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Abstract. This paper proposes a set approach for the simultaneous localization
and mapping (SLAM) in a submarine context. It shows that thisproblem can
be cast into a constraint satisfaction problem which can be solve efficiently us-
ing interval analysis and propagation algorithms. The efficiency of the resulting
propagation method is illustrated on the localization of submarine robot, named
Redermor. The experiments have been collected by the GESMA (Groupe d’Etude
Sous-Marine de l’Atlantique) in the Douarnenez Bay, in Brittany.





1 Introduction

This paper deals with thesimultaneous localization and map building problem (SLAM)
in a submarine context (see [9] for the general SLAM problem). A set membership
approach for SLAM (see e.g., [11]) will be considered and it will be shown that this
approach leads us to aconstraints satisfaction problem (CSP) (see e.g., [8] for notions
related CSP and applications) which can be solved efficiently using interval constraints
propagation. The efficiency of the approach is illustrated on an experiment wherean
actual underwater vehicle is involved. In this problem, we try to find an envelope for
the trajectory of the robot and to compute sets which contains some detected sea marks
(such as mines).

Set-membership methods have often been considered for the localization of robots
(see, e.g., [13], [7], in the case where the problem is linear). In situations where strong
nonlinearities are involved, interval analysis has been shown to be particularly usefull
(see e.g. [12], where one of thefirst localization of an actual robot has been solved with
interval methods). Interval analysis has been shown to be efficient in several SLAM
applications (see [4] and [14] where interval analysis has already been used in the con-
text of SLAM for wheeled robots). But the approach is here made more efficient by the
addition of constraint propagation techniques. Note that there exist many other robotics
applications where interval constraint propagation methods have been successful (see,
e.g., [1] for the calibration of robots, [15] for state estimation, [6] for dynamic localiza-
tion of robots, [10], [17] for control of robots, [3] for topology analysis of configuration
spaces,. . . ).

2 Robot

The robot to be considered in our application is an autonomous underwater vehicle
(AUV), namedRedermor (see Figure 1). This robot, developed by GESMA (Groupe
d’Etude Sous-Marine de l’Atlantique), has a length of 6 m, a diameter of 1 m and a
weight of 3800 Kg. It has powerful propulsion and control system able to provide hov-
ering capabilities. The main purpose of theRedermor is to evaluate improved naviga-
tion by the use of sonar information. It is equipped with a KLEIN 5400 side scan sonar
which makes it possible to localize objects such as rocks or mines. It also encloses other
sophisticated sensors such as a Lock-Doppler to estimate its speed and a gyrocompass
to get its Euler angles.

3 Method

In the graphSLAM approach [16], a criterion is built by taking all constraints into ac-
count. Then, a local minimization method, such as conjugategradient, is used tofind
a good solution of the SLAM problem. Here, we adopt a similar approach, but instead
of building a criterion, we cast the SLAM problem into a huge constraints satisfaction



Fig. 1. The Redermor inside the water and the boat from which it has been dropped

problem (CSP). For our problem, these constraints are givenbelow.
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p(t) = (px(t), py(t), pz(t)), p(t+ 0.1) = p(t) + 0.1 ∗R(t).vr(t),
||m(σ(i))− p(τ(i))|| = r(i),
RT(τ(i)) (m(σ(i))− p(τ(i))) ∈ [0, 0]× [0,∞]× [0,∞],
mz(σ(i))− pz(τ(i))− a(τ(i)) ∈ [−0.5, 0.5]

In these constraints,p = (px, py, pz) denotes center of the robot,(ψ, θ, ϕ) denote
the Euler angles of the robot,σ (i) is the number of theith detected object,τ (i) is the
time corresponding theith detection andm(j) is the location of thejth object. From
this CSP, a constraint propagation procedure (see, e.g., [8]) can thus be used to contract
all domains for the variables without loosing a single solution.

4 Results

A constraints propagation procedure has been used to contract all domains of our CSP.
The results obtained are represented on Figure 2. Subfigure (a) represents a punctual
estimation of the trajectory of the robot. This estimation has been obtained by inte-
grating the state equations from the initial point (represented on lower part). We have



also represented the 6 objects that have been dropped at the bottom of the ocean dur-
ing the experiments. Subfigure (b) represents an envelope of the trajectory obtained
using an interval integration, from a small initial box, obtained by the GPS at the begin-
ning of the mission. In Subfigure (c) afinal GPS point has also been considered and a
forward-backward propagation has been performed up to equilibrium. In Figure (d) the
constraints involving the object have been considered for the propagation. The envelope
is now thinner and enveloping boxes containing the objects have also been obtained (see
Subfigure (e)). We have checked that the unknown actual positionsfor the objects (that
have been measured independently during the experiments) all belong to the associ-
ated box, painted black. In Subfigure (f), a zooming perspective of the trajectory and
the enveloping boxes for the detected objects have been represented. The computing
time to get all these envelopes in less than one minute with a Pentium III. About ten
forward-backward interval propagations have been performed to get the steady box of
the CSP.

In the case where the position of the marks is approximately known, the SLAM
problem translates into a state estimation problem. The envelope for the trajectory be-
comes very thin and a short computation time is needed. The capabilities of interval
propagation methods for state estimation in a bounded errorcontext have already been
demonstrated in several applications (see e.g., [5], [2], [1], [6], [8]).

Figure 3 contains the reconstructed waterfall (above) and one zoom (below). Each
line corresponds to one of the six seamarks (i = 0, . . . , 5) that have been detected.
The gray areas contains the set of all feasible pairs(t, ‖p−mi‖), associated to the
migration hyperbola. The twelve small black disks correspond to the detected marks.
From each disk, we can get the timet at which the mark has been detected (x-axis), the
number of the mark (corresponding to the line), and the distanceri between the robot
and the mark (y-axis). Black areas correspond to all feasible(t, ri). Some of these areas
are tiny and are covered by a black disk. Some are larger and donot contain any black
disk. In such a case, an existing mark may have been missed by the operator during
the scrolling of the waterfall. As a consequence, with the help of Figure 3, the operator
could scan again the waterfall andfind undetected marks much more efficiently. If the
operator (which could be a human or a program) is able to detect at least one more mark,
then, the propagation algorithm could be thrown once more toget a thinner envelope
for the trajectory, thinner black areas in the reconstructed waterfall and thus a higher
probability to detect new marks on the waterfall,. . . The operator can thus be seen as a
contractor ([8]) inside a constraint propagation process.

5 Conclusion

In this paper, we have shown that interval constraints propagation could be applied to
solve efficiently SLAM problems. The approach has been demonstrated on an experi-
ment made with an actual underwater robot (theRedermor). The experiment lasted two
hours and involved thousands of data. If all assumptions on the bounds of the sensors,
on theflat bottom, on the model of the robot,. . . are satisfied, then their exists always



Fig. 2. Results obtained by the interval constraint propagation



Fig. 3. The reconstructed waterfalls can help tofind undetected marks

at least one solution of our problem: that corresponding to the actual trajectory of the
robot.

When outliers occur during the experiment, our approach is not reliable anymore
and one should take care about any false interpretation of the results. Consider now
three different situation that should be known by any user ofour approach for SLAM.

Situation 1. The solution set is empty and an empty set is returned by the propa-
gation procedure. Our approach detects that their exists atleast one outlier but it is not
able to return any estimation of the trajectory and the positions of the marks. It is also
not able to detect which sensor is responsible for the failure.

Situation 2. The solution set is empty but nonempty thin intervals for the variables
are returned by the propagation. Our approach is not efficient enough to detect that
outliers exist and we can wrongly interpret that an accurateand guaranteed estimation
of the trajectory of the robot has been done. Other more efficient algorithms could be
able to prove that no solution exists which would lead us to the situation 1.

Situation 3. The solution set is not empty but it does not contain the actual trajectory
of the robot. No method could be able to prove that outliers occur. Again, our approach
could lead us to the false conclusion that a guaranteed estimation of the trajectory of
the robot has been done, whereas, the robot might be somewhere else.

Now, for our experiment made on the Redermor, it is clear thatoutliers might be
present. We have observed that when we corrupt some data voluntarily (to create out-
liers), the propagation method usually returns rapidly that no solution exists for our set
of constraints. For our experiment, with the data collected, we did not obtain an empty
set. The only thing that we can conclude is that if no outlier exist (which cannot be
guaranteed), then the provided envelope contains the actual trajectory for the robot.
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