Propulsion Inertielle

Contexte

- La grande majorité des AUVs utilisent des actionneurs extérieurs (propulseurs à hélices, ballasts, palmes) qui apportent certaines contraintes :
 - besoin d'étanchéité dynamique
 - encombrement
 - usure
- Ces contraintes peuvent devenir critiques dans certains cas d'utilisation :
 - à grande profondeur
 - en environnement contraint

YUCO-CARRIER (Seaber)

SoFI (MIT)

T200 Thruster (BlueRobotics)

BlueROV2 (BlueRobotics)

Problématique

- Comment concevoir une méthode de propulsion sous marine sans actionnement extérieur ? C'est-à-dire :
 - sans étanchéité dynamique
 - sans passage de cable vers l'extérieur
 - sans moteur immergé

Solution

Palme souple

Actionneur gyroscopique

Essai du FGL au lac de Guerlédan

Test préliminaire de l'effet gyroscopique

Solution

Palme souple

- Inspirée du vivant
- Utilisée par les plongeurs et les nageurs humains
- Adaptée sur des robots :
 - U-CAT, de l'Université de Talinn
 - SoFI, du MIT
 - FGL, ENSTA Bretagne
- Plusieurs avantages :
 - Robuste
 - Peu perturbant
 - Discret
 - Inoffensif

Corps étanche Servomoteur Palme souple

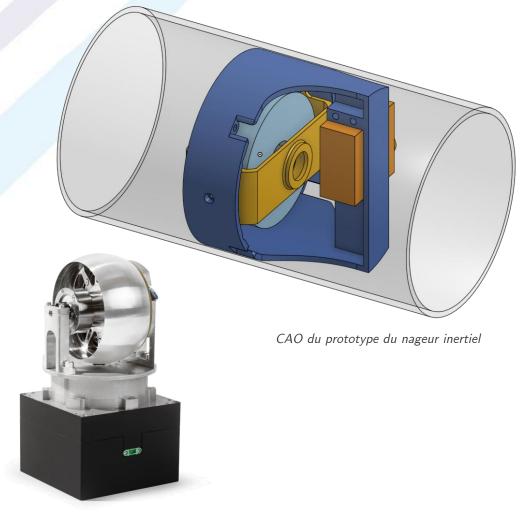
Détail du FGL

U-CAT, Talinn University

Solution

Actionneur gyroscopique

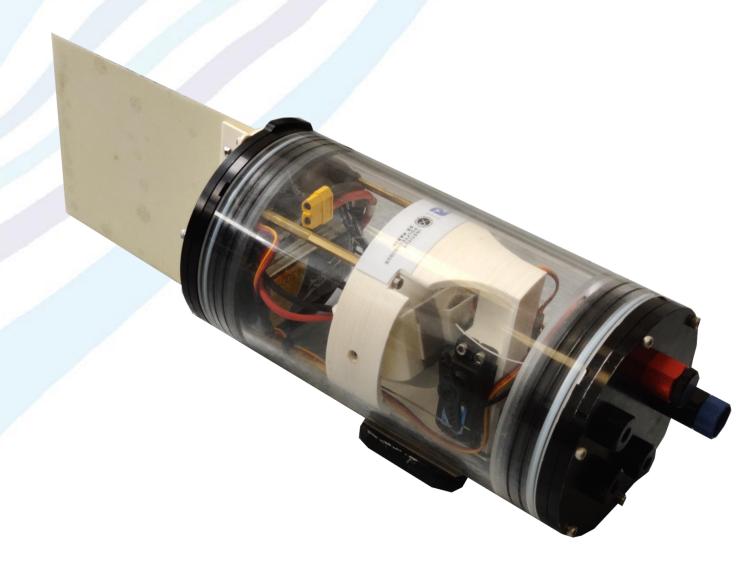
- Composé d'un volant d'inertie tournant à vitesse constante et d'un moteur pour tourner le volant selon un autre axe orthogonal
- Utilisé dans deux cas d'utilisation :
 - Pour l'orientation des satellites
 - Pour la stabilisation des navires



MicroCMG, Veoware Space

SolutionPrototype

- Prototype de nageur inertiel
- Une palme souple encastrée sur l'enceinte étanche
- Un actionneur gyroscopique



Modélisation

Palme souple

- Plusieurs méthodes de modélisation selon les hypothèses retenues :
 - Théorie de la locomotion des poissons à corps allongé et grande amplitude de Lighthill (1971)
 - Modèle de la pagaie rigide de Healey et al. (1995)

$$\begin{cases} L = 0.5 \rho U^2 S C_{\mathrm{L,max}}(\sin(2\alpha)) \\ D = 0.5 \rho U^2 S C_{\mathrm{D,max}}(1 - 2\cos(2\alpha)) \end{cases}$$

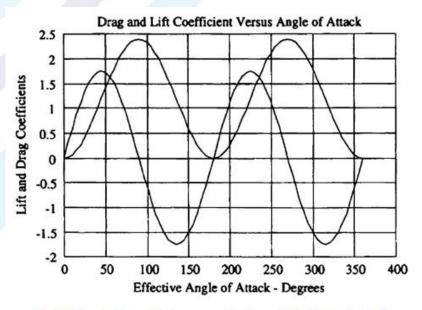


Fig. 2. Lift and drag coefficients vs. angle of attack (Healey et al., 1995).

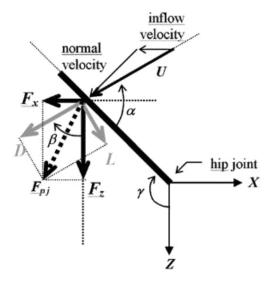
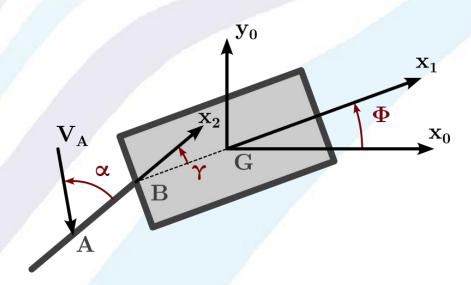


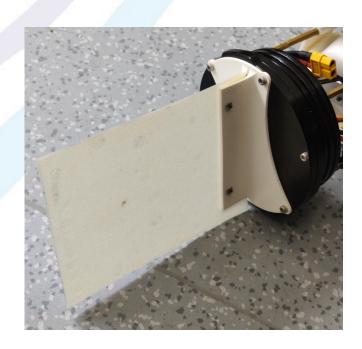
Fig. 3. Rigid paddle and inertial frame xyz.

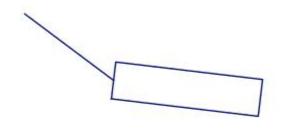
Modélisation

Palme souple

- Pour la souplesse de la palme, on modélise un comportement bistable de la pagaie rigide
- Selon le sens de la vitesse du fluide, la pagaie adopte un angle de $\pm/-\gamma$







Modélisation

Actionneur gyroscopique

• Selon les équations d'Euler pour un corps rigide :

$$I\dot{\Omega} + \Omega \times (I\Omega) = \tau$$

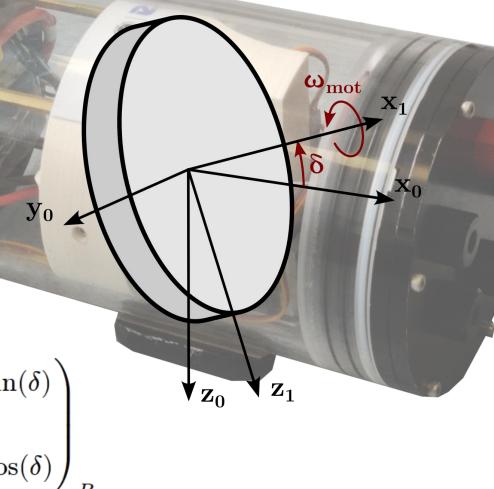
Avec :

$$\Omega = \begin{pmatrix} \omega_{\mathrm{mot}} \\ \dot{\delta} \\ 0 \end{pmatrix} \qquad I = \begin{pmatrix} I_x & 0 & 0 \\ 0 & I_y & 0 \\ 0 & 0 & I_z \end{pmatrix}$$

On obtient:

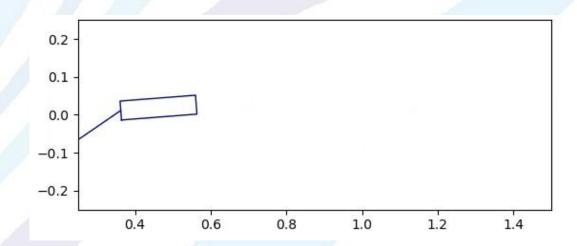
$$\tau = \begin{pmatrix} 0 \\ \ddot{\delta}I_y \\ \omega_{\mathrm{mot}}\dot{\delta}\big(I_y - I_x\big) \end{pmatrix}_{R_1}$$

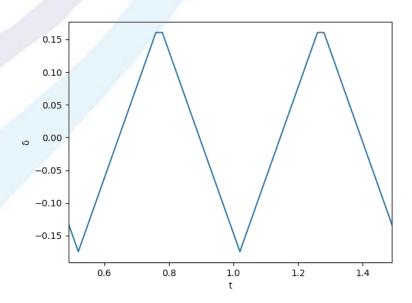
$$\tau = \begin{pmatrix} 0 \\ \ddot{\delta}I_y \\ \omega_{\text{mot}}\dot{\delta}(I_y - I_x) \end{pmatrix}_{R_1} \qquad \tau = \begin{pmatrix} \omega_{\text{mot}}\dot{\delta}\big(I_y - I_x\big)\sin(\delta) \\ \ddot{\delta}I_y \\ \omega_{\text{mot}}\dot{\delta}\big(I_y - I_x\big)\cos(\delta) \end{pmatrix}_{R_0}$$

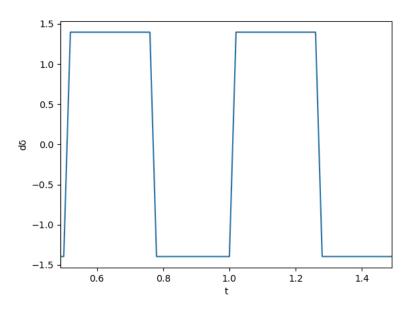


Simulation

- Simulation de l'actionneur gyroscopique, de la palme souple et des frottements visqueux
- Consigne de l'angle du servomoteur selon un signal triangle symétrique

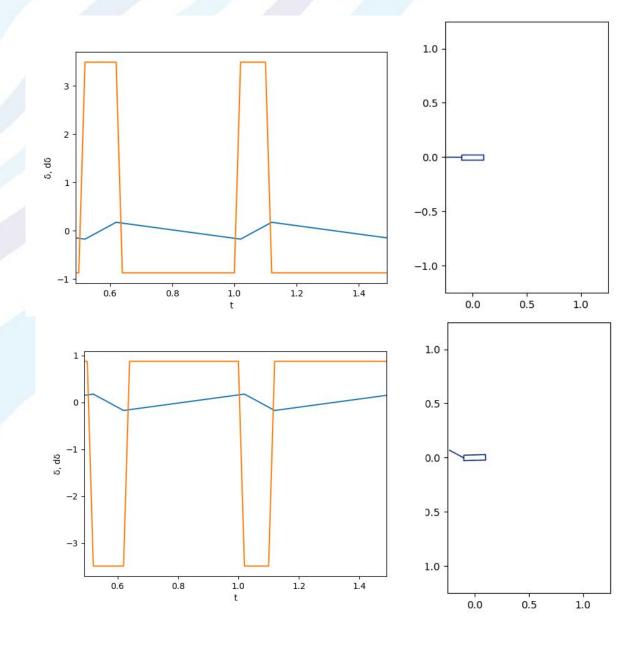






Simulation

- Consigne de l'angle du servomoteur selon un signal triangulaire asymétrique
- Permet de contrôler la rotation

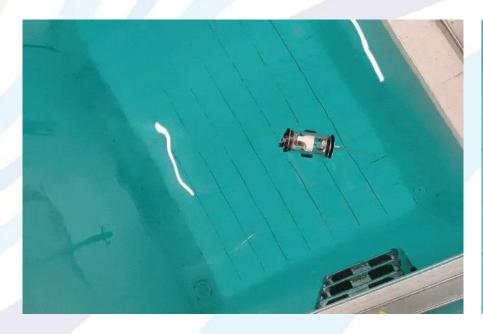


September 17, 2025 Gabriel BETTON, ENSTA 12

Essais

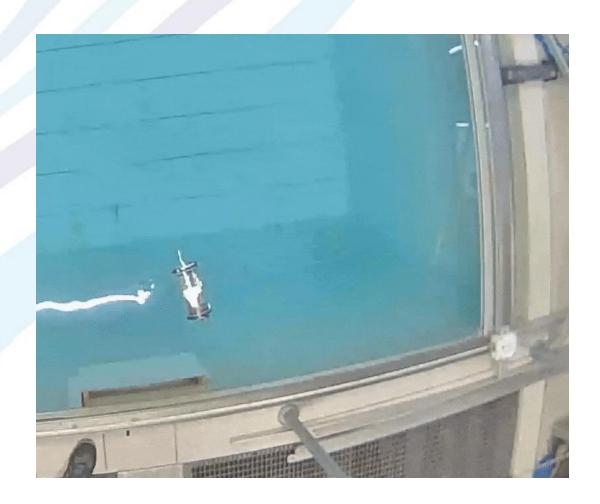
- Signal triangulaire symétrique
- Contrôle manuel pour expérimenter, oscillation "optimale" différente selon la rigidité de la palme





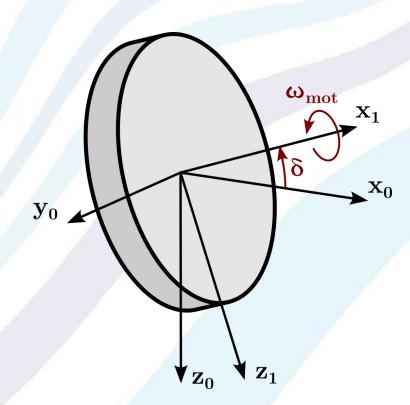
Essais

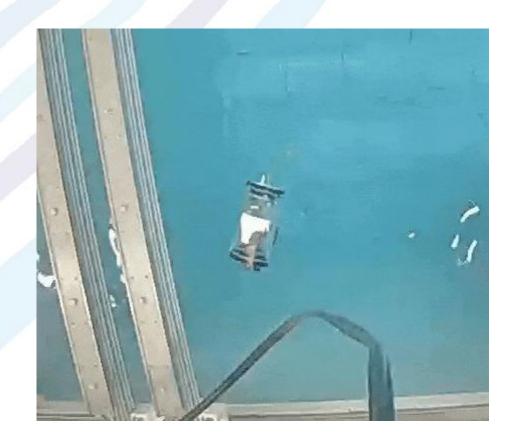
- Signal triangulaire asymétrique
- Permet de contrôler la rotation



Essais

- Rotation parasite selon l'axe x₀
- Garder δ petit pour limiter





$$\tau = \begin{pmatrix} \omega_{\mathrm{mot}} \dot{\delta} \big(I_y - I_x \big) \sin(\delta) \\ \ddot{\delta} I_y \\ \omega_{\mathrm{mot}} \dot{\delta} \big(I_y - I_x \big) \cos(\delta) \end{pmatrix}_{R_0}$$

Solution à deux actionneurs gyroscopiques

Oscillation symétrique des gyro :

$$\delta_2(t) = -\delta_1(t)$$

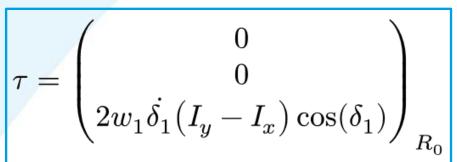
• Rotation opposée des volants :

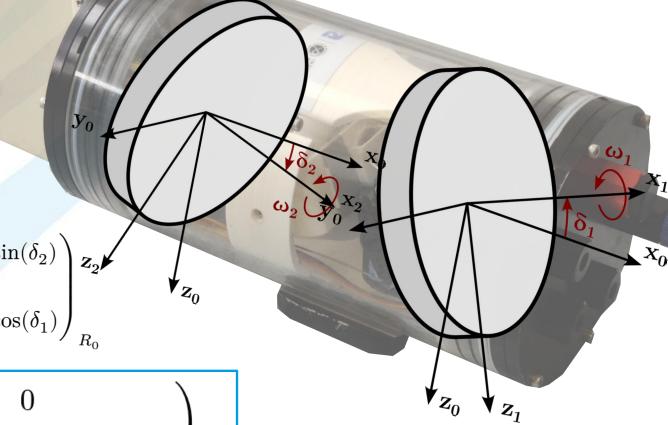
$$\omega_2 = -\omega_1$$

Donc les couples générés sont :

$$\tau_1 = \begin{pmatrix} \omega_1 \dot{\delta_1} \big(I_y - I_x\big) \sin(\delta_1) \\ \ddot{\delta_1} I_y \\ \omega_1 \dot{\delta_1} \big(I_y - I_x\big) \cos(\delta_1) \end{pmatrix}_{R_0} \tau_2 = \begin{pmatrix} \omega_2 \dot{\delta_2} \big(I_y - I_x\big) \sin(\delta_2) \\ \ddot{\delta_2} I_y \\ \omega_2 \dot{\delta_2} \big(I_y - I_x\big) \cos(\delta_1) \end{pmatrix}_{R_0} \mathbf{z}_2 \mathbf{z}_2$$

• Et le couple total est :





Merci pour votre écoute

Bonus

Relation 4.1 is a consequence of the *Euler's second law* which states that in an inertial frame, the time derivative of the angular momentum $\mathcal{L} = \mathbf{R} \cdot \mathbf{I} \cdot \mathbf{R}^{\mathrm{T}} \cdot \boldsymbol{\omega}$ equals the applied torque $\boldsymbol{\tau}$. In the inertial frame, this can be expressed as

$$\begin{split} \frac{d}{dt}\mathcal{L} &= \boldsymbol{\tau} \\ \Leftrightarrow \quad \frac{d}{dt}\left(\mathbf{R}\cdot\mathbf{I}\cdot\boldsymbol{\omega}_r\right) &= \mathbf{R}\cdot\boldsymbol{\tau}_r \\ \Leftrightarrow \quad \dot{\mathbf{R}}\mathbf{I}\cdot\boldsymbol{\omega}_r + \mathbf{R}\cdot\mathbf{I}\cdot\dot{\boldsymbol{\omega}}_r &= \mathbf{R}\cdot\boldsymbol{\tau}_r \\ \Leftrightarrow \quad \mathbf{R}^{\mathrm{T}}\dot{\mathbf{R}}\mathbf{I}\cdot\boldsymbol{\omega}_r + \mathbf{I}\cdot\dot{\boldsymbol{\omega}}_r &= \boldsymbol{\tau}_r \\ \Leftrightarrow \quad \boldsymbol{\omega}_r \wedge \left(\mathbf{I}\boldsymbol{\omega}_r\right) + \mathbf{I}\dot{\boldsymbol{\omega}}_r &= \boldsymbol{\tau}_r. \end{split}$$

Ordre de grandeur du couple généré : 1Nm $\omega mot = 30000 \text{ tr/min}$

$$d\delta = 2\pi \ rad/s$$

$$ly = 80 \text{ kg.mm}^2$$

$$lx = 40 \text{ kg.mm}^2$$