Localization of an underwater robot using interval
constraint propagation

Luc Jaulin
E312, ENSIETA, 2 rue Frangois Verny, 29806 Brest Cédex 09

! E312, ENSIETA, France
luc.jaulin@ensieta.fr,
http://wuw.ensieta.fr/e3i2/Jaulin/

2 GESMA (Croupe d’Etude Sous-Marine de I’Atlantique), Brest, France

Abstract. Since electromagnetic waves are strongly attenuated inside the water, the
satellite based global positioning system (GPS) cannot be used by submarine robots
except at the surface of the water. This paper shows that the localization problem in
deep water can often be cast into a continuous constraints satisfaction problem where
interval constraints propagation algorithms are particularly efficient. The efficiency of the
resulting propagation methods is illustrated on the localization of a submarine robot,
named Redermor. The experiments have been collected by the GESMA (Groupe d’Etude
Sous-Marine de I’Atlantique) in the Douarnenez bay, in Brittany.

1. Introduction

This paper deals with the simultaneous localization and map building problem (SLAM) in a
submarine context (see [10] for the general SLAM problem). The SLAM problem asks if it is
possible for an autonomous robot to move in an unknown environment and build a map of this
environment while simultaneously using this map to compute its location.

In this paper, we will show that the SLAM problem can be seen as a continuous constraints
satisfaction problem (CCSP) (see e.g., [16], [2], [14], [15] for notions related CCSP and applica-
tions). Then, we will propose to use a basic constraints propagation algorithm (2B-consistency)
to solve the CCSP. The efficiency of the approach will be illustrated on an experiment where an
actual underwater vehicle is involved. In this problem, we will try to find an envelope for the
trajectory of the robot and to compute sets which contain some detected objects.

Many ideas presented here can be found in [5] and [12] where interval analysis has already
been used in the context of SLAM for wheeled robots. But the approach is here made more
efficient by the addition of constraints propagation techniques, that have never been used in
this context. Note that there exist many other robotics applications where interval constraints
propagation methods have been successful (see e.g., [1] for the calibration of robots, [9], [13] for
state estimation, [11], [17] for control of robots, [4] for topology analysis of configuration spaces,

The paper is organized as follows. The robot to be considered will first be presented in
Section 2. Then, in Section 3, a brief description of the available sensors will be given. By taking
into account the state equations of the robot and the interpretation of the sensors, Section 4
will provide the constraints that will make it possible to cast our SLAM problem into a CCSP.



Fig. 2.1. The autonomous underwater vehicle, Redermor, built by the GESMA (Groupe d’Etude Sous-
Marine de 1’ Atlantique)

The efficiency of our approach will be illustrated on an actual expriment in Section 5.1. Section
6 will then conclude the paper.

2. Robot

The robot to be considered in our application (see Figure 2.1) is an autonomous underwater
vehicle (AUV), named Redermor (means greyhound of the sea, in the Breton language). This
robot, developed by the GESMA (Groupe d’Etude Sous-Marine de I’Atlantique), has a length
of 6 m, a diameter of 1 m and a weight of 3800 Kg. It has powerful propulsion and control
system able to provide hovering capabilities. The main purpose of the Redermor is to evaluate
improved navigation by the use of sonar information. It is equipped with a KLEIN 5400 side
scan sonar which makes it possible to localize objects such as rocks or mines. It also encloses
other sophisticated sensors such as a Lock-Doppler to estimate its speed and a gyrocompass to
get its three Euler angles (i.e., its orientation).

3. Measurements

3.1. Sensors

The robot is equipped with the following sensors



— A GPS (Global Positioning System). A constellation of 24 satellites broadcasts precise
timing signals by radio to GPS receivers, allowing them to accurately determine their location
(longitude, latitude and altitude) in any weather, day or night, anywhere on the surface of
the Earth. However, since electromagnetic waves (here around 1.2 MHz), do not propagate
through the water, this sensor is operational only when the robot is at the surface of the
ocean, but not when it is inside the water. During our two-hours experiment, using the GPS,
the robot is only able to measure the location where it is dropped and the location where
it comes back to the surface. Thus, we know that at time ¢y = 6000 s, the robot has been
dropped approximately around the position

= (£, 07) = (—4.458227931°, 48.212920614°) , (3.1)
where ¢9 is the west/east longitude and €2 is the south/north latitude. The error related
to this position is less than 2.5 meters. When the robot returns to the surface, at time
ty = 11999.4 sec, its position is approximately (i.e., again with an error less than 2.5 meters)
given by

0F= (04, 07) = (—4.454660760°, 48.219129760°) . (3.2)
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— A sonar (KLEIN 5400 side scan sonar). During its mission, the robot detects objects using
a sonar located starboard (i.e. on its right-hand side). This sonar emits ultrasonic waves
to build images such as that represented on Figure 3.1. This image, also called a waterfall,
is about 75m large for more than 10 km high (corresponding to the length covered by the
robot during its mission). After the mission, a scrolling of the waterfall is performed by
a human operator which is then able to perform an estimation 7(¢) of the distance r(t)
from the robot to an object detected at time ¢. Recall that the positions of the objects are
assumed to be unknown. From the width of the black vertical band on the left of the picture
(called the water column), we are also able to compute an estimation a(t) of the altitude
a(t) of the robot (distance between the robot and the bottom). Figure 3.1 is related to the
detection of the Hth object in the case of the mission made by the robot. The associated ping
is represented by the thin white rectangle. Up to now, the detection of an object and the
matching between objects are performed manually, from a scrolling of the waterfall, once
the robot has accomplished its mission. But we are planning to develop an automatic and
reliable procedure for this task.

— A Loch-Doppler. This sensor makes it possible to compute the speed of the robot v,. and
returns it in the robot frame. The Lock-Doppler emits ultrasonic waves which are reflected
on the bottom of the ocean. Since the bottom is immobile, this sensor is able to compute an
estimation of its speed using the Doppler effect. When the frequency of the waves is around
300 kHz, then the actual speed is known to satisfy

Vi € ¥y +0.004 % [—1,1] ¥, + 0.004 % [—1, 1]. (3.3)

where v, denotes the three dimensional speed vector returned by the sensor. The Loch-
Doppler is also able to provide the altitude a of the robot with an error less than 10cm.

— A Gyrocompass (Octans IIT from IXSEA). This sensor uses the Sagnac effect and the
rotation of the earth to compute the three Euler angles (the roll ¢, the pitch , and the head
1) of the robot with a high accuracy. If we denote by ¢, 0,1, the angles returned by our



Fig. 3.1. The sonar image makes it possible to detect an object, to compute the distance r between the
object and the robot, and the altitude a of the robot

gyrocompass, then the actual Euler angles for our robot should satisfy

¢ ¢ 1.75 x 1074.[—1,1]
0 )lelo]+|1mx10t[-1,1]]. (3.4)
" b 5.27 x 1073.[—1,1]

— A barometer is used to compute the depth of the robot (i.e., the distance between the
robot and the surface of the ocean). If d is the depth collected by the sensor, then the actual
depth p,(t) of the robot satisfies p.(t) € [~1.5,1.5] + d.[0.98,1.02]. The interval [—1.5,1.5]
may change depending on the strength of waves and tides.

3.2. Measurements

For each time ¢ € 7 %' {6000.0, 6000.1, 6000.2, ...,11999.4}, the vector of measurements

(0) = (30,000, 9(0), 7 (0, 52(0),5(1),a(0), 1)) (35)

is collected. Using the characteristics of the sensors, it is possible to get a box [u(t)] which
contains the actual value for the vector

u(t) = (a(t), 0(t), (1), v (1), v} (t), v7 (t), a(t), p=(t)) , (3.6)

for each t € 7.
Moreover, six objects have been detected manually from the sonar waterfall (i.e. the sonar
image) collected by the robot. Table 3.1, provides (i) the number i of the ping where an object has



been detected starboard, (ii) the corresponding time 7(4), (iii) the number o (i) of the detected
object, and (iv) a measure 7(i) of the distance between the robot and the object. The actual
distance r(7) between the robot and the object for the ith ping is supposed to satisfy the relation

r(i) € [rF(3) — 1,7(i) + 1]. (3.7)

Table 3.1. Measurements related to the objects detected by the sonar

i 0 1 2 3 4 5 6 7 8 9 10 11
7(i) 7054 7092 7374 7748 9038 9688 10024 10817 11172 11232 11279 11688
o) 12 1 0 1 5 4 3 3 4 5 1
7(i) 52.42 12.47 54.40 52.68 27.73 26.98 37.90 36.71 37.37 31.03 33.51 15.05

4. Constraints

— = —
Around the zone covered by the robot, let us build the frame (O, i, j, k) where O is the
— —
location of the robot at time ¢ty = 6000s, the vector i indicates the north, j indicates the east
—
and k is oriented toward the center of the earth. Denote by p = (ps, py, p-) the coordinates of

— = —
the robot expressed in the frame (O, i, j, k). From the latitude and the longitude, given by
the GPS, we can deduce the two first coordinates of the robot using the following relation:

Pz _ 0 1 L, *59
(py) = 111120 % (cos (gy*l_TSrO) 0) (gy_gg . (4.1)

Moreover, the robot motion can be described by the following differential equation (also called
state equation)

p(t) = R(o(1),0(t), ¥(t)).v(t), (4.2)
where
cosp —sin 0 cosf 0 siné 1 0 0
R(4,0,v) = | siny cosyp 0 0 1 0 0 cosp —sing
0 0 1 —sinf 0 cos 6 0siny cosy

and v, represents the speed of the robot measured by the Loch-Doppler sensor (see Equation
(3.3)). Figure 4.1 gives an illustration of the meaning of the angles v, 0, ¢. From the right to the
left, we have (¢, 0, ¢) equal to (0,0,0), (1,0,0), (0,1,0) and (0,0,1).

The state equation (4.2) can be interpreted as a constraint between the five functions
p(),0(.),0(.),¥(.) and v,(.). Although this type of constraints could be handled inside a con-
straint propagation formalism [7, 8], for simplicity, we shall approximate this constraint between
functions by a constraint between variables by resorting to a discretrization. This operation
makes it possible to cast our problem into a classical CSP over continuous domains, but it re-
moves the compleness of our approach. Since the sampling time is given by § = 0.1s, an Euler
discretization of the state equation (4.2) yields

p(t+0.1) =p(t) + 0.1 x« R(H(), 0(t), ¥ (¢)). v, (). (4.3)



Fig.4.1. The Redermor for different configurations (v, 0, ¢)

When the ith object is detected at time ¢t = 7(4) (see Table 3.1), it is located starboard of the
robot and on a plane which is perpendicular to the robot axis (see Figure 4.2). The associated
constraints are

[0, 0] x [0, <] (4.4)

where, m(c (7)) represents the location of the ith object and R (¢,6,%). (m — p) represents the
vector m — p expressed in the robot frame. In the constraint (ii), the first interval [0, 0] means
that the vector m — p is perpendicular to the main axis of the robot, the second interval [0, co]
indicates that the object is starboard and the third interval [0, o] indicated that the object is
deeper than the robot itself. If we assume that the bottom of the ocean is flat, then we should
have m.(o(i)) = p.(t) + a(t) (i.e., the depth m, of the object lying on the bottom is equal to
the altitude a of the robot plus the depth p. of the robot). The constraint (iii) translates this
relation with a small uncertainty represented by the interval [—0.5,0.5]. This assumption is true
if the slope of the (almost flat) bottom is limited to % = 0.7%, which is true in the bottom the
Douarnenez bay.



bottom

Fig. 4.2. The distance from the robot to the detected object can be obtained using a lateral sonar

5. Results

5.1. Constraints satisfaction problem
Our SLAM problem can be cast into the following constraints satisfaction problem.

t € {6000.0,6000.1,6000.2, .. .,11999.4}, i€ {0,1,...,11},

<£§§8) = 111120. (COS (ey((z) f 1) (1)) <§28 j%) ’

P(t) = (p=(1),py (1), p=(t)),

(cos W(t) —sinp(t) 0) ( cosf(t) 0 sin G(t))
Ry (t) = | siny(t) cosy(t) 0|, Ro(t) = 0 1 0 ,
0 0 1 —sin6(t) 0 cos O(t)

R, (1) = ((1)cos?o<t> —sir?w)) | R() = Ru(t/Ro(ORH (1),
0 sinp(t) cose(t)

p(t+0.1) = p(t) + 0.1 « R(t).v,.(¢),

lm(o (@) —p(r(@)I| =r(),

R (7(i)) (m(a(i)) — p(7(i))) € [0,0] x [0, 00] x [0, oc],

m;(0(i)) — p-(7(i)) — a(r(i)) € [-0.5,0.5]




These constraints involve more than 300 000 variables (if a scalar decomposition of the vectors
in performed). The sensors (GPS, sonar, ...) make it possible to get some accurate domains for
the variables ¢(t), 0(t), ¥(t), v, (), a(t), p-(t), £;(6000), £,(6000), £,(11999.4), £,(11999.4). The
other variables £,(6000.1), ..., £;(11999.3), £,(6000.1), ..., £,(11999.3), p,(6000), . .., p»(11999.4),
Py (6000), ..., py(11999.4), m(0),...,m(5) are unknown and the domains for their components
should initially be instantiated to [—o0, 0o].

A constraints propagation procedure could thus be thought to contract all domains of our
CCSP. Since we want to get accurate results, a scalar decomposition of the matrix constraints
involved in our CSP is not recommended. Instead, we have developed efficient contraction algo-
rithms associated to all our matrix constraints, such as A = B« C, ||v|| = r,.... An illustration
is given by the following example.

Example: To contract the constraint R(t) = Ry (t)Rg(t)R(t) involved in our CSP, we can
take into account the fact that the matrices are all rotation matrices (i.e., their inverse is equal
to their transpose). From this constraint, we can built other matrix constraints, as follows

R(t) = Ry(t)Ro(1)R, (1) & R(HR, (1) = Ry (H)Ro(?)
S RORL(OR) (1) =Ry(t) & ...

From all these generated redundant constraints; one can built contractors by decomposing them
into scalar constraints and by using a hull consistency procedure. The resulting procedure con-
stitutes an efficient contractor for the constraint R(t) = Ry (t)Ro(t)Ry(2).

5.2. Propagation

The results obtained by an elementary constraints propagation algorithm (similar to hull con-
sistency) are illustrated by Figure 5.1. Subfigure (a) represents a punctual estimation of the
trajectory of the robot. This estimation has been obtained by integrating the state equations
(4.2) from the initial point (represented on lower part). We have also represented the 6 objects
that have been dropped manually at the bottom of the ocean during the experiments. Note
that we are not supposed to know the location of these six object. When we dropped them, we
measured their location, but we used this information only to check the consistency of results
obtained by the propagation. Subfigure (b) represents an envelope of the trajectory obtained
using an interval integration, from a small initial box, obtained by the GPS at the beginning of
the mission. In Subfigure (c) a final GPS point has also been considered and a forward-backward
propagation has been performed up to equilibrium. In Figure (d) the constraints involving the
object have been considered for the propagation. The envelope is now thinner and enveloping
boxes containing the objects have also been obtained (see Subfigure (e)). We have checked that
the actual positions for the objects (that have been measured independently during the experi-
ments) all belong to the associated box, painted black. In Subfigure (f), a zooming perspective
of the trajectory and the enveloping boxes for the detected objects have been represented. The
computing time to get all these envelopes is less than one minute with a Pentium III. About
ten forward-backward interval propagations have been performed to get the steady box of the
CCSP. The C++ code associated with this example as well as a windows executable program
can be downloaded at

http://www.ensieta.fr/e3i2/Jaulin/redermorcp06.zip
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Fig. 5.1. Results obtained by our constraints propagation method



In the case where the position of the objects is approximately known, the SLAM problem
translates into a state estimation problem. The structure of the CSP becomes a tree [9] and it
is possible to get the global consistency with only one forward and one backward propagation.
The envelope for the trajectory becomes very thin and a short computation time is needed.
The capabilities of interval propagation methods for state estimation in a bounded error context
have already been demonstrated in several applications (see e.g., [6], [3], [1] [9]). For the SLAM
problem, the graph of the CSP is not a tree anymore. Of course, the number of cycles of the graph
is rather limited, and a large part of the graph is made with one huge tree resulting from the
state space equations. Because of these cycles, the global consistency cannot be reached without
any bissection. Now, the number of variables of our CSP is huge and we should give up the idea
of reaching the global consistency via bissections. On the other hand, redundant constraints can
easily be obtained by adding other sensors or by handling the existing constraints, in a symbolic
way. Adding redundant constraints could thus be a realistic way to control the accuracy of an
interval contraints propagation method for the SLAM problem.

6. Conclusion

In this paper, we have shown that interval constraints propagation could be applied to solve
SLAM problems. The efficiency of the approach has been demonstrated on an experiment made
with an actual underwater robot (the Redermor). The experiment lasted two hours and involved
thousands of data. if all assumptions on the bounds of the sensors, on the flat bottom, on the
model of the robot, ... are satisfied, then their exists always at least one solution of the CSP: that
corresponding to the actual trajectory of the robot. Thus their is no need to prove the existence of
a solution. Since the CSP has more variables than equations, the solution set contains generally
a continuum of points.

When outliers occur during the experiment, our approach is not reliable anymore and one
should take care about any false interpretation of the results. Consider now three different
situation that should be known by any user of our approach for SLAM.

Situation 1. The solution set is empty and an empty set is returned by the propagation
procedure. Our approach detects that their exists at least one outlier but it is not able to return
any estimation of the trajectory and the positions of the objects. It is also not able to detect
which sensor is responsible for the failure.

Situation 2. The solution set is empty but nonempty thin intervals for the variables are
returned by the propagation. Our approach is not efficient enough to detect that outliers exist
and we can wronly interpret that an accurate and guaranteed estimation of the trajectory of
the robot has been done. Other more efficient algorithms could be able to prove that no solution
exists which would lead us to the situation 1.

Situation 3. The solution set is not empty but it does not contain the actual trajectory of
the robot. No method could be able to prove that outliers occur. Again, our approach could lead
us to the false conclusion that a guaranteed estimation of the trajectory of the robot has been
done, whereas, the robot might be somewhere else.

Now, for our experiment made on the Redermor, it is clear that outliers might be present.
We have observed that when we corrupt some data volontarily (to create ouliers), the propaga-
tion method usually returns rapidly that no solution exists for our set of constraints. For our
experiment with the data collected, we did not obtain an empty set. The only thing that we can

10



conclude is that no outliers have been detected. The constraints propagation method can thus
be seen a tool to validate (or unvalidate) reliability on models and sensor bounds.
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