.2 Kinematic model

Instead of taking the force as input, we take the acceleration a = s̈. With the high gain control

loop, we have a = am. From (2.12), we have

a = h(x, u)

= 1
mc+mr sin2 θ

(
−mr sin θ(ℓθ̇

2 − g cos θ) + u
) (2.13)

Therefore

θ̈
(2.12)
=

sin θ((mc +mr)g −mrℓθ̇
2 cos θ)

ℓ(mc +mr sin
2 θ)

+ cos θ
ℓ(mc +mr sin

2 θ)
u

(2.13)
=

sin θ((mc +mr)g −mrℓθ̇
2 cos θ)

ℓ(mc +mr sin
2 θ)

+ cos θ
ℓ(mc +mr sin

2 θ)

(
mr sin θ · (ℓθ̇2 − g cos θ)) + (mc +mr sin

2 θ)a
)

=
(mc +mr)g sin θ − gmr sin θ cos

2 θ +
(
mc +mr sin

2 θ
)
cos θ · a

ℓ(mc +mr sin
2 θ)

=
g sin θ
ℓ

+ cos θ
ℓ

· am.

Let us note that this relation could have been obtained directly by noticing that:

ℓθ̈ = a · cos θ + g · sin θ.

Page 37 of 126

Luc Jaulin Mobile robotics: Guidance

Remark. In order to obtain this relation in a more rigorous manner, we need to write the

temporal derivative of the speed composition formula, i.e.,

v̇A = v̇B +
−→
ab ∧

−→
ω̇

where ω is the rotation vector of the rod. Then we write this formula in the coordinate system

related to the pendulum. We obtain: a cos θ

−a sin θ
0

 =

 −g sin θ
n

0

+

 0

ℓ

0

 ∧

 0

0

ω̇

where n corresponds to the normal acceleration of the mass mr. We thus obtain the desired relation

as well as the normal acceleration n = −a sin θ which will not be used.

Finally, the kinematic model is written as:

d
dt

s

θ

ṡ

θ̇

 =

ṡ

θ̇

0
g sin θ
ℓ

+

0

0

1
cos θ
ℓ

 a (2.14)

This model, referred to as the kinematic model, only involves positions, speeds and accelerations.

It is a lot more simple than the dynamic model and involves less coe�cients. However, it does not

correspond to the reality since the actual input is a force and not an acceleration. In practice, we

may switch from the dynamic model (2.12) with input u to the kinematic model (2.14) with input a

by calculating u using a high-gain proportional controller of the form:

u = K (a− s̈) (2.15)

with K very large and where a is a new input.

Figure 2.14: The inverted rod pendulum, looped by a high gain K, behaves like a kinematic model

The acceleration s̈ can be measured using an accelerometer. If K is su�ciently large, we will

of course have the controller u that will give us the desired acceleration a, i.e., we will have s̈ = a.

Page 38 of 126

Luc Jaulin Mobile robotics: Guidance

Thus, System (2.12) can be described by the state equations in (2.14) which do not involve any of

the inertial parameters of the system. A controller designed over the kinematic model will therefore

be more robust than one designed over the dynamic system since the controller will function for any

values of mr,mc, the inertial momentums, friction, etc. Let us recall that this high-gain controller

is very close to the principle of the operational ampli�er. In addition to being more robust, such

an approach allows to have a simpler model that is easier to obtain. For the implementation of the

controller in (2.15), we of course do not need to use the state equations (2.12) in order to express s̈,

but measure s̈ instead. It is this measurement that allows us to have a controller that is independent

of the dynamic parameters.

Let us recall our inverted rod pendulum and try to make the pendulum oscillate from left to right

with a desired angle of the form θd = sin t. Let us apply a linearizing controller for this. We have:

θ̈ =
g sin θ

ℓ
+

cos θ

ℓ
a.

We will therefore take:

a =
ℓ

cos θ

(
v − g sin θ

ℓ

)
where v is the new input. We will then choose:

v = (θd − θ) + 2
(
θ̇d − θ̇

)
+ θ̈d = sin t− θ + 2 cos t− 2θ̇ − sin t.

And �nally:

u = K (a− s̈)

= K

(
ℓ

cos θ

(
sin t− θ + 2 cos t− 2θ̇ − sin t− g sin θ

ℓ

)
− s̈

)
.

Note that the inertial parameters are not taken into account in this controller. This controller ensures

that the system will respect its setpoint angle. On the other hand, the position of the cart can diverge,

since u does not depend on s. The dynamics of s are hidden and moreover unstable here. These

hidden dynamics are conventionally referred to as zero dynamics. We will see in Exercise 5 how the

hidden dynamics can be avoided by choosing an output which maximizes the relative degree.

2.7.3 Servo-motors

A mechanical system is controlled by forces or torques and obeys a dynamic system that depends

on numerous little-known coe�cients. This same mechanical system represented by a kinematic

model is controlled by positions, speeds or accelerations. The kinematic model depends on well-

known geometric coe�cients and is much simpler to put into equations. In practice, one switches

from a dynamic model to its kinematic equivalent by adding servo-motors. In summary, a servo-

motor is a DC motor with an electrical control circuit and a sensor (of position, speed or acceleration).

The control circuit calculates the voltage u to give the motor in order for the quantity measured by

the sensor to correspond to the setpoint w. There are three types of servo-motors:

Page 39 of 126

Luc Jaulin Mobile robotics: Guidance

� the position servo. The sensor measures the position (or the angle) x of the motor and the

control law is expressed by u = K (x− w) . If K is large, we may conclude that x ≃ w ;

� the speed servo. The sensor measures the speed (or the angular speed) ẋ of the motor and the

control law is expressed by u = K (ẋ− w) . If K is large, we have ẋ ≃ w ;

� the acceleration servo. The sensor measures the acceleration (tangential or angular) ẍ of the

motor and the control law is expressed by u = K (ẍ− w) . If K is large, we have ẍ ≃ w. It is

this type of servo-motor that we have chosen for the inverted rod pendulum.

Thus, when we wish to control a mechanical system, the use of servo-motors allows us (i) to have a

model that is easier to obtain, (ii) to have a model with fewer coe�cients that is closer to reality and

(iii) to have a more robust controller with respect to any modi�cation of the dynamic coe�cients of

the system.

Page 40 of 126

Exercises

Exercise 4.� Controlling a 3D underwater robot

See the correction video at http://youtu.be/WLVF7FO7gXU

Let us consider the underwater robot. This robot is described by the following state equations:

ṗx = v cos θ cosψ

ṗy = v cos θ sinψ

ṗz = −v sin θ
v̇ = u1
φ̇ = −0.1 sinφ · cos θ + tan θ · v · (sinφ · u2 + cosφ · u3)
θ̇ = cosφ · v · u2 − sinφ · v · u3
ψ̇ = sinφ

cos θ
· v · u2 + cosφ

cos θ
· v · u3

where (px, py, pz) is the position of its center and (φ, θ, ψ) are the three Euler angles. We took here

u4 = −0.1 sinφ · cos θ in order to simulate a static ballast which tends to make the roll equal to zero

via a pendulum e�ect. Its inputs are the tangential acceleration u1, the pitch u2 and the yaw u3.

Suggest a controller capable of controlling the robot around the cycloid of equation:

 xd
yd
zd

 =

 R · sin(f1t) +R · sin(f2t)
R · cos(f1t) +R · cos(f2t)

R · sin(f3t)

with f1 = 0.01, f2 = 6f1, f3 = 3f1 and R = 20. For the control, we will choose a time constant of 5

seconds. Simulate the behavior of the controller.

Exercise 5.� Reaction wheel pendulum

See the correction video at https://youtu.be/5A3D4Cm8B40

41

http://youtu.be/WLVF7FO7gXU
https://youtu.be/5A3D4Cm8B40

Luc Jaulin Mobile robotics: Guidance

Figure 2.15: Reaction wheel pendulum

The Reaction Wheel Pendulum [12], as shown in Figure 2.7.3 (left), is a physical pendulum with

a disk attached to the end. The disk can rotate and is actuated by a motor. The coupling torque

generated by the angular acceleration of the disk can be used to actively control the pendulum, for

instance to maintain it standing. This problem is very similar to the tightrope walker stabilization

(Figure 2.7.3 (right)), where the rod plays the role of the disk and the walker corresponds to the

pendulum. We assume that the system can be described by the following equations
ẋ1 = x2
ẋ2 = a · sin(x1)− b · u
ẋ3 = −a · sin(x1) + c · u

where x1 is the pendulum angle, x2 is its angular velocity, x3 is the disk angular velocity and u is

the motor torque input. The parameters are taken as

a = 10, b = 1, c = 2

and depend on the mass, inertia, and the dimensions of the system.

1) Simulate the system with an initial condition of x = (1 0 0)T.

2) Taking as an output y = x1, stabilize the pendulum at the top (i.e., x1 = 0). Explain why the

wheel never stops.

3) Taking as an output of the form

y = α1x1 + α2x2 + α3x3

where α1, α2, α3 should be chosen accordingly, stabilize the pendulum at the top (i.e., x1 = 0) with

a motionless wheel (or with a wheel which rotates at a speed ω).

Exercise 6.� Pursuit

See the correction video at http://youtu.be/MEzyBWse_to

Let us consider two robots described by the following state equations:
ẋ1 = u1 cos θ1
ẏ1 = u1 sin θ1
θ̇1 = u2

and

ẋ2 = v1 cos θ2
ẏ2 = v1 sin θ2
θ̇2 = v2

Page 42 of 126

http://youtu.be/MEzyBWse_to

Luc Jaulin Mobile robotics: Guidance

In this exercise, robot 1 tries to follow robot 2 (see Figure 2.16).

Figure 2.16: Robot 1 pursues robot 2

1) Let x = (x, y, θ) be the position vector of robot 2 in the coordinate system of robot 1. Show

that x satis�es a state equation of the form

ẋ = f (x,v,u)

2) We assume that the control variables v1 and v2 of robot 2 are known (a polynomial in t,

for example). Suggest a controller that generates u in order to have x = w1 and y = w2, where

w = (w1, w2) corresponds to a setpoint in relative position. The poles for the error are �xed at −1.

3) Study the singularities of this controller.

4) Illustrate this control law in the situation where robot 1 would like to point towards robot 2

while keeping a distance of 10 m.

Exercise 7.� Controlling the Saucisse robot

See the correction video at https://youtu.be/mS2V2n6rr50

Consider the underwater robot represented on Figure 2.17.

Page 43 of 126

https://youtu.be/mS2V2n6rr50

Luc Jaulin Mobile robotics: Guidance

Figure 2.17: The Saucisse robot in a pool

This is the Saucisse robot, built by students of the Ensta Bretagne for the SAUC'E competition

(Student Autonomous Underwater Challenge Europe). It includes three propellers. Propellers 1 and

2 on the left and the right are able to act on the speed of the robot and its angular speed. Propeller

3 acts on the depth of the robot. This robot is stable in roll and pitch and we will assume that its

angles of bank φ and elevation θ are always zero. For low speeds, the friction can be neglected and

we can assume that the state equations of the robot are the following:

ẋ = vx
ẏ = vy
ż = vz
ψ̇ = ω

v̇x = u1 cosψ

v̇y = u1 sinψ

v̇z = u3
ω̇ = u2

Let us note that no non holonomic constraint has been assumed in this model. The speed vector of

the robot (vx, vy) is not necessarily in its axis, in contrast to the case of the cart model. The robot

can therefore operate in crab steering mode. On the other hand, the propulsion is necessarily in

the direction of the robot axis. If we are limited to the horizontal plane, this model is known as a

hovercraft.

1) Give the di�erential dependency graph associated with this system.

Page 44 of 126

Luc Jaulin Mobile robotics: Guidance

2) Let us choose as output the vector y = (x, y, z). Give the di�erential delay matrix and deduce

the relative degrees from it. What can we conclude ?

3) In order to balance the di�erential delays by delaying u1, we add two integrators in front of

u1. Our new system will admit as new inputs a = (a1, a2, a3) with:
ü1 = a1
u2 = a2
u3 = a3

(2.16)

What are the new state equations of the di�erentially-delayed system ? Give the di�erential

dependency graph as well as the associated di�erential delay matrix.

4) Propose a controller based on the feedback linearization of the balanced system.

5) Provide a simulation of the controlled robot in the case where the wanted trajectory is a

Lissajou curve with the form

w(t) =

 30 · sin t
10

10 · cos t
10

10 · (1 + cos 3t
10
)

 .

The result you should obtain is illustrated by Figure 2.18.

Figure 2.18: The Saucisse robot following the wanted trajectory w(t) represented by the dots

Exercise 8.� Sliding mode control of a cart

See the correction video at https://youtu.be/hL59OAVyyCA

Page 45 of 126

https://youtu.be/hL59OAVyyCA

Luc Jaulin Mobile robotics: Guidance

Consider the cart described by
ẋ1 = x4 cosx3
ẋ2 = x4 sinx3
ẋ3 = u1
ẋ4 = u2

where (x1, x2) corresponds to the position of the cart, x3 to its heading and x4 to its speed.

1) Provide a controller based on a feedback linearization to make the cart follows the Lissajou

trajectory:

yd (t) = 10 ·
(

cos t

sin 3t

)
.

Illustrate the behavior of your controller.

2) Implement now a sliding mode controller which makes the cart following to desired Lissajou

trajectory. Compare with Question 1.

Exercise 9.� Group of robots

See the correction video at https://youtu.be/1Of1htovXp4

Consider a group of m = 20 carts the motion of which is described by the state equation
ẋ1 = x4 cosx3
ẋ2 = x4 sinx3
ẋ3 = u1
ẋ4 = u2

where (x1, x2) corresponds to the position of the cart, x3 to its heading and x4 to its speed.

1) Provide a controller for each of these robots so that the ith robot follows the trajectory(
cos(at+ 2iπ

m
)

sin(at+ 2iπ
m
)

)
.

where a = 0.1. As a consequence, after the initialization step, all robots are uniformly distributed

on the unit circle, turning around the origin.

2) By using a linear transformation of the unit circle, change the controllers for the robots so

that all robots stay on a moving ellipse with the �rst axis of length 20 + 15 · sin(at) and the second

axis of length 20. Moreover, we make the ellipse rotating by choosing an angle for the �rst axis of

θ = at. Illustrate the behavior of the controlled group.

Exercise 10.� Convoy

Page 46 of 126

https://youtu.be/1Of1htovXp4

Luc Jaulin Mobile robotics: Guidance

See the correction video at https://youtu.be/OdRBFO_51s0

Let us consider one robot RA described by the following state equations:
ẋa = va cos θa
ẏa = va sin θa
θ̇a = ua1
v̇a = ua2

where va is the speed of RA the robot, θa its orientation and (xa, ya) the coordinates of its center.

1) As for Exercise 3, propose a controller for RA to follow the trajectory:{
x̂a(t) = Lx sin(ωt)

ŷa(t) = Ly cos(ωt)

with ω = 0.1, Lx = 20 and Ly = 5. Illustrate the behavior of the control with a sampling time

dt = 0.03 sec.

2) We want that m = 6 other robots with the same state equations follow this robot taking

exactly the same path. The distance between two robots should be d = 5m. To achieve this goal, we

propose to save every ds = 0.1m the value of the state of RA and to communicate this information

to the m followers, to synchronize the time with the traveled distance. For this, we propose to add a

new state variable s to RA which corresponds to the curvilinear value that could have been measured

by a virtual odometer. Each time the distance ds has been measured by the virtual odometer, s is

initialized to zero and the value for the state of RA is broadcast. Simulate the behavior of the group.

Exercise 11.� Pro�ling �oat

See the correction video at https://youtu.be/EPvYEzhSFYs

We consider an underwater pro�ling �oat corresponding to a cube of width ℓ which is immersed

in the water (see Figure 2.19) of density ρ0. The �oat at a depth d moves up and down at a speed

equal to v. The resultant applied to the �oat is

f = mg︸︷︷︸
fg↓

− ρ0gℓ
2 ·max (0, ℓ+min(d, 0))︸ ︷︷ ︸

fa↑

− 1

2
ρ0v· | v | ℓ2cx︸ ︷︷ ︸

fd↕

where

� fg is the gravity force, m is the mass of the �oat and g the gravity.

� fd is the drag force. For a cube we can consider that cx ≃ 1.05.

� fa is the Archimedes force. The buoyant force is exerted upward on the body, whether fully

or partially submerged. It is equal to the weight of the water that the body displaces. The

volume of displaced water is ℓ2 ·max (0, ℓ+min(d, 0)).

Page 47 of 126

https://youtu.be/OdRBFO_51s0
https://youtu.be/EPvYEzhSFYs

Luc Jaulin Mobile robotics: Guidance

Figure 2.19: Underwater �oat controlled by a ballast

For the �oat, a ballast allows us to control the density of the body which is (1 + βb) ρ0, where β = 0.1.

The derivative u of the buoyancy variable b can be �xed using a DC-motor controlling a piston. We

assume that both u and b belong to [−1, 1]. When b = 0, the density of the �oat is exactly that of

the water ρ0. When b > 0, the �oat sinks and when b < 0, it surfaces.

1) Write the state equations of the system ẋ = f(x, u). The state vector will be taken as

x = (d, v, b).

2) Assume that the �oat is immersed, �nd a sliding mode controller so that the �oat has a depth

d (t) equal to the desired depth d0 (t).

3) Illustrate the behavior of your controller using a simulation. First control the �oat at a depth

d0(t) = 5m. Then control the �oat at d0(t) = 3 + sin(t/2).

4) Compare with a feedback linearization based controller.

Exercise 12.� Field following

See the correction video at https://youtu.be/doZYCml7r_A

We consider a mobile robot with an input vector u = (u1, . . . , um) and a state vector x =

(x1, . . . , xn), n ≥ m + 1. In this exercise we show that if we select m + 1 state variables, say

p = (x1, . . . , xm+1), we can follow a chosen vector �eld in the p = (x1, . . . , xm+1) space, using a

feedback linearization method. It means that we can control m + 1 state variables and not m of

them, as given by the theory. This is due to the fact that we perform a path following instead of a

trajectory following where the time is involved. More precisely we ask the vector ṗ = (ẋ1, . . . , ẋm+1)

to be collinear (instead of equal) to the required �eld. This is illustrated in this exercise in the case

where u is scalar, i.e., m = 1.

Consider a robot moving on a plane and described by the following state equations:
ẋ1 = cos x3
ẋ2 = sin x3
ẋ3 = u

where x3 is the heading of the robot and p = (x1, x2) are the coordinates of its center. The state

vector is given by x = (x1, x2, x3).

Page 48 of 126

https://youtu.be/doZYCml7r_A

Luc Jaulin Mobile robotics: Guidance

1) Take as an output y = x3+atanx2. Propose a feedback linearization based controller such that

the output converges to 0. What are the singularities of the control?

2) Assuming that y(t) converges to 0, to which line the robot will converge. Draw the vector �eld

followed by the robot in the (x1, x2)-space.

3) We would like the robot to follow a path corresponding to the limit cycle of the Van der Pol

equation:{
ẋ1 = x2
ẋ2 = − (0.01 · x21 − 1)x2 − x1

Find the corresponding feedback linearization based controller. Propose a simulation to illustrate

the behavior of the controller.

Exercise 13.� Sliding pendulum

See the correction video at https://youtu.be/RUMNzxem1Iw

Consider the pendulum, represented by Figure 2.20, and described by

(
ẋ1
ẋ2

)
=

(
x2

− sinx1 + u

)
where u is the input, x1 its position and x2 its angular velocity.

Figure 2.20: Simple pendulum with state vector x = (x1, x2)

We would like the position x1 (t) of the pendulum converges to the setpoint w (t) = 0, ∀t.
1) Taking y = x1 as an output, propose a feedback linearization method to control the pendulum

so that the error e = w − y converges toward 0 as exp (−t) .
2) Answer to the previous question with a sliding mode approach.

3) We want to compute value for K such that the surface s (x, t) = 0 used in the previous question

is stable. More precisely, if we are near to the surface, then in a near future, we want to be even closer.

To show this stability, a Lyapunov approach de�nes a distance function, e.g., V (x) = 1
2
s2 (x, t). This

Page 49 of 126

https://youtu.be/RUMNzxem1Iw

Luc Jaulin Mobile robotics: Guidance

function is positive and vanishes on the surface. Proving the stability amounts to proving that V (x)

decreases when we are near to the surface. Compute V̇ (x), which also depends on K, and conclude.

Exercise 14.� Trailer

See the correction video at https://youtu.be/kXpUNYqdGpw

In this exercise, the computation are heavy and we suggest to use symbolic computation as much

as possible.

Consider the tank-trailer system, represented by Figure 2.21, and described by the following state

equation

ẋ1
ẋ2
ẋ3
ẋ4
ẋ5

 =

x5 cosx3
x5 sinx3

0

x5 sin(x3 − x4)

0

︸ ︷︷ ︸

f(x)

+

0

0

u1
0

u2

︸ ︷︷ ︸

g(x)·u

(2.17)

with (x1, x2) the position of the tank (front part of the vehicle), x3 the heading of the tank, x4 the

heading of the trailer and x5 the speed of the tank. Note that here g(x) does not depend on x.

Figure 2.21: Tank with a trailer

We consider as an output the center of the trailer:(
y1
y2

)
=

(
x1 − cosx4
x2 − sinx4

)
= h(x). (2.18)

We want a controller such that the output follows a desired dynamics. This choice is motivated by

the control of boatbot which is a autonomous rubber-boat towing a kayak to which a magnetometer

is attached (see Figure 2.22). The goal of this robot is to build a magnetic map to localize wrecks.

In this application, the output vector y corresponds to the position of the magnetometer.

Page 50 of 126

https://youtu.be/kXpUNYqdGpw

Luc Jaulin Mobile robotics: Guidance

Figure 2.22: Boatbot towing a magnetometer

1) Draw the graph of di�erential delays of the system. Conclude about the di�culty to be met

by a feedback linearization method.

2) Consider the controller

v̇1 = a1

u = A−1(x) ·
((

v1
a2

)
− b(x)

)
︸ ︷︷ ︸

ρ(x,v1,a2)

(2.19)

where

A(x) =

(
−x5 sin(x3 − x4) cos(x3 − x4)

x5 cos(x3 − x4) sin(x3 − x4)

)
and

b(x) =

(
x25 sin

2(x3 − x4)

−x25 sin(x3 − x4) cos(x3 − x4)

)
.

Show that in the new coordinate system given by

z =

z1
z2
z3
z4
z5
z6

=

x1 − cosx4
x2 − sinx4

x5 cos(x3 − x4)

v1
x4

x5 sin(x3 − x4)

︸ ︷︷ ︸

φ(x,v1)

(2.20)

Page 51 of 126

Luc Jaulin Mobile robotics: Guidance

we get the closed-loop system (see Figure 2.23)

ż1
ż2
ż3
ż4
ż5
ż6

=

z3 cos z5
z3 sin z5
z4
a1
z6
a2

(
y1
y2

)
=

(
z1
z2

)
(2.21)

Figure 2.23: The two systems in the magenta box are equivalent

3) We will call the closed loop system of the right of Figure 2.23, the �attened system. Draw the

graph of the di�erential delays of the �attened system. Conclude.

Page 52 of 126

Luc Jaulin Mobile robotics: Guidance

4) We want to �nd a controller which makes y to follow the Van der Pol dynamics ẏ = Ψ(y),

given by:(
ẏ1
ẏ2

)
=

(
y2

− (y21 − 1) y2 − y1

)
︸ ︷︷ ︸

Ψ(y)

We de�ne the error to be canceled as:

e = ẏ −Ψ(y)

Compute an expression of e, ė, ë with respect to z, a.

5) Find a controller such that the error satis�es

ë+ 2ė+ e = 0.

6) Provide a simulation which illustrates to good behavior of the controller.

Page 53 of 126

Luc Jaulin Mobile robotics: Guidance

Page 54 of 126

Chapter 3

Model-free control

When we implement a controller for a robot and perform the initial tests we rarely succeed on

the �rst try, which leads us to the problem of debugging. It might be that the compass is subject to

electromagnetic disturbances, that it is placed upside-down, that there is a unit conversion problem

in the sensors, that the motors are saturated or that there is a sign problem in the equations of

the controller. The problem of debugging is a complex one and it is wise to respect the continuity

principle: each step in the construction of the robot must be of reasonable size and has to be

validated before pursuing construction. Thus, for a robot, it is desirable to implement a simple

intuitive controller that is easy to debug before setting up a more advanced one. This principle can

not always be applied. However, if we have a good a priori understanding of the control law to

apply, then such a continuity principle can be followed. Among mobile robots for which a pragmatic

controller can be imagined, we can distinguish at least two sub-classes:

� vehicle-robots. These are systems built by man to be controlled by man such as the bicycle,

the sailboat, the car, etc. We will try to copy the control law used by humans and transform

it into an algorithm ;

� biomimetic robots. These robots are inspired by the movement of human beings. We have been

able to observe them for long periods of time and deduce the strategy developed by nature

to design its control law. This is the biomimetic approach (see for example [13]). We do not

include walking robots in this category because, even though we all know how to walk, it is

near to impossible to know which control law we use for it. Thus, designing a control law for

walking robots [14] can not be done without a complete mechanical modeling of walking and

without using any theoretical automatic control methods such as those evoked in the previous

chapter.

For these two classes, we often do not have simple and reliable models available (this is the case for

example of the sailboat or the bicycle). However, the strong understanding we have of them will

allow us to build a robust control law.

The aim of this chapter is to show, using several examples, how to design such control laws. These

will be referred to as mimetic control (we are trying to imitate humans or animals) or model-free

55

Luc Jaulin Mobile robotics: Guidance

control (we do not use the state equations of the robot to design the controller). Although model-free

approaches have been largely explored in theory (see for instance [15]), here we will use the intuition

we have of the functioning of our robot as much as possible.

3.1 Model-free control of a robot cart

In order to illustrate the principle of model-free control, let us consider the case of a robot cart

described by the equations:
ẋ = v cos θ

ẏ = v sin θ

θ̇ = u2
v̇ = u1 − v

This model can be used for simulation, but not for obtaining the controller.

3.1.1 Proportional heading and speed controller

We will now propose a simple controller for this system by using our intuition about the system.

Let us take θ̃ = θd − θ where θd is the desired heading and ṽ = vd − v where vd is the desired speed.

� For speed control, we take:

u1 = a1 tanh ṽ

where a1 is a constant representing the maximum acceleration (in absolute value) that the

motor is able to deliver. The hyperbolic tangent tanh (see Figure 3.1) is used as saturation

function. Let us recall that :

tanhx =
ex − e−x

ex + e−x
(3.1)

Figure 3.1: Hyperbolic tangent function used as saturation function

Page 56 of 126

Luc Jaulin Mobile robotics: Guidance

� For the heading control, we take:

u2 = a2 · sawtooth(θ̃)

In this last formula, sawtooth corresponds to the sawtooth function de�ned by:

sawtooth(θ̃) = 2atan
(
tan θ̃

2

)
= mod(θ̃ + π, 2π)− π (3.2)

Let us note that for numerical reasons, it is preferable to use the expression containing the modulus

function. As illustrated in Figure 3.2, the function corresponds to an error in heading. The interest

in taking an error θ̃ �ltered by the sawtooth function is to avoid the problem of the 2kπ modulus:

we would like a 2kπ to be considered non-zero.

Figure 3.2: Sawtooth function used to avoid the jumps in the heading control

We may summarize this controller by:(
u1
u2

)
=

(
a1 · tanh (vd − v)

a2 · sawtooth (θd − θ)

)
This model-free control, which works well in practice, does not need to use the state equations of

the robot. It is based on the understanding that we have of the dynamics of the system and recalls

our wireless operation method of the cart robot. It has two parameters a1 and a2 that are easy to

set (a1 represents the propelling power and a2 the directional disturbances). Finally, this controller

is easy to implement and to debug.

3.1.2 Proportional-derivative heading controller

For many robots, a proportional controller creates oscillations and it might prove to be necessary

to add an damping or derivative term. This is the case for underwater exploration robots (of type

ROV, Remotely Operated Vehicle) which are meant to stabilize above the zone of interest. Underwater

torpedo robots do not have this oscillation problem given their control rudders that stabilize the

heading while in movement. If the heading if constant, such a proportional-derivative controller is

given by:

u2 = a2 · sawtooth (θd − θ) + b2θ̇.

Page 57 of 126

Luc Jaulin Mobile robotics: Guidance

The quantity θ may be obtained by a compass, for example. As for θ̇, it is generally obtained by

a gyro. Low-cost robots do not always have a gyro available and we must try to approximate θ̇

from measurements of θ. However, a compass might jump by 2π for small variations in heading.

This is the case for instance when a compass returns an angle within the interval [−π, π] and the

heading varies around (2k + 1) π. In this case, an approximation of θ̇ must be obtained and this

approximation has to be insensitive to these jumps. We take:

θ̇ (t) =
sin (θ (t+ dt)− θ (t))

dt
.

The proportional-derivative heading controller can therefore be written as:

u2 (t) = a2 · sawtooth (θd − θ (t)) + b2
sin (θ (t)− θ (t− dt))

dt

which will be insensitive to jumps of 2π.

3.2 Learning a model from data

3.2.1 Principle

Consider a dynamical system with the state equation ẋ = f(x,u) represented on Figure 3.3.

Figure 3.3: A dynamical system

Assume that we are able to collect for di�erent t, the tuple (x,u, ẋ), as represented the green

points of by Figure 3.4, Left. From these data, we are able to get an approximation f̂(x,u) of f(x,u).

This approximation can be represented by neural network, for instance.

Figure 3.4: Interpolation of the function f(x,u)

Page 58 of 126

Luc Jaulin Mobile robotics: Guidance

3.2.2 Mechanical systems

For mechanical system with the state equation ẋ = f(x,u) can be often be decomposed in two

blocs : the dynamic bloc φ(p,u) and the kinematic bloc ψ(q,p), as illustrated by Figure 3.5. The

state x is here decomposed into two vectors: the vector of degrees of freedom q and the vector of

the velocities p.

Figure 3.5: Decomposition of a mechanical system

The kinematic bloc ψ(p,q) is well known and only involves geometric parameters. The dynamic

bloc depends on parameters that are not always easy to measure. It is possible to estimate the

function φ from experiments. More precisely, we collect data for p(t),u(t), ṗ(t). These data are

used to get an estimation of φ. Again, this estimation can modeled by a multilayer perceptron.

3.2.3 Interpolation

An unknown function f : Rn 7→ Rp can be approximated by polynomials (Lagrange

approximation), sine functions (Fourier approximation), etc. Here, we will approximate f by a

combination of a�ne functions of the form ax+ b and of activation function σ which is a nonlinear

function from R 7→ R. A classical activation function is the relu function de�ned by

σ(x) = relu(x) = max(0, x).

In Figure 3.6, (a) represents the relu function σ(t) and (b) represents the triangle function where

trianglet0,y,r(t) =
y

r
· σ(t− t0 + r)− 2y

r
· σ(t− t0) +

y

r
· σ(t− t0 − r).

Figures (c) and (d) show that with a sum of triangles, we can approximate any scalar continuous

functions.

Page 59 of 126

Luc Jaulin Mobile robotics: Guidance

Figure 3.6: Interpolation using the relu function

We understand that any function f : R 7→R can be approximated by

f(x) ≃
∑
i

aiσ(x+ bi)

over a bounded interval. For functions f : Rn 7→ R we need to compose this type of functions. A

classical structure is the multilayer perceptron as represented by Figure 3.7. Each arc represents a

function of the form a · σ(x+ b). For instance, we have

y1 =
4∑
i=1

aiσ(zi + bi).

Such a perceptron can be used to represent an approximation φ̂(p,u) of the function φ(p,u).

Page 60 of 126

Luc Jaulin Mobile robotics: Guidance

Figure 3.7: Multilayer perceptron to get an estimation φ̂(x1, x2, x3) of the function φ(x1, x2, x3).

Blue: input layer; Red: hidden layer; Green: output layer

3.2.4 Learning

From the data of p(t),u(t), ṗ(t) collected from the real system, we adjust the parameters of the

multilayer perceptron in order to �t the data. This can be done using a minimization method. We

obtain a state space model{
q̇ = φ̂(p,u)

ṗ = ψ(q,p)

called the learned model, which approximates the actual system. It can be used for a simulation or

to tune the parameters of a controller.

Page 61 of 126

Luc Jaulin Mobile robotics: Guidance

Page 62 of 126

Exercises

Exercise 15.� Robot tank on a line

See the correction video at http://youtu.be/2LBilGmdmFE

Let us consider a robot moving on a plane and described by the following state equations:

ẋ = v cos θ

ẏ = v sin θ

θ̇ = u2
v̇ = u1 − v

where θ is the heading of the robot and (x, y) are the coordinates of its center. This model corresponds

to the Dubins car[16]. The state vector is given by x = (x, y, θ).

1) Simulate this system graphically with in various situations.

2) Propose a heading controller for the robot.

3) Propose a controller tracking a line ab. This line must be attractive. Stop the program when

the point b is overtaken, i.e., when (b− a)T (b−m) < 0.

4) Make the robot track a closed path composed of a sequence of lines ajbj, j ∈ {1, . . . , jmax}.

5) Make several identical robots track the same circuit, but with di�erent speeds. Modify the

control laws in order to avoid the collisions.

Exercise 16.� Deep boat

See the correction video at https://youtu.be/6rVLhKbXtfQ

A company has built a controller for the line following of boats and has to sell it to a client. The

controller has been designed for catamarans (see Figure 3.8), with (i) two propellers the back (for

the actuators) and (ii) a compass, a Doppler log, and a GPS (for the sensors).

63

http://youtu.be/2LBilGmdmFE
https://youtu.be/6rVLhKbXtfQ

Luc Jaulin Mobile robotics: Guidance

Figure 3.8: Catamaran with two propellers

In this exercise, we consider the special case, where the line to follow is given by y = 0. In this

case, the controller is given by

u =
1

3
·
(

1 1

1 −1

)
·
(

tanh(1− v)

sin(−tanh(y
10
)− θ)

)
.

1) With a simulation, illustrate the controller on a the following Dubins car model
ẋ = v cos θ

ẏ = v sin θ

θ̇ = u1 − u2
v̇ = u1 + u2

Explain the principle of the controller.

2) The client has his own boat, but no model exists for it. Moreover, it does not behave like

a Dubins car since it slides sideways when changing its heading. Since the boat is used for other

tasks, there is no possibility for the company do any experiment on the boat. However, the client

provides a �le with many recorded data from which the behavior of the boat can be extracted. This

�le, named deepboatdata.txt, is composed of thousands of lines. Each line contains for di�erent

times t the line vector (vx, vy, ω, u1, u2, v̇x, v̇y, ω̇). From this �le, generate an approximation φ̂ of the

function φ
vx
vy
ω

u1
u2

φ7→

 v̇x
v̇y
ω̇

that we have for the client's boat. This interpolation can be done using a multilayer perceptron.

3) Deduce a learned state space model for the client's boat. The state vector will be taken as

x = (x, y, θ, vx, vy, ω)

Page 64 of 126

Luc Jaulin Mobile robotics: Guidance

4) Illustrate the behavior of the learned boat for the line following task. The initial state vector

will be taken as

x(0) = (−30,−10,−1, 0, 0, 0).

5) For this exercise, the data �le has been obtained by the following client boat

ẋ = vx cos θ − vy sin θ

ẏ = vx sin θ + vy cos θ

θ̇ = ω

v̇x = − 1
20

· vx + u1 +
4
5
· u2

v̇y = − 1
10

· vy − ω · vx
ω̇ = u1 − 4

5
· u2 − 3 · w

Compare the behaviors of the client's boat and of the learned boat on the line following task.

Exercise 17.� Hoverboard

See the correction video at https://youtu.be/N3qRMvB1sPk

In this exercise, we want to control an hoverboard in a two dimensional world (see Figure 3.9).

Our planar hoverboard has only one actuator (a motor in the axle) and one inertial unit (for the

acceleration and the gyrometer). Since the hoverboard has no idea of the position, the weight, and

the size of the human rider, a model free approach is considered. The exerted momentum between

the board (red) and the wheel is denoted by u. The angle β (called talocrural) between the body

(blue) and the board is assumed to be constant. It is supposed to be controlled by the human rider.

Figure 3.9: Hoverboard

The way the rider controls the hoverboard is illustrated by Figure 3.10. By tilting the board

with respect to its own body with his feet, the rider can control indirectly the speed. Note that the

rider does control its pitch θ or equivalently, the rider do not decide if he wants to bend forward of

backward. The rider can only control the angle β between its body and its feet.

Page 65 of 126

https://youtu.be/N3qRMvB1sPk

Luc Jaulin Mobile robotics: Guidance

Figure 3.10: The rider (blue) controls the hoverboard only through the angle β

The principle of the hoverboard is the following: if the hoverboard has a tilt angle δ = θ + β

positive, then the wheels turn forward, if δ < 0, then the wheels turn backward.

Denote by b the center of gravity of the body and by a is the wheel's center. Take one point c

on the wheel. Let us denote by s the angle between the vector −→ac and the horizontal axis and by θ

the pitch angle. This system has two degrees of freedom s and θ. The state of our system is given

by the vector x = (s, θ, v, ω)T, where v = ṡ, ω = θ̇. The parameters are:

� for the wheel: its mass M , its radius ρ, its moment of inertia JM = 1
2
Mρ2 ;

� for the rider: its mass m, its moment of inertia supposed to be Jp = mℓ2 where the distance ℓ

between its center of gravity and the center of the wheel.

1) Find the state equations of the system

2) All sensors are inertial (two accelerometers and a gyrometer) and are located at the center of

the board, i.e., at the wheel's center. Since there is no external sensors such as a GPS, camera or a

pitch sensor to get the angle θ of the rider, we consider the proportional and derivative control given

by

u = k1δ + k2ω.

Show that if k1 is large enough and if k2 > 0, the controller stabilizes the pitch θ.

3) To implement the controller, we need two quantities:

� the tilt δ which can be deduced from an accelerometer (see below).

� the rotation rate ω which can be directly measured from a gyrometer (since β is constant).

Find an observer which estimates the tilt δ.

4) Assume that we measure using the Doppler of a radar, the speed v. Denote by vm the measured

speed. Propose an a controller to have the hoverboard going at speed v̄. Validate by a simulation.

Page 66 of 126

Luc Jaulin Mobile robotics: Guidance

Exercise 18.� Anchoring

See the correction video at http://youtu.be/mQPhcPn044c

Let us consider the robot described by the following state equations:

ẋ = cos θ

ẏ = sin θ

θ̇ = u

The aim of anchoring the robot is to remain within the neighborhood of zero.

1) Does this system have a point of equilibrium ?

2) Given the fact that the problem of remaining around zero admits a rotational symmetry, we

suggest switching from a Cartesian representation (x, y, θ) towards a polar representation (α, d, φ),

as shown on Figure 3.11. Give the state equations in the polar representation.

Figure 3.11: Coordinate system change allowing to take advantage of the rotational symmetry

3) How is this new representation of interest for the graphical representation of the system

dynamics ?

4) In order to solve the anchoring problem we propose the control law:

u =

{
+1 if cosφ ≤ 1√

2
(the robot turns to the left)

− sinφ otherwise (proportional control)

An illustration of this control law is given in Figure 3.12. Explain how this control solves the

anchoring problem. Is there a con�guration that allows the robot to move arbitrarily far away from

0 ?

Page 67 of 126

http://youtu.be/mQPhcPn044c

Luc Jaulin Mobile robotics: Guidance

Figure 3.12: Path of the controlled system in order to remain inside the disk

5) Simulate this control law with various initial conditions.

Exercise 19.� Discretization of the state space

See the correction video at https://youtu.be/R7xFVenh48w

Let us consider the following system (which stems from the previous exercise): (i) φ̇ =

{
sinφ
d

+ 1 if cosφ ≤ 1√
2(

1
d
− 1
)
sinφ otherwise

(ii) ḋ = − cosφ

The associated vector �eld is represented on Figure 3.13, where φ ∈ [−π, π] and d ∈ [0, 10]. A path

ϕ (t,x0) which corresponds to the simulation visualized in the previous exercise is also drawn.

Figure 3.13: Vector �eld associated with our system

Page 68 of 126

https://youtu.be/R7xFVenh48w

Luc Jaulin Mobile robotics: Guidance

The state space is cut into six zones. The state space has a cylindrical nature and we have six

zones indeed, whereas we can see eight zones on the �gure.

Succession relation. We de�ne the rotation, denoted by ↪→ between zones A,B of the state

space as follows:

(A ↪→ B) ⇔ ∃x0 ∈ A, ϕ (η (x0) ,x0) ∈ B

where η (x0) is the time the system exits A.
Convention If there is x0 ∈ A, such that ∀t > 0, ϕ (t,x0) ⊂ A then η (x0) = ∞. Thus,

ϕ (η (x0) ,x0) ∈ A and therefore will we have (A ↪→ A).
1) Draw the graph associated with this relation.

2) From this, deduce a superset of the state space in which the system will remain trapped.

Page 69 of 126

Luc Jaulin Mobile robotics: Guidance

Page 70 of 126

Chapter 4

Vehicles

Traditionally, a vehicle is de�ned as a machine that transports people or goods. Vehicles include

bicycles, motorcycles, cars, trucks, planes, helicopters, boats, submarines, spacecraft, etc. A vehicle

is usually controlled by a human operator who plays the role of the controller. This operator is able

to change the speed and the orientation of the vehicle with a little e�ort. In a robotics context,

a vehicle has some degrees of autonomy. In this chapter, we are interested by the synthesis of a

controller that makes the vehicle totally autonomous. A reliable model for the vehicle is not always

available, but our task is facilitated by the fact that the vehicle is a complex machine that is been

designed to be controlled easily by a human.

In this Chapter, we consider two illustrative examples : the skate car and the sailboat.

4.1 Skate car

Let us consider the skating vehicle [17] represented on Figure 4.1.

Figure 4.1: Skating robot moving like a snake

This vehicle that we will refer to as skate car is purely imaginary. It is designed move on a frozen

lake and stands on �ve ice skates. This system has two inputs: the tangent u1 of the angle β of

the front skate (we have chosen the tangent as input in order to avoid the singularities) and u2 the

torque exerted at the articulation between the two carts and corresponding to the angle δ. The thrust

71

Luc Jaulin Mobile robotics: Guidance

therefore only comes from the torque u2 and recalls the propulsion mode of a snake or an eel [13].

Any control over u1 will therefore not bring any energy to the system, but indirectly participates in

the propulsion by generating waves. In this paragraph, we will propose model in the form of a state

for simulating the system. Concerning the control law, the existing general methods cannot deal

with this kind of system and it is necessary to take into account the physics of the problem. We will

therefore propose a mimetic control law that allows to obtain an e�cient controller.

4.1.1 Model

Let us try to obtain state equations capable of representing the dynamics of the system in order to

simulate our system. The state variables are chosen to be x = (x, y, θ, v, δ), where x, y, θ correspond

to the position of the front cart, v represents the speed of the center of the front sled axle and δ is

the angle between the two carts. The angular speed of the front sled is given by:

θ̇ =
v1 sin β

L1

(4.1)

where v1 is the speed of the front skate and L1 is the distance between the front skate and the center

of the front sled axle. However:

v = v1 cos β

and therefore:

θ̇ =
v tan β

L1

=
vu1
L1

. (4.2)

Viewed from the rear sled, everything is as if there was a virtual skate in the middle of the front sled

axle, moving together with it. Thus, by recalling Formula (4.1), the angular speed of the rear sled

is:

θ̇ + δ̇ = −v sin δ
L2

where L2 is the distance between the centers of the axles. And therefore:

δ̇ = −v sin δ
L2

− θ̇
(4.2)
= −v sin δ

L2

− vu1
L1

. (4.3)

Following the theorem of kinetic energy, the temporal derivative of kinetic energy is equal to the sum

of the powers supplied to the system:

d

dt

(
1

2
mv2

)
= u2 · δ̇︸ ︷︷ ︸

engine power

− (αv) · v︸ ︷︷ ︸
dissipated power

(4.4)

where α is the coe�cient of viscous friction. For reasons of simplicity, we will assume here that the

force of friction of equal to αv, which is the same as assuming that only the front sled is braking.

We therefore have:

mvv̇
(4.4)
= u2 · δ̇ − αv2

(4.3)
= u2 ·

(
−v sin δ

L2

− vu1
L1

)
− αv2

Page 72 of 126

Luc Jaulin Mobile robotics: Guidance

and

mv̇ = u2 ·
(
−sin δ

L2

− u1
L1

)
− αv. (4.5)

The system can be described by the following state equations:

ẋ = v cos θ

ẏ = v sin θ

θ̇
(4.2)
= vu1

v̇
(4.5)
= − (u1 + sin δ)u2 − v

δ̇
(4.3)
= −v (u1 + sin δ)

(4.6)

where, for reasons of simplicity, the coe�cients (mass m, coe�cient of viscous friction α, inter-axle

distances L1, L2, etc.) have been given unit values. This system could be made control-a�ne (see

Equation (2.2)) by adding an integrator in front of u1, however the feedback linearization method

cannot be applied due to the numerous singularities. Indeed, it can be easily shown that when the

speed v is zero (easy to avoid) or when δ̇ = 0 (which necessarily happens regularly), we have a

singularity. A biomimetic controller that imitates the propulsion of the snake or the eel might be

feasible.

4.1.2 Sinusoidal control

By trying to imitate the control strategy of an undulating snake's movement, we choose u1 of the

form:

u1 = p1 cos (p2t) + p3

where p1 is the amplitude, p2 the pulse and p3 the bias. We choose u2 such that the propelling torque

is a motor torque, i.e., δ̇u2 ≥ 0. Indeed, δ̇u2 corresponds to the power supplied to the robot that is

transformed into kinetic energy. If u2 is bounded by the interval [−p4, p4], we choose a bang-bang

type controller for u2 of the form:

u2 = p4 · sign(δ̇)

which is equivalent to exerting maximum propulsion. The chosen state feedback controller is

therefore:

u =

(
p1 cos (p2t) + p3

p4 sign (−v (u1 + sin δ))

)
.

The parameters of the controller remain to be determined. The bias parameter p3 allows it to direct

its heading. The power of the motor torque gives us p4. The parameter p1 is directly linked to the

amplitude of the oscillation created during movement. Finally, the parameter p2 gives the frequency

of the oscillations. The simulations can help us to set the parameters p1 and p2 correctly. Figure 4.2

Page 73 of 126

Luc Jaulin Mobile robotics: Guidance

illustrates two simulations in which the robot begins with an almost zero speed. In the simulation

on top, the bias p3 is equal to zero. In the bottom simulation, p3 > 0.

Figure 4.2: Various simulations illustrate the control law for the skating robot

Figure 4.3 represents the advance as a function of time. It is clear that the power supplied by

the engine is very strong at startup whereas in cruising regime, it is under-utilized. Such a controller

forces us to oversize our engine. It would be to our advantage to have a thrust as constant as possible.

4.1.3 Maximum thrust control

The propulsion of the robot is done by the thrust u2 · δ̇ = −v (u1 + sin δ) · u2 and therefore by

the engine that generates the torque u2. In order to move as fast as possible, for a given motor,

the engine should supply a maximum amount of power denoted by p̄ which will be transformed into

kinetic energy. Thus:

−v (u1 + sin δ)︸ ︷︷ ︸
δ̇

· u2 = p̄.

Figure 4.3: Thrust supplied by the engine u2

Page 74 of 126

Luc Jaulin Mobile robotics: Guidance

There are therefore several torques (u1, u2) capable of supplying the desired power p̄. We will

therefore choose for u2 the form:

u2 = ε · ū2 with ε = ±1

where ε (t) is a square wave and ū2 is a constant. This choice for u2 may be to bound the engine

torque and thereby limit the mechanical load. If we choose the frequency of ε too low, the power

supplied will be respected, but the front cart will collide with the rear cart. In the borderline case

where ε is constant, we can observe, through the simulation, the �rst cart roll up to the second

(which means that δ increases to in�nity). We obtain, by isolating the orientation u1 of the front

skate:

u1 = −
(

p̄

vεū2
+ sin δ

)
The maximum thrust controller is therefore given by:

u =

(
−
(

p̄
vεū2

+ sin δ
)

εū2

)
. (4.7)

Thus, with this controller, not only do we always thrust in the correct direction through u2 but we

can adjust the direction u1 in order for the torque supplied by u2 to translate into a maximum thrust

p̄. Now we only need to act on ε (which, as we recall, is a square wave equal to ±1) and on the power

p̄. The duty cycle of the signal ε (t) will allow us to direct our orientation and its frequency will

give us the amplitude of the oscillations for the robot's path. As for ū2, it allows us to control the

average speed of the robot. In the simulation, this controller turns out indeed to be more e�cient

than the sinusoidal controller. Figure 4.4 shows the angle of the skate β in function of time, once the

cruising regime has been reached. Let us note that the angle of the front skate β =atan(u1) makes

discontinuities appear.

Figure 4.4: Evolution of the front skate angle β in cruising regime

Page 75 of 126

Luc Jaulin Mobile robotics: Guidance

4.1.4 Simpli�cation of the fast dynamics

The state equations for the skate car contain numerous singularities and we would like to simplify

them here. However, in our system, we have two interfering dynamics: one that is slow (representing

the smooth evolution of the state variables) and one that is fast (rated by ε) which creates the

undulation. The idea, relatively standard in automatic control, is to average these values in a

way to make the fast dynamics disappear. We can �nd this idea in PWM-controlled (Pulse Width

Modulation) DC engines.

Let us consider a high-frequency square wave signal ε (t). Its temporal average ε̄ is called the

duty cycle. This duty cycle is set to vary very slowly in time. The temporal average operator is linear

(just like the mathematical expectation). For example:

2ε1 (t)− 3ε2 (t) = 2ε̄1 (t)− 3ε̄2 (t) .

On the other hand, for a nonlinear function f , we cannot write f (ε) = f (ε̄). For instance, ε−1 ̸= ε̄−1.

However, we will have ε−1 = ε̄ if ε (t) ∈ {−1, 1}. This comes from the fact that the signals ε and ε−1

are equal in such a case. If a (t) and b (t) are slowly varying signals in time, we will also have:

a (t) ε1 (t) + b (t) ε2 (t) = a (t) ε̄1 (t) + b (t) ε̄2 (t) .

We will try to apply these approximations to the case of the skate car in order to eliminate the fast

dynamics. By recalling the state equations in (4.6) and by injecting control law (4.7), we obtain a

feedback system described by the following state equations:

ẋ = v cos θ

ẏ = v sin θ

θ̇ = − p̄
εū2

− v sin δ

v̇ = p̄
v
− v

δ̇ = p̄
εū2

Recall that we can act on the constants p̄, ū2 and on the square wave signal ε = ±1 that we will here

consider to be high-frequency and with a duty cycle of ε̄. We can approximate:

p̄

εū2
=
εp̄

ū2

(by linearization)
≃ ε̄

p̄

ū2
.

The system thus becomes:

ẋ = v cos θ

ẏ = v sin θ

θ̇ = −p̄q̄ − v sin δ

v̇ = p̄
v
− v

δ̇ = p̄q̄

which now only has two inputs: p̄ and q̄ = ε̄
ū2
. Let us try to control the inputs θ and v by using

feedback linearization method. Note that although this system is not a�ne in its inputs (p̄ and q̄),

Page 76 of 126

Luc Jaulin Mobile robotics: Guidance

the method can be applied because, as we will see below, the necessary inversion is possible here.

For this, let us de�ne two new inputs v1, v2 such that:{
v1 = −p̄q̄ − v sin δ

v2 = p̄
v
− v

By inverting this system relative to the inputs, we obtain:

p̄ = v (v2 + v)

q̄ = −v1+v sin δ
v(v2+v)

Thus, the feedback linearized system is:{
θ̇ = v1
v̇ = v2

A proportional controller is therefore su�cient. We will take one that places the poles at −1:{
v1 = w1 − θ + ẇ1

v2 = w2 − v + ẇ2

Let us summarize the control law in its entirety. Its setpoints are w1, w2 which correspond to the

desired heading and speed. It is given by the following table:

p̄ = v (w2 + ẇ2)

q̄ = −w1 − θ + ẇ1 + v sin δ

v (w2 + ẇ2)

ε̄ = q̄ · ū2 (choose ε̄ ∈ [−1, 1])

ε : duty cycle ε̄ and frequency slot ∞

u =

(
−
(

p̄
vεū2

+ sin δ
)

εū2

)
The adjustment parameter ū2 involved in this controller is quite delicate to set. We need to choose

ū2 small enough to have ε̄ ∈ [−1, 1]. But it must not be too close to zero in order for u1 to not

be too large (which would cause too signi�cant front skate movements). This variable ū2 in�uences

the necessary distribution between the torque (through u2) and the movement (through u1) for

generating power. Let us �nally note that this latter control law, supposed to be more e�cient, uses

state equations of the system in its design and it is therefore di�cult to call it model-free.

4.2 Sailboat

4.2.1 Problem

Let us recall the principles of model-free control and try to adapt it to a line-tracking controller

for our sailboat. Here we will consider a sailboat whose sheet length is variable, but not directly the

Page 77 of 126

Luc Jaulin Mobile robotics: Guidance

angle of the sail as it was the case until now (see (2.6) on page 28). This robot has two inputs which

are the angle of the rudder u1 = δr and the maximum angle of the sail u2 = δmax
s (equivalently u2

corresponds to the length of the sheet). We will try to make the robot follow a line which passes

through points a and b (see Figure 4.5).

Figure 4.5: Feedback control of the sailing robot

Figure 4.6: Left : the Vaimos sailing robot of Ifremer (in the background) and the Optimousse

robot from the Ensta Bretagne ; right : robot of the Ecole Navale (Naval School) following a line

Page 78 of 126

Luc Jaulin Mobile robotics: Guidance

This problem is in�uenced by the control strategies of the Vaimos robot [18] of Ifremer, the

sailing boat of the Erwan naval school and the Optimousse robot from the Ensta-Bretagne (see

Figure 4.6).

Figure 4.7: Variables used in the state equations of the robot

As illustrated by Figure 4.7, we will denote by (x, y, θ) the posture of the boat, by v its advancing

speed, by ω its angular speed, by fs the force of the wind on the sail, by fr the force of the water on

the rudder, by δs the angle of the sail and by ψ the angle of the wind.

4.2.2 Controller

We will now try to �nd a controller that will enable the robot to track a line. The robot will be

equipped with three sensors: a compass that gives us the heading θ, a weathervane that measures

the angle of the wind ψ and a GPS that returns the position m of the boat. The robot will also be

equipped with two actuators: a servo-motor that controls the angle of the rudder δr and a stepper

motor that sets the length of the sheet and therefore the maximum angle δmax
s of the sail (i.e.

|δs| ≤ δmax
s). As for the controller, its setpoint is the line ab to track and it has a binary variable

q ∈ {−1, 1} called the hysteresis which will be used for close hauled sailing. This controller will have

few parameters which will also be easy to control. Among these parameters, we �nd the maximum

rudder angle δmax
r (typically δmax

r = π
4
), the cutting distance r (i.e. we would like the distance to the

line to be always smaller than r), the close haul angle ζ (typically ζ = π
4
), and the angle of the sail

in crosswind β (typically β = 0.3 rad). We propose the following controller, taken from [19], that we

will explain later:

Page 79 of 126

Luc Jaulin Mobile robotics: Guidance

Controller in:m, θ, ψ, a,b; out:δr, δ
max
s ; inout:q

1 e = det
(

b−a
∥b−a∥ ,m− a

)
2 if |e| > r then q = sign (e)

3 φ = angle (b− a)

4 θ̄ = φ− atan
(
e
r

)
5 if cos

(
ψ − θ̄

)
+ cos ζ < 0

6 or (|e| − r < 0 and (cos(ψ − φ) + cos ζ < 0))

7 then θ̄ = −ψ − qζ.

8 δr =
δmax
r

π
sawtooth(θ − θ̄)

9 δmax
s = π

2

(
cos(ψ−θ̄)+1

2

) log(π
2β)

log(2)

The controller has a single state variable which is the binary variable q ∈ {−1, 1}. It is for this
reason that it appears at the same time as input and output of the algorithm. Let us comment on

this algorithm.

Line 1 (calculation of the algebraic distance). We calculate the algebraic distance between

the robot and its line. If e > 0 the robot is on the left of its line and if e < 0, it is on the right. In

the formula, the determinant is to be understood in the following way:

det (u,v) = u1v2 − v1u2.

Line 2 (update of the hysteresis variable). When |e| > r, the robot is far from its line

and the hysteresis variable q (that memorizes the starboard tack) is allowed to change value. If for

instance e > r, then q will take the value 1 and will keep it until e < −r.
Line 3 (calculation of the line angle). We calculate the angle φ of the line to track (see

Figure 4.8). In the instruction, angle(u) represents the angle made by the vector u ∈ R2 relative to

the Ox axis (towards the East).

Figure 4.8: Nominal vector �eld that the robot tries to track, when possible

Line 4 (calculation of the nominal heading). We calculate the nominal angle θ̄ (see Figure

Page 80 of 126

Luc Jaulin Mobile robotics: Guidance

4.8), i.e., the one that we would like to have without worrying about the wind. We take:

θ̄ = φ− atan
(e
r

)
.

This expression for θ̄ translates to an attractive line. When e = ±∞, we have θ̄ = φ± π
2
, which means

that the robot has a heading that forms an angle of π
2
with the line. For a distance e corresponding

to the cutting distance r, i.e. e = ±r, we have θ̄ = φ ± π
4
. Finally, on the line we have e = 0 and

therefore θ̄ = φ, which corresponds to a heading with the direction of the line. As illustrated on

Figure 4.9a, some directions θ̄ may be incompatible with that of the wind.

Figure 4.9: (a) The nominal vector �eld may be incompatible with the wind (here represented by

the large arrow) ; (b) Vector �eld generated by the controller if we remove line 6. The thin arrows

correspond to the nominal paths and the bold arrows correspond to the corrected paths ; (c) Vector

�eld generated by the controller with line 6 included.

Line 5. When cos
(
ψ − θ̄

)
+ cos ζ < 0, the path θ̄ corresponds to a direction that is too close to

the wind that the robot is incapable of following (see Figure 4.10).

Page 81 of 126

Luc Jaulin Mobile robotics: Guidance

Figure 4.10: Some directions are not possible for the sailboat. These unfeasible directions form the

no-go zone, represented in grey

The heading θ̄ is then impossible to keep. In this case, we need to switch to close haul mode,

which means that the robot will do everything it can to face the wind, or more formally, the new

direction becomes θ̄ = π + ψ ± ζ (see line 7). Figure 4.9b represents the corresponding vector �eld.

The thin arrows correspond to the nominal �eld and the bold arrows represent the corrected �eld

when necessary. In this representation, we have removed the hysteresis e�ect induced by the variable

q (which is means that we always have q = sign(e)).

Line 6 (keep close hauled strategy). This instruction implements the so-called keep close

hauled strategy. If |e| < r or if cos(ψ − φ) + cos ζ < 0, then the boat is forced to move upwind,

even when the heading θ̄ is admissible and this, for reasons of e�ciency. This strategy is illustrated

on Figure 4.9c. On this �gure, we have chosen a close haul angle of ζ = π
3
(which corresponds to

di�culties moving upwind) and given this, the line is considered to be against the wind.

Line 7 (close hauled heading). The boat is in close haul and we choose θ̄ = π + ψ − qζ (the

wind direction plus or minus the close haul angle ζ). The hysteresis variable q is forced to keep

the same point of sail as long as the distance of r to the line is not reached. An illustration of

the resulting behavior is represented on Figure 4.11. If the nominal heading can be kept, then it is

followed.

Page 82 of 126

Luc Jaulin Mobile robotics: Guidance

Figure 4.11: Keep close hauled strategy by remaining within the strip centered on the line ab with

diameter r

Line 8 (rudder control). At this level, the heading to maintain θ̄ has already been chosen and

we are trying to follow it using the rudder. We perform a proportional control relative to the error

θ − θ̄. In order to �lter out the modulus-2π problem, we use the sawtooth function (see Formula

(3.2)). We thus obtain:

δr =
δmax
r

π
· sawtooth(θ − θ̄)

where δmax
r is the maximum angle of the rudder (for example δmax

r = 0.5 rad). The resulting controller

is illustrated on Figure 4.12.

Figure 4.12: Rudder control for the sailing robot

Line 9 (sail control). We choose a sail angle β (half-open sail) that the sail needs to have in

crosswind. This parameter is determined experimentally depending on the sailboat and the steering

Page 83 of 126

Luc Jaulin Mobile robotics: Guidance

mode we would like to use. The maximum angle of the sail δmax
s is a function of ψ − θ which is

periodic with period 2π. One possible model [19] is that of the cardioid:

δmax
s =

π

2
·
(
cos (ψ − θ) + 1

2

)η
where the parameter η is positive. When ψ = θ+ π, the boat is facing the wind and the model gives

us δmax
s = 0. When ψ = θ, we have δmax

s = π
2
, which means that the sail is wide open when the robot

is with the wind. The choice of the parameter η will be based on the angle of the sail in crosswind,

i.e., for ψ = θ ± π
2
. The equation δmax

s = β for ψ = θ ± π
2
is translated by:

π

2
·
(
1

2

)η
= β

i.e.:

η =
log
(
π
2β

)
log (2)

The function δmax
s is represented on Figure 4.13.

Figure 4.13: Adjusting the maximum sail angle (or the sheet length) ; left : Cartesian representation

; right : polar representation

On the tests that have been carried out, this adjustment of the sail was shown to be e�cient and

easy to control, given the few number of parameters.

Page 84 of 126

Luc Jaulin Mobile robotics: Guidance

4.2.3 Navigation

Once the line tracking has been correctly implemented and validated, a number of lines should

be chained together with the aim of performing complex missions (such as for instance connecting

two points of the globe). In such a context, a Petri net strategy is well-adapted for representing the

discrete state changes [20]. Figure 4.14 illustrates a Petri net allowing to manage the mission. Before

the robot is launched, it is in an initial state represented by the place p0. The transition t1 is crossed

at the start of the mission. If everything goes well, the robot is in state p1 and is tracking its �rst line

a1b1. The line ajbj is validated as soon as the point bj is surpassed, i.e., if ⟨bj − aj,m− bj⟩ > 0.

This stopping criterion coupled with the path can be interpreted as a sort of validation. Once this

is validated, we proceed to the next line. When the list of lines to track is empty, the mission ends

(place p3).

Figure 4.14: Petri net supervising the navigation of the robot

Figure 4.15: Experiment of the spiral composed of �ve stages : (a) the robot begins with a triangle

(in the circle) ; (b) it goes upwind following a line ; (c) it described a spiral ; (d) it anchors virtually

at the center of the spiral for several minutes ; (e) and goes back to the harbor.

Page 85 of 126

Luc Jaulin Mobile robotics: Guidance

4.2.4 Experiment

Beginning in September 2011, we carried out a series of experiments with the Vaimos sailboat

in autonomous mode. We will describe one of these experiments which is simultaneously simple and

representative, which took place on Thursday 28 June 2012 in the Brest bay, close to the Moulin Blanc

harbor. The trajectory performed by the robot is represented on Figure 4.15. The wind comes from

South-South-East, as indicated by the arrow that represents the average wind on the robot during

the entire mission, deduced from the sensor. In this zone of heavy maritime tra�c, interruptions in

the mission can be anticipated and a permanent wi� link is necessary between the robot and the

tracking boat in order to be able to cancel to mission at any time and avoid collision with other boats.

Apart from these security interruptions (which by the way were not necessary during the mission),

the robot is entirely autonomous. The mission is broken down into �ve sub-missions. First of all, the

robot begins with a triangle (in the circle) in order to check whether everything is working properly.

Then, it proceeds South-East against the wind by tracking the required path. It then describes a

spiral. Once it is in the center of the spiral, the robot anchors virtually, i.e., it maneuvers in order

to remain around its attachment point. Finally, the robot returns to the harbor with the wind.

Other larger-scale experiments were also carried out, such as the journey from Brest to Douarnenez

(see Figure 4.16) undertaken on the 17th-18th January 2012, thus completing a path of more than

100 km. From very high up (as in the �gure), the lines seem to be tracked perfectly. Upon closer

inspection, things are revealed to be less idealistic: the sailboat tacks in order to go upwind, re-

calibrates itself or is subjected to large waves otherwise. However, in both previously described

experiments, the robot is never more than 50 meters away from its track (except of course in the

situations of avoidance in which it is being hauled).

Page 86 of 126

Luc Jaulin Mobile robotics: Guidance

Figure 4.16: Journey from Brest to Douarnenez made by Vaimos : (a) the robot leaves the Moulin-

Blanc harbour (in the circle) ; (b) it avoids a submarine (in the square) ; (c) it avoids a cargo ship

(triangle)

Remark 4.1.� Even though the robot never surpasses its line by more than 50 m, we could do better

and improve this precision when the robot follows the nominal heading (i.e. the angle φ of the line

corresponds to a sustainable heading). Indeed, in our experiments, a 10 m bias can be observed in

nominal mode, which means that the distance to the line does not converge towards zero (with GPS

precision). The role of the integrator is to remove such a bias. In order to implement such an

integrator, we simply replace line 4 of the controller with the following two instructions:{
z = z + α dt e

θ = φ− atan
(
e+z
r

)
where dt is the sampling period. The variable z corresponds to the value of the integrator and naturally

converges towards the constant bias that we had without the integrator and which we would like to

remove. The coe�cient α has to be su�ciently small to avoid a change in the behavior of our robot

(which could appear in transient regime). For instance, if e = 10 m for 100 seconds, we may want

a correction of 1 m of the bias. for this, we need to take α = 0.001. Let us note that as soon as

the distance on the line is greater than r (this is the case for instance during initialization), when

the robot validates a line and continues on to the next, or when the robot is in large mode, then the

integrator has to be forced to zero. Indeed, an integrator must not take up its function unless the

permanent regime has been established.

Page 87 of 126

Luc Jaulin Mobile robotics: Guidance

Page 88 of 126

Exercises

Exercise 20.� Sailing robot

See the correction video at http://youtu.be/uiyG5mAjaNw

Consider the sailboat described by the following state equations:

ẋ = v cos θ + p1a cosψ

ẏ = v sin θ + p1a sinψ

θ̇ = ω

v̇ = fs sin δs−fr sinu1−p2v2
p9

ω̇ = fs(p6−p7 cos δs)−p8fr cosu1−p3ωv
p10

fs = p4 ∥wap∥2 sin (δs − ψap)

fr = p5v sinu1
σ = cosψap + cosu2

δs =

{
π + ψap if σ ≤ 0

−sign (sinψap) · u2 otherwise

wap =

(
a cos (ψ − θ)− v

a sin (ψ − θ)

)
ψap = angle wap

where (x, y, θ) corresponds to the posture of the boat, v is its forward speed, ω is its angular speed,

fs (s for sail) is the force of the wind on the sail, fr (r for rudder) is the force of the water on the

rudder, δs is the angle of the sail, a is the true wind speed, ψ is the true wind angle (see Figure 4.17)

and wap is the apparent wind vector.

89

http://youtu.be/uiyG5mAjaNw

Luc Jaulin Mobile robotics: Guidance

Figure 4.17: Variables used in the state equations of the robot

The quantity σ is an indicator of the sheet tension. Thus, if σ ≤ 0, the sheet is released and the

sail is �apping. If σ ≥ 0, the sheet is stretched and in�ated by the wind. In these equations, the pi
are design parameters of the sailboat. We will take the following values, given in international units:

p1 = 0.1 (drift coe�cient), p2 = 1 (drag coe�cient), p3 = 6 000 (angular friction of the hull against

the water), p4 = 1 000 (sail lift), p5 = 2 000 (rudder lift), p6 = 1 (position of the wind's center of

thrust on the sail), p7 = 1 (position of the mast), p8 = 2 (position of the rudder), p9 = 300 (mass of

the sailboat) and p10 = 10 000 (inertial momentum of the sailboat).

1) Simulate the boat.

2) Implement the controller proposed in Section 4.2. We will use the following parameters: ζ = π
4

for the no-go zone angle, r = 10 m for the radius of the corridor, δmax
r = 1 rad for the maximum

angle of the rudder and β = π
4
for the angle of the sail in crosswind.

3) Study the singularities (or the discontinuities) of the controller. What may happen if cos(ψ−
φ) + cos ζ = 0?

Exercise 21.� Plane

See the correction video at http://youtu.be/oorUGBVtd4s

Consider a �ying drone [1] such as the one represented on Figure 4.18a. This is a 1 kg fully

autonomous plane. One possible model to describe its dynamics, very strongly inspired by those of

Page 90 of 126

http://youtu.be/oorUGBVtd4s

Luc Jaulin Mobile robotics: Guidance

Faser Ultra Stick [21] on Figure 4.18b, is given by:

ṗ

 φ̇

θ̇

ψ̇

v̇

ω̇

=

Reuler (φ, θ, ψ) · v 1 tan θ sinφ tan θ cosφ

0 cosφ − sinφ

0 sinφ
cos θ

cosφ
cos θ

 · ω

9.81 ·

 − sin θ

cos θ sinφ

cos θ cosφ

+ fa +

 u1
0

0

− ω ∧ v

−ω3ω2 − ∥v∥2

10
(β + 2u3 +

5ω1−ω3

∥v∥)

ω3ω1 − ∥v∥2
100

(1 + 20α− 2u3 + 30u2 +
300ω2

∥v∥)
ω1ω2

10
+ ∥v∥2

10
(β + u3

2
+ ω1−2ω3

2∥v∥)

Figure 4.18: (a) µ-Stic plane made at the Ensta Bretagne ; (b) Faser Ultra Stick plane from the

University of Minnesota ; (c) graphical representation used for the simulation

with:

α = atan

(
v3
v1

)
, β = asin

(
v2
∥v∥

)

fa =
∥v∥2

500

 − cosα cos β cosα sin β sinα

sin β cos β 0

− sinα cos β sinα sin β − cosα

·

 4 + (−0.3 + 10α + 10ω2

∥v∥ + 2u3 + 0.3u2)
2 + |u2|+ 3 |u3|

−50β + 10ω3−3ω1

∥v∥
10 + 500α + 400ω2

∥v∥ + 50u3 + 10u2

Page 91 of 126

Luc Jaulin Mobile robotics: Guidance

In this model, all the quantities are given in international units. The vector p = (x, y, z) represents

the position of the drone, with the z axis oriented towards the center of the Earth. The orientation

of the drone is represented by the Euler angles (φ, θ, ψ) and Reuler (φ, θ, ψ) is the Euler matrix. The

vector v represents the speed of the drone expressed in its own coordinate system. The rotation

vector of the plane expressed in its own frame is denoted here by ω. The angles α and β correspond

to the angle of attack and the side-slip angle. The vector fa corresponds to the acceleration caused

by the forces created by air. A simpli�ed geometric view of the drone, given in Figure 4.18c, shows

a propeller and two �ns for direction. The input vector u = (u1, u2, u3) involved in our state model

contains the propulsive acceleration u1 ∈ [0, 10] (in ms−2), the sum u2 ∈ [−0.6, 0.6] (in radians) of

the two �n angles and u3 ∈ [−0.3, 0.3] (in radians) the di�erence between these two angles.

1) Simulate this drone. For the graphics, see Figure 4.18c.

2) Propose a heading, elevation and speed control law.

3) We would like the robot to be positioned on a circle of radius r̄ = 100 m, centered around 0 at

an altitude of 50 m and a speed of v̄ = 15 ms−1. Give the control law and illustrate the associated

behavior of the robot.

Exercise 22.� Quadrotor

See the correction video at https://youtu.be/MlnagaOBSiY

We consider the quadrotor represented on Figure 4.19.

Figure 4.19: Quadrotor to be controlled

Its dynamic model is described by the equations of Figure 4.20. Note that the graph is represented

in a causal manner from the speed ωi of each motor which can be tuned independently to the position

p of the robot. This causal sequence will be used for the synthesis of the controller.

Page 92 of 126

https://youtu.be/MlnagaOBSiY

Luc Jaulin Mobile robotics: Guidance

Figure 4.20: Dynamic of the quadrotor represented by a causal chain which links 5 blocks (a), (b),

(c), (d), (e)

The state variables are the position p of the robot, R the orientation matrix, the speed vr
expressed in the robot frame and the rotation vector ωr also expressed in the robot frame. The

inertia matrix will be taken as

I =

 10 0 0

0 10 0

0 0 20

 .

Moreover, we will take m = 10, g = 9.81, β = 2, d = 1, and ℓ = 1, all expressed in the international

metric system.

To control this quadrotor, a feedback linearization method could be done, but the computation of

the controller is not easy and assumes that the model corresponds to the true system. Here, we want

to use a more pragmatic method, based on a backstepping technique. It corresponds to a sequence

of loops, each of which inverting one block in the causal chain. This will make the controller easier

to develop and to debug.

1) Propose a feed forward controller with the new input
(
τ d0, τ

d
1, τ

d
2, τ

d
3

)
which eliminates the e�ect

of Block (a). Here, the subscript d means desired since it is what we want for the τi.

Page 93 of 126

Luc Jaulin Mobile robotics: Guidance

2) Using a feedback linearization approach, build a controller with a desired input ωdr and an

output τ d1:3 =
(
τ d1, τ

d
2, τ

d
3

)
, such that the vector ωr converges to ω

d
r . This loop will make us possible

to eliminate Block (b).

3) Build a controller with an input Rd corresponding to the desired orientation and an output

ωdr , such that the matrix R converges to Rd.

4) Add another control loop with an output
(
Rd, τ d0

)
, based on a vector �eld approach, so that

the quadrotor follows a path that obeys the Van der Pol equation:{
ẋ1 = x2
ẋ2 = − (0.001 x21 − 1)x2 − x1

The quadrotor should also stay at an altitude of 15m and a speed of vd = 10ms−1. Moreover, we

want the front of the robot points forward. An illustration of what should be obtained is depicted

on Figure 4.21. The Van der Pol cycle is painted green.

Figure 4.21: Simulation of the quadrotor which follows the Van der Pol cycle

Exercise 23.� Isobath

See the correction video at https://youtu.be/vhsZRN46Xwo

An isobath is an imaginary curve that connects all points having the same depth h(x, y) below a

water surface, i.e., an underwater level curve. Consider an underwater robot described by the state

equation:
ẋ = cosψ

ẏ = sinψ

ż = u1
ψ̇ = u2

Page 94 of 126

https://youtu.be/vhsZRN46Xwo

Luc Jaulin Mobile robotics: Guidance

where (x, y, z) corresponds to the position of the robot and ψ is its heading angle. For the initial

condition, we take x = 2, y = −1, z = −2, ψ = 0. The robot is able to measure its altitude y1
(distance to the sea�oor) and the angle y2 of the gradient ∇h(x, y) of h(x, y) in its own frame using a

sonar. Moreover it is able to know its depth z3 using a pressure sensor. Thus its observation function

is

y1 = z − h(x, y)

y2 = angle(∇h(x, y))− ψ

y3 = −z

For instance, if y =
(
7,−π

2
, 2
)
, the robot knows that it is following an isobath corresponding to

−y1 − y3 = −7− 2 = −9m, at a depth of 2m. This is illustrated by Figure 4.22.

Figure 4.22: Underwater robot that has to follow an isobath

1) Propose a controller of the form u = r (y), which makes the robot follows an isobath

corresponding to h0 = −9m at a depth y3 = 2m.

2) Validate your controller using a simulation. An illustration of what should be obtained is

depicted on Figure 4.23. For the simulation, we will consider a sea�oor described by

h (x, y) = 2 · e−
(x+2)2+(y+2)2

10 + 2 · e−
(x−2)2+(y−2)2

10 − 10.

Page 95 of 126

Luc Jaulin Mobile robotics: Guidance

Figure 4.23: Simulation of underwater robot (blue) following an isobath. The surface shadow (gray)

and the sea�oor shadow are also painted.

Exercise 24.� Satellite

See the correction video at https://youtu.be/1N18pU6JT_0

Figure 4.24: Planet (blue) at coordinates (0, 0) and the satellite (red) at coordinates (x1, x2)

Consider the satellite, with coordinates (x1, x2) in orbit around a planet as illustrated on

Figure 4.24. This satellite has the form a rocket. The density of the surrounding atmosphere is

neglected but is supposed to be signi�cant enough to orientate the satellite forward as in the �gure.

Page 96 of 126

https://youtu.be/1N18pU6JT_0

Luc Jaulin Mobile robotics: Guidance

1) We assume that we can control the tangent acceleration of the satellite by a variable u. Show

that the state equations for the system may be written as

ẋ1 = x3
ẋ2 = x4
ẋ3 = − αx1√

x21+x
2
2

3 + x3u

ẋ4 = − αx2√
x21+x

2
2

3 + x4u

2) For simplicity, we assume that α = 1. Propose a feedback linearization based method to �nd

a controller for u (x) such that the satellite converges to the circle of radius R. Conclude.

3) Propose a proportional and derivative controller which stabilizes both the potential energy

and the kinetic energy corresponding to the desired circle. Illustrate the behavior of the control on

a simulation.

Exercise 25.� Double steering

See the correction video at https://youtu.be/5TcE9sq_TUg

We consider a double steering robot represented in Figure 4.25, left. It is a simpli�ed view of the

agricultural robot on the right manufactured by the company Maquinas Agricolas Jacto, the wheels

of which can be oriented independently. The state vector is given by (p1, p2, ψ, s1, s2, s3) where

� p = (p1, p2, p3) = (p1, p2, ψ) is the pose,

� s1 is the lateral speed of the front wheel,

� s2 is the lateral speed of the rear wheel and

� s3 is the forward speed.

The inputs are:

� u1: the derivative of the speed v1 of the front wheel,

� u2: the derivative of the angle δ1 of the front wheel,

� u3: the derivative of the speed v2 of the rear wheel,

� u4: the derivative of the angle δ2 of the rear wheel.

Page 97 of 126

https://youtu.be/5TcE9sq_TUg

Luc Jaulin Mobile robotics: Guidance

Figure 4.25: Left: Double steering robot with the body (blue), the front wheel (green) and the rear

wheel (black); Right: an agricultural robot

The distance between the two wheel's center is ρ = 1. Show that a kinematic model for our robot

(see Figure 4.26) is given by the state equations:

ṗ =

 −1
2
sinψ −1

2
sinψ cosψ

1
2
cosψ 1

2
cosψ sinψ

1 −1 0

 · s

ṡ =

s1√
s21+s

2
3

s3 0 0

0 0 s2√
s22+s

2
3

s3
s3√
s21+s

2
3

−s1 0 0

 · u

and give an equation which links the inputs u1, u2, u3, u4.

Figure 4.26: State equation of the double steering robot

Page 98 of 126

Luc Jaulin Mobile robotics: Guidance

2) Find the controller which eliminates the �rst block of the system (see Figure 4.26).

3) Find a controller so that the pose p converges to the desired pose pd.

4) Validate the controller in a simulation for a desired position:

(
p1d
p2d

)
=

(
3 cos t

3 sin(2t)

)
and such that the robot points toward the landmark a = (4, 1).

Page 99 of 126

Luc Jaulin Mobile robotics: Guidance

Page 100 of 126

Chapter 5

Guidance

In previous chapters, we have studied how to build a control law for a robot described by nonlinear

state equations (see Chapter 1) or when the robot's behavior is known (see Chapter 3). Guidance is

performed on a higher level and focuses on the setpoint to give the controller in order for the robot to

be able to accomplish its assigned mission. It will therefore have to take into account the knowledge of

its surroundings, the presence of obstacles, the roundness of the Earth, and so forth. Conventionally,

guidance is applied in four di�erent environments: terrestrial, marine, aerial and spatial. Given the

�elds of application covered in this book, we will not study the spatial environment.

5.1 Guidance on a sphere

For longer paths over the surface of the Earth, the Cartesian coordinate system, which assumes

a �at Earth, can no longer be considered. We then have to rethink our control laws by navigating

relative to a spherical coordinate system (also referred to as geographical coordinates), which rotates

together with the Earth. Let us denote by ℓx the longitude and by ℓy the latitude of the point being

considered. The transformation in the geographical coordinate system is written as:

T :

 ℓx
ℓy
ρ

→

 x

y

z

 =

 ρ cos ℓy cos ℓx
ρ cos ℓy sin ℓx
ρ sin ℓy

 (5.1)

When ρ = 6 370 km, we are on the surface of the Earth, which we will assume to be spherical (see

Figure 5.1a).

Let us consider two points a, m on the surface of the Earth, as illustrated on Figure 5.1b, located

by their geographical coordinates. Here, a for instance represents a reference point to reach and m

is the center of our robot. By assuming that the two points a, m are not too far apart (by no more

than 100 km), we may consider being in the plane and use a local map, as shown on Figure 5.2a.

101

Luc Jaulin Mobile robotics: Guidance

Figure 5.1: (a) Geographical coordinate system ; (b) we would like to express a in the local map R1

Figure 5.2: (a) The map gives a local Cartesian viewpoint around the robot ; (b) a slight shift

dℓx, dℓy, dρ creates a displacement dx, dy, dz in the local map

Let us di�erentiate Relation (5.1). We obtain: dx

dy

dz

 =

 −ρ cos ℓy sin ℓx −ρ sin ℓy cos ℓx cos ℓy cos ℓx
ρ cos ℓy cos ℓx −ρ sin ℓy sin ℓx cos ℓy sin ℓx

0 ρ cos ℓy sin ℓy

︸ ︷︷ ︸

=J

·

 dℓx
dℓy
dρ

Page 102 of 126

Luc Jaulin Mobile robotics: Guidance

This formula can be used to �nd the geographical coordinates of the cardinal directions, which change

depending on the location of the robot m. For instance, the vector corresponding to East is found in

the �rst column of the matrix J, North in the second column and the altitude in the third column.

We will therefore be able to build a coordinate system (East-North-Altitude) R1 centered on the

robot (in gray in Figure 5.2a) that corresponds to the local map. The corresponding rotation matrix

is obtained by normalizing each column of the Jacobian matrix J. We obtain:

R =

 − sin ℓx − sin ℓy cos ℓx cos ℓy cos ℓx
cos ℓx − sin ℓy sin ℓx cos ℓy sin ℓx
0 cos ℓy sin ℓy

 (5.2)

This matrix can also be expressed in terms of Euler matrix as:

R = Reuler (0, 0, ℓx) ·RT
euler

(
0, ℓy −

π

2
,−π

2

)
.

The transformation that allows switching from the geographic coordinate system R0 to the local

map R1 is:

v|R1 = RT · v|R0 . (5.3)

This coordinate system change relation can be applied in di�erent contexts such as for instance when

establishing coherence in the data collected by two di�erent robots.

Example. A robot situated at m :
(
ℓmx , ℓ

m
y

)
is moving with a speed vector vm, relative to a

�xed ground. This vector is expressed in the local map of the robot. We want to �nd the speed with

which this vector vm is perceived in the local map of an observer situated at a :
(
ℓax, ℓ

a
y

)
. Following

(5.3), we have: vm = RT
(
ℓmx , ℓ

m
y

)
· v|R0

va = RT
(
ℓax, ℓ

a
y

)
· v|R0

Therefore:

va = RT
(
ℓax, ℓ

a
y

)
·R
(
ℓmx , ℓ

m
y

)
· vm.

This kind of calculation is useful when, for instance, two robots are trying to meet.

Switching to a local map. Let us take a local map Rm centered on a point m, (i.e., a

coordinate system located on the surface of the Earth whose origin is m and whose directions are

East-North-upwards. Let us now try to express in Rm the coordinates (x̃, ỹ, z̃) of a point a located

by its GPS coordinates (ℓx, ℓy, ρ). We can switch from the geographical coordinates to the local

coordinates with the following relation: x̃

ỹ

z̃

+

 0

0

ρm

︸ ︷︷ ︸

oa|Rm

(5.3)
=

 − sin ℓmx cos ℓmx 0

− cos ℓmx sin ℓmy − sin ℓmx sin ℓmy cos ℓmy
cos ℓmx cos ℓmy cos ℓmy sin ℓmx sin ℓmy

︸ ︷︷ ︸

RT(ℓmx ,ℓmy)

·

 ρ cos ℓy cos ℓx
ρ cos ℓy sin ℓx
ρ sin ℓy

︸ ︷︷ ︸

oa|R0

Page 103 of 126

Luc Jaulin Mobile robotics: Guidance

where o is the origin corresponding to the center of the Earth. When ℓmx ≃ ℓx and ℓ
m
y ≃ ℓy, a �rst-

order approximation is directly obtained with the aid of Figure 5.3. Note that the circle of latitude

has a radius of ρ cos ℓy. x̃

ỹ

z̃

 ≃

 ρ · cos ℓy · (ℓx − ℓmx)

ρ ·
(
ℓy − ℓmy

)
ρ− ρm

 . (5.4)

Remark. The same results with more calculus can also be obtained by the above matrix formula.

For instance

x̃ = − sin ℓmx ρ cos ℓy cos ℓx + cos ℓmx ρ cos ℓy sin ℓx
= ρ cos ℓy (cos ℓ

m
x sin ℓx − sin ℓmx cos ℓx)

= ρ · cos ℓy · sin (ℓx − ℓmx)

≃ ρ · cos ℓy · (ℓx − ℓmx) .

Figure 5.3: Getting Cartesian coordinates in a local frame centred in m

When the robot is moving in a small area, we often choose a reference point corresponding to its

launch position.

5.2 Arti�cial potential �eld method

A mobile robot has to move in a congested environment that contains mobile and stationary

obstacles. The arti�cial potential �eld method [22] consists of imagining that the robot can behave

like an electric particle that can be attracted or repelled by other objects following the sign of their

Page 104 of 126

Luc Jaulin Mobile robotics: Guidance

electric charge. This is a reactive approach to guidance in which the path is not planned in advance.

In physics, we have the following relation:

f = −gradV (p) ,

where p is the position of point particle in space, V is the potential and f the force applied on the

particle. We will have the same relation in mobile robotics, but with p the position of the center of

the robot, V a potential imagined by the robot and f the speed vector to follow. The potential �elds

will help us express a desired behavior for a robot. The obstacles will be represented by potentials

exerting a repulsive force on the robot while the objective to follow will exert an attractive force.

In a situation where several robots need to remain grouped while avoiding collisions, we can use a

near-�eld repulsive potential and a far-�eld attractive potential. More generally, the vector �elds

used might not derive from a potential, as is the case if we would like the robot to have a cyclic

behavior. The following table gives several types of potential that can be used:

Potential V (p) −grad(V (p))

attractive conical ∥p− p̂∥ − p−p̂
∥p−p̂∥

attractive quadratic ∥p− p̂∥2 −2 (p− p̂)

attractive plane or line (p− p̂)T · n̂ n̂T · (p− p̂) −2 n̂ n̂T (p− p̂)

repulsive 1
∥p−q̂∥

(p−q̂)

∥p−q̂∥3

uniform −v̂T · p v̂

In this table, p̂ represents an attractive point, q̂ a repulsive point and v̂ a desired speed for the

robot. In the case of the attractive plane, p̂ is a point of the plane and n̂ is a unit vector orthogonal

to the plane. By adding several potentials, we can ask the robot (which is supposed to follow the

direction that tends to decrease the potential) to accomplish its objectives while moving away from

the obstacles. Figure 5.4 represents three vector �elds derived from arti�cial potentials. The one on

the left corresponds to a uniform �eld, the one in the middle to a repulsive potential that is added

to a uniform �eld and the one on the right to the sum of an attractive potential and a repulsive

potential.

Figure 5.4: Arti�cial potential �elds

Page 105 of 126

Luc Jaulin Mobile robotics: Guidance

Page 106 of 126

Exercises

Exercise 26.� Pursuit on a sphere

See the correction video at http://youtu.be/pHCrDUBtMQI

Consider a robot R moving on the surface of a sphere similar to that of the Earth, with a radius

of ρ = 30 m. This robot is located by its longitude ℓx, its latitude ℓy and its heading ψ, relative to

the East. In a local coordinate system, the state equations of the robot are of the type:
ẋ = cosψ

ẏ = sinψ

ψ̇ = u

1) Give the state equations in the case in which the state vector is (ℓx, ℓy, ψ).

2) Simulate this evolving system graphically in 3D.

3) A second robot Ra, described by the same equations, is moving randomly on the sphere (see

Figure 5.5). Suggest a control law that allows the robot R to meet the robot Ra.

Figure 5.5: On the sphere, the robot R follows the robot Ra

107

http://youtu.be/pHCrDUBtMQI

Luc Jaulin Mobile robotics: Guidance

Exercise 27.� Arti�cial potentials

See the correction video at http://youtu.be/rwM4-hbvOio

A robot situated at p = (x, y) must reach a target of unknown movement whose position p̂ and

speed v̂ are known at the present time. This pair (p̂, v̂) might for instance correspond to a setpoint

given by a human operator. A �xed obstacle located at position q̂ must be avoided. We model the

desired behavior of our robot by the potential:

V (p) = −v̂T · p+ ∥p− p̂∥2 + 1

∥p− q̂∥

where the potential −v̂T · p represents the speed setpoint, the potential ∥p− p̂∥2 makes the target

position p̂ attractive and the potential 1
∥p−q̂∥ makes the obstacle q̂ repulsive.

1) Calculate the gradient of the potential V (p) and deduce the speed vector setpoint w (p, t) to

apply to our robot so that it responds correctly to this potential.

2) We assume that our robot obeys the following state equations:
ẋ = v cos θ

ẏ = v sin θ

v̇ = u1
θ̇ = u2

Give the control law that corresponds to the desired potential �eld. We will use the same principle

as the one shown in Figure 5.6. First of all, disassemble the robot (in grey on the �gure) into a chain

made of two blocks. The �rst block forms the speeds from the actuators and the second builds the

position vector p = (x, y). Then calculate the left inverse of the �rst block in order to end up with

a system of the type:{
ẋ = v̄ cos θ̄

ẏ = v̄ sin θ̄

Use a simple proportional control to perform this approximate inversion. Then, generate the new

input
(
v̄, θ̄
)
using the potential to be satis�ed. Illustrate the behavior of the robot with a target

p̂ = (t, t) and a �xed obstacle placed at q̂ = (4, 5).

Figure 5.6: Controller (dotted) obtained by the potential method

Page 108 of 126

http://youtu.be/rwM4-hbvOio

Luc Jaulin Mobile robotics: Guidance

3) We would now like to follow the target p̂ with a mobile obstacle at q̂ with:

p̂ =

(
cos t

10

2 sin t
10

)
and q̂ =

(
2 cos t

5

2 sin t
5

)
.

Adjust the parameters of the potential in order to follow the target without hitting the obstacle.

Illustrate the behavior of the controlled robot.

Exercise 28.� Flocking

See the correction video at https://youtu.be/g4X24h9yZAI

We consider m = 20 robots described by the following state equations:
ẋi = cos θi
ẏi = sin θi
θ̇i = ui

The state vector is x(i) = (xi, yi, θi). These robots can see all other robots, but are not able to

communicate with them. We want that there robots behave as a �ock as illustrated by Figure 5.7.

Basic models of �ocking behavior are controlled by three rules of Reynolds: the separation (short

range repulsion), the alignment and the cohesion (long range attraction). Using a potential based

method, �nd a controller for each robot to obtain a �ock.

Figure 5.7: Illustration of the �ocking behavior from a random initialization

Page 109 of 126

https://youtu.be/g4X24h9yZAI

Luc Jaulin Mobile robotics: Guidance

Exercise 29.� Consensus

See the correction video at https://youtu.be/m5WZKFrFmeM

Let us consider m robots R1, . . . , Rm, as represented by Figure 5.8. These robots are all described

by the following state equations:
ẋ1 = x4 cosx3
ẋ2 = x4 sinx3
ẋ3 = u1
ẋ4 = u2

where p = (x1, x2) is the position of the robot, θ = x3 is the heading, and v = x4 is the speed. The

input vector is u = (u1, u2). The state for Ri will thus be denoted by xi = (pi, θi, vi).

We assume that

� Each robot is able to see all other robots, i.e., the robot Ri knows the bearing vector p̃ij (in

the Ri frame), and the heading di�erence θ̃ij = θj − θi with respect to any other Rj, j ̸= i.

� Each robot Ri is able to measure its own speed vi

� The robots do not measure neither their position nor their heading, i.e., they have no GPS and

no compass

� The robots are identical and should thus enclose the same controller

� The robots are distinguishable, i.e., they know what is the number of the robots they see.

Figure 5.8: The four robots have to �nd a consensus in order to rotate around the same point. The

robot Ri measures the bearing vector p̃ij (in its own frame), and the angle θ̃ij

We want to �nd a controller to be implemented in each robot so that the swarm rotates forming

a perfect circle. To reach our goal, we propose to a controller based on the two following rules :

Page 110 of 126

https://youtu.be/m5WZKFrFmeM

Luc Jaulin Mobile robotics: Guidance

� Long range attraction. Each robot Ri is attracted by an arti�cial hook at the back of Ri+1

(where Rm+1 corresponds to R1), as illustrated by Figure 5.9. The corresponding arti�cial

force is proportional to r, the distance between the two robots.

� Close-range repulsion. Each robot is repulsed by all other robots with an arti�cial force in 1
r2
.

After a transition period, a consensus can be reached. Show on a simulation with 6 robots reaching

a consensus where the robots form a perfect circle.

Figure 5.9: R1 follows R2, R2 follows R3,R3 follows R1. The arti�cial hooks are represented by the

points at the back of each vehicle

Exercise 30.� Platooning

See the correction video at https://youtu.be/nv2utdAzesk

We consider m = 10 robots turning on a circular road of circumference L = 100m and with radius

r = L
2π
. Each robot Ri satis�es the following state equations

{
ȧi = vi
v̇i = ui

The state vector is x(i) = (ai, vi) where ai corresponds to the position of the robot and vi to its

speed. Each robot Ri is equipped with a radar which returns the distance di to the previous robot

Ri−1 and its derivative ḋi, as illustrated by Figure 5.10.

Page 111 of 126

https://youtu.be/nv2utdAzesk

Luc Jaulin Mobile robotics: Guidance

Figure 5.10: Platooning on the circle

1) Write the expression of the observation function g (ai− , ai, vi− , vi) which returns the vector

y(i) =
(
di, ḋi

)
. In this formula, i− = i − 1 if i > 0 and i− = m if i = 0. Indeed, since the road is

circular, the robot R1 follows the robot Rm.

2) Propose a proportional and derivative control so that the robots will get a uniform distribution

and go at a speed equal to v0 = 10ms−1. Check with a simulation.

3) In case of stability, prove theoretically that when the steady behavior is reached, all robots

have a speed equal to v0 and they are uniformly distributed.

4) Prove the stability of the system for 4 robots.

5) Provide a simulation with 10 robots.

Exercise 31.� Action on a vector �eld

See the correction video at https://youtu.be/p3OkCsDSdZw

Given a state equation ẋ = f(x) where x ∈ Rn and a di�eomorphism g : Rn → Rn (see Figure

5.11). The action by g on f is de�ned by

g • f =
(
dg

dx
· f
)
◦ g−1.

1) Show that if y = g(x), then we have ẏ = g • f(y). Equivalently, we say that the action by g

on the system ẋ = f(x) is the new system ẏ = (g • f) (y).

Page 112 of 126

https://youtu.be/p3OkCsDSdZw

Luc Jaulin Mobile robotics: Guidance

Figure 5.11: Action by g on f

2) Consider the system in polar coordinates as(
ṙ

θ̇

)
=

(
−r (r2 − 1)

1

)
,

where r ≥ 0. Study the behavior and the stability of the system.

3) De�ne the vector

x = g(r, θ) = r

(
cos θ

sin θ

)
where g is seen as an action. Show that

ẋ =

(
−x31 − x1x

2
2 + x1 − x2

−x32 − x21x2 + x1 + x2

)
and draw the vector corresponding vector �eld.

4) Take g(x) = Ax, and show that

(g • f) (x) = A · f(A−1 · x)

5) From the previous questions, �nd the expression of a vector �eld such that the limit cycle

is clockwise stable and corresponds to an ellipse with a major radius 2, a minor radius 1 and an

inclination of π
4
. Draw the corresponding vector �eld.

Exercise 32.� Eight circuit

See the correction video at https://youtu.be/fZVoiERmUJg

Consider a robot moving on a plane and described by the following state equations:
ẋ1 = cos x3
ẋ2 = sin x3
ẋ3 = u

Page 113 of 126

https://youtu.be/fZVoiERmUJg

Luc Jaulin Mobile robotics: Guidance

where x3 is the heading of the robot and (x1, x2) are the coordinates of its center. The state vector

is given by x = (x1, x2, x3). In this exercise, we want to �nd a controller such that the robot follows

a path with a eight shape.

1) The expression of a vector �eld converging counterclockwise to a circle of radius 1 is given by

[23]:

(
ṗ1
ṗ2

)
= Φ0(p) =

(
−p31 − p1p

2
2 + p1 − p2

−p32 − p21p2 + p1 + p2

)

Find the expression of a vector �eld Φε,ρ,c attracted by a circle of radius ρ and center c, where the

attraction is counterclockwise of ε = 1 and clockwise if ε = −1.

2) Propose a controller so that the robot follows counterclockwise a circle with a radius ρ = 2

and a center c = (2, 0). Illustrate the behavior of the controller by simulation. The wanted behavior

of the controller is illustrated by Figure 5.12.

Figure 5.12: The car is attracted counterclockwise by the circle

3) Considering two vector �elds of the form Φε,ρ,c, build an automaton with four states so that

the robot is attracted by a cycle corresponding to an eight circuit as illustrated by Figure 5.13.

Page 114 of 126

Luc Jaulin Mobile robotics: Guidance

Figure 5.13: The robot following an eight circuit

Page 115 of 126

Luc Jaulin Mobile robotics: Guidance

Page 116 of 126

Chapter 6

Path planning

6.1 Path planning

When the robot is completely autonomous, the desired path must be planned out [24]. Very

often, these paths are polynomials, for two reasons. First of all, the space of polynomials has a

vector space structure and can therefore utilize the power of linear algebra. Second, they are easier

to di�erentiate, which is useful for feedback linearization, since it requires the successive derivatives

of the setpoints.

6.1.1 Simple example

Let us illustrate how such a planning is performed on the example of a robot tank. Assume that

at the initial moment t = 0, the robot is located at the point (x0, y0) and that we would like to reach

the point (x1, y1) at time t1 with a speed equal to (v1x, v
1
y).We suggest a polynomial path of the form:

xd = axt
2 + bxt+ cx

yd = ayt
2 + byt+ cy

We need to solve the system of equations:

cx = x0, cy = y0
axt

2
1 + bxt1 + cx = x1 ayt

2
1 + byt1 + cy = y1,

2axt1 + bx = v1x, 2ayt1 + by = v1y

which is linear. We easily obtain:

ax
ay
bx
by
cx
cy

=

1
t21
x0 − 1

t21
x1 +

1
t1
v1x

1
t21
y0 − 1

t21
y1 +

1
t1
v1y

−v1x − 2
t1
x0 +

2
t1
x1

−v1y − 2
t1
y0 +

2
t1
y1

x0
y0

117

Luc Jaulin Mobile robotics: Guidance

We therefore have:

ẋd = 2axt+ bx ẏd = 2ayt+ by
ẍd = 2ax, ÿd = 2ay

By inserting these quantities into a control law obtained using linearizing feedback (as is the case for

instance with Equation (1.6)), we obtain a controller that meets our objectives.

6.1.2 Bézier polynomials

Here we will look at generalizing the approach presented in the previous section. Given the

control points p0,p1, . . . ,pn, we can generate a polynomial f(t) such that f(0) = p0, f(1) = pn and

such that for t ∈ [0, 1], the polynomial f(t) is successively attracted by the pi with i ∈ {0, . . . , n}.
In order to correctly understand the method of building Bézier polynomials, let us examine various

cases:

� case n = 1. We take the standard linear interpolation:

f (t) = (1− t)p0 + tp1.

The point f (t) corresponds to a barycenter between the control points p0 and p1, and the

weights assigned to these two points change with time:

� case n = 2. We now have three control points p0,p1,p2. We create an auxiliary control point

p01 which moves on the segment [p0,p1] and another p12 which is associated with the segment

[p1,p2]. We take:

f (t) = (1− t)p01 + tp12

= (1− t) ((1− t)p0 + tp1)︸ ︷︷ ︸
p01

+ t((1− t)p1 + tp2)︸ ︷︷ ︸
p12

= (1− t)2 p0 + 2 (1− t) tp1 + t2p2.

We thus obtain a second-order polynomial ;

� case n = 3. We apply the previous method for four control points. We obtain:

f (t) = (1− t)p012 + tp123

= (1− t) ((1− t)p01 + tp12)︸ ︷︷ ︸
p012

+ t((1− t)p12 + tp23)︸ ︷︷ ︸
p123

= (1− t)3 p0 + 3 (1− t)2 tp1 + 3 (1− t) t2p2 + t3p3

Page 118 of 126

Luc Jaulin Mobile robotics: Guidance

Figure 6.1: Illustration of second-order B-splines

� for a given n, we obtain:

f (t) =
n∑
i=0

n!

i! (n− i)!
(1− t)n−i ti︸ ︷︷ ︸

bi,n(t)

pi.

The polynomials bi,n (t), called Bernstein polynomials, form a basis of the space of n-degree

polynomials. When we increase the degree (i.e., the number of control points), numerical instability

and oscillations appear. This is called Runge's phenomenon. For complex curves with hundreds of

control points, it is preferable to use B-splines corresponding to a concatenation of Bézier curves of

limited order. Figure 6.1 illustrates such a concatenation in which, for each group of three points,

we can calculate a second-order Bézier polynomial.

6.2 Voronoi diagram

Let us consider n points p1, . . . ,pn. Contrarily to the previous sections, the pi here do not

correspond to control points, but to point obstacles that we try to avoid. To each of these points,

we associate the set:

Pi =
{
x ∈ Rd,∀j, ∥x− pi∥ ≤ ∥x− pj∥

}
.

For all i, this set is a polygon. The collection of these Pi is called a Voronoi diagram. Figure 6.2

represents a set of points with the associated Voronoi diagram. If an environment contains obstacles,

the robot will have to plan a path that remains on the borders of the Pi.

Page 119 of 126

Luc Jaulin Mobile robotics: Guidance

Figure 6.2: Voronoi diagram

Delaunay triangulation. Given n points in space, we can use the Voronoi diagrams to perform

a triangulation of the space. This corresponding triangulation, referred to as Delaunay triangulation,

allows maximizing the quantity of acute angles and thus avoid elongated triangles. It is obtained by

connecting the neighboring points of the corresponding regions with an edge in the Voronoi diagram.

In a Delaunay triangulation none of the triangles contains another point within its circumscribed

circle. Figure 6.3 represents the Delaunay triangulation associated with the Voronoi diagram in

Figure 6.2. A Delaunay triangulation is often used in robotics to represent space such as for example

the area already explored, restricted areas, lakes, etc. We often associate a color with each triangle

following the characteristics of the space the triangle belongs to (water, land, road, etc.).

Figure 6.3: Delaunay triangulation

Page 120 of 126

Exercises

Exercise 33.� Planning a path

See the correction video at http://youtu.be/mzX2DhXe3qA

Let us consider a scene with two triangles as shown on Figure 6.4, and a robot described by the

state equations:
ẋ = v cos θ

ẏ = v sin θ

θ̇ = u1
v̇ = u2

with initial state (x, y, θ, v) = (0, 0, 0, 1). This robot has to reach the point with coordinates (8, 8).

Figure 6.4: The robot has to follow a path without hitting the obstacles

1) Write a program in order to �nd the control points for a Bézier polynomial that connects the

initial position to the desired position as shown on the Figure.

2) Using feedback linearization, deduce the control law that allows to reach the objective in

50 sec.

Exercise 34.� Drawing a Voronoi diagram

121

http://youtu.be/mzX2DhXe3qA

Luc Jaulin Mobile robotics: Guidance

See the correction video at https://youtu.be/xyM9voazfDs

Let us consider the ten points in Figure 6.5. Draw the associated Voronoi diagram on a piece of

paper as well as the corresponding Delaunay triangulation.

Figure 6.5: Ten points for which we want to build a Voronoi diagram

Exercise 35.� Calculating a Voronoi diagram

See the correction video at http://youtu.be/0NO0z-ZnE4w

1) Show that if x and y are two vectors of Rn, we have the so-called polarization equations:

∥x− y∥2 = ∥x∥2 + ∥y∥2 − 2 ⟨x,y⟩

For this, develop the expression of the scalar product ⟨x− y,x− y⟩.
2) Let us consider n + 1 points a1, . . ., an+1 and their circumscribed sphere denoted by S. With

the aid of the previous question, give an expression, in function of the ai, of the center c of S and of

its radius r.

3) Let us now consider three points in the plane a1, a2, a3. Which conditions must be veri�ed for

m to be within the circle circumscribed to the triangle (a1, a2, a3) ?

4) Consider m points in the plane p1, . . . ,pm, a Delaunay triangulation is a partition of the space

into triangles T (k) = (a1 (k) , a2 (k) , a3 (k)), whose vertices are taken from the pi such that each

circle C (k) circumscribed to this triangle T (k) contains none of the pi. Write a program that takes

m = 10 random points of the plane and draws a Delaunay triangulation. What is the complexity of

the algorithm ?

5) Given the triangulation established in the previous question, build a Voronoi diagram associated

with the points a1, . . ., an+1.

Exercise 36.� Heading control of a Dubins car

Page 122 of 126

https://youtu.be/xyM9voazfDs
http://youtu.be/0NO0z-ZnE4w

Luc Jaulin Mobile robotics: Guidance

See the correction video at http://youtu.be/RTTCSJO8I20

The results of this exercise will be used in Exercise 37 for calculating Dubins paths. A Dubins

car is described by the state equations:
ẋ = cos θ

ẏ = sin θ

θ̇ = u

θ is the robot's heading and (x, y) the coordinates of its center. This robot has to be aligned with a

heading setpoint θ̄.

1) We assume that the input u ∈ [−1, 1]. Give an analytic expression of the error angle δ ∈ [−π, π]
in function of θ and θ̄ that indicates the angle the robot has to turn by in order to reach its setpoint

as fast as possible. Taken into account that the expression of δ has to be periodic relative to θ and

θ̄. Indeed, the angles of −π, π or 3π have to be considered as equivalent. Give the associated control

law and simulate it.

2) Same as above, with the exception that the robot can only turn left (in the direct trigonometric

sense), i.e., u ∈ [0, 1]. Let us note that now, δ ∈ [0, 2π].

3) Same as above, but the robot can now only turn right, i.e. u ∈ [−1, 0].

Exercise 37.� Dubins paths

See the correction video at http://youtu.be/57qdeU46Eco

As in the previous exercise, let us consider a robot moving on a plane, described by:
ẋ = cos θ

ẏ = sin θ

θ̇ = u

where θ is the robot's heading and (x, y) the coordinates of its center. Its state vector is given by

x = (x, y, θ) and its input u must remain within the interval [−umax, umax]. This is the Dubins car

[16] corresponding to the simplest possible nonholonomic mobile vehicle. Despite its simplicity, it

illustrates many di�culties that may appear within the context of nonholonomic robots.

1) Calculate the minimal radius of curvature r that can be reached by the robot.

2) Dubins showed that in order to switch from a con�guration a = (xa, ya, θa) to a con�guration

b = (xb, yb, θb) that are not too close together (i.e., separated by a distance superior to 4r), the

minimum time strategy always consists of (1) turning to the maximum in one direction (i.e., u =

±umax) ; (2) moving straight ahead ; (3) then turning to the maximum again. The path corresponding

to such a maneuver is called a Dubins path, and is thus composed of a starting arc, a segment and

a termination arc. There are four ways to construct a Dubins path: LSL, LSR, RSL, RSR, where L

means left, R means right and S stands for straight ahead. Give a con�guration for a and b such

that none of the four paths corresponds to an optimal strategy (and therefore a and b are quite close

together). A situation in which the optimal strategy is RLR will be chosen.

Page 123 of 126

http://youtu.be/RTTCSJO8I20
http://youtu.be/57qdeU46Eco

Luc Jaulin Mobile robotics: Guidance

3) In the case of an RSL strategy as illustrated on Figure 6.6, calculate the length L of the Dubins

path in function of a and b.

Figure 6.6: In bold : an RSL-type (Right-Straight-Left) Dubins path leading from a to b ; in dotted

: an RLR-type Dubins path

4) In the case of an LSL strategy, calculate the length L of the Dubins path in function of a and

b.

5) By using the re�ection symmetry of the problem, deduce L in the case of RSR and LSR

strategies, then write a function that calculates L in all situations. For this, the two Booleans εa ,εb
will be used, which are equal to 1 if the corresponding arc is in the forward direction (i.e., to the

left) and −1 otherwise.

6) Use the previous questions to write program that calculates the minimum length path for a

Dubins car.

Page 124 of 126

Bibliography

[1] R. Beard and T. McLain. Small Unmanned Aircraft, Theory and Practice. Princeton University

Press, 2012.

[2] V. Creuze. Robots marins et sous-marins ; perception, modélisation, commande. Techniques de

l'ingénieur, 2014.

[3] J.P. Laumond. La robotique mobile. Hermès, Paris, France, 2001.

[4] L. Jaulin. Représentation d'état pour la modélisation et la commande des systèmes (Coll.

Automatique de base). Hermès, London, 2005.

[5] L. Jaulin. Automation for Robotics. ISTE editions, 2015.

[6] T. Kailath. Linear Systems. Prentice Hall, Englewood Cli�s, 1980.

[7] H.K. Khalil. Nonlinear Systems, Third Edition. Prentice Hall, 2002.

[8] J.J. Slotine and W. Li. Applied nonlinear control. Prentice Hall, Englewood Cli�s (N.J.), 1991.

[9] I. Fantoni and R. Lozano. Non-linear control for underactuated mechanical systems. Springer-

Verlag, 2001.

[10] M.A. Romero-Ramirez. Contribution à la commande de voiliers robotisés. PhD dissertation,

Université Pierre et Marie Curie, France, 2012.

[11] P. Herrero, L. Jaulin, J. Vehi, and M. A. Sainz. Guaranteed set-point computation with

application to the control of a sailboat. International Journal of Control Automation and

Systems, 8(1):1�7, 2010.

[12] M. Spong, P. Corke, and R. Lozano. Nonlinear control of the reaction wheel pendulum.

Automatica, 37:1845�1851, 2001.

[13] F. Boyer, M. Alamir, D. Chablat, W. Khalil, A. Leroyer, and P. Lemoine. Robot anguille

sous-marin en 3d. In Techniques de l'Ingénieur, 2006.

[14] C. Chevallereau, G. Bessonnet, G. Abba, and Y. Aoustin. Les robots marcheurs bipèdes ;

Modélisation, conception, synthèse de la marche, commande. Hermès-Lavoisier, Paris, 2007.

125

Luc Jaulin Mobile robotics: Guidance

[15] M. Fliess and C. Join. Model-free control. International Journal of Control, 86(12):2228�2252,

2013.

[16] L. E. Dubins. On curves of minimal length with a constraint on average curvature, and with

prescribed initial and terminal positions and tangents. American Journal of Mathematics,

79(3):497, jul 1957.

[17] L. Jaulin. Commande d'un skate-car par biomimétisme. In CIFA 2010, Nancy (France), 2010.

[18] T. Gorgues, O. Ménage, T. Terre, and F. Gaillard. An innovative approach of the surface layer

sampling. Journal des Sciences Halieutique et Aquatique, 4:105�109, 2011.

[19] L. Jaulin and F. Le Bars. An Interval Approach for Stability Analysis; Application to Sailboat

Robotics. IEEE Transaction on Robotics, 27(5), 2012.

[20] T. Murata. Petri nets : properties, analysis and applications. Proceedings of the IEEE, 77(4):541�

580, 1989.

[21] E. Morelli V. Klein. Aircraft System Identi�cation: Theory And Practice. American Institute

of Aeronautics and Astronautics, 2006.

[22] J.C. Latombe. Robot Motion Planning. Kluwer Academic Publishers, Boston, MA, 1991.

[23] P. E. Hydon. Symmetry methods for di�erential equations, A beginner's guide. Cambridge Texts

in Applied Mathematics, Cambridge, 2000.

[24] S. LaValle. Planning Algorithm. Cambridge University Press, 2006.

Page 126 of 126

	Introduction to feedback linearization
	Controlling an integrator chain
	Proportional-derivative controller
	Proportional-integral-derivative controller

	Introductory example
	Dubins car

	Feedback linearization, singularities and sliding modes
	Lie derivatives
	Definition
	Relative degree

	Principle of the feedback linearization control
	Principle
	Differential delay matrix
	Singularities

	Dubins car
	Controlling a tricycle
	Speed and heading control
	Position control
	Choosing another output

	Sailboat
	Polar curve
	Differential delay
	The method of feedback linearization
	Polar curve control

	Sliding mode
	Kinematic model and dynamic model
	Principle
	Example of the inverted rod pendulum
	Dynamic model
	Kinematic model

	Servo-motors

	Model-free control
	Model-free control of a robot cart
	Proportional heading and speed controller
	Proportional-derivative heading controller

	Learning a model from data
	Principle
	Mechanical systems
	Interpolation
	Learning

	Vehicles
	Skate car
	Model
	Sinusoidal control
	Maximum thrust control
	Simplification of the fast dynamics

	Sailboat
	Problem
	Controller
	Navigation
	Experiment

	Guidance
	Guidance on a sphere
	Artificial potential field method

	Path planning
	Path planning
	Simple example
	Bézier polynomials

	Voronoi diagram

