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Abstract. This paper proposes a set approach for the simultaneouizitan
and mapping (SLAM) in a submarine context. It shows that fhigblem can
be cast into a constraint satisfaction problem which candbeesficiently us-
ing interval analysis and propagation algorithms. THeieicy of the resulting
propagation method is illustrated on the localization dfrearine robot, named
Redermor. The experiments have been collected by the GESMA (Grotpeide
Sous-Marine de’Atlantique) in the Douarnenez Bay, in Brittany.






1 Introduction

This paper deals with theémultaneous localization and map building problem (SLAM)

in a submarine context (see [9] for the general SLAM problefnyet membership
approach for SLAM (see e.g., [11]) will be considered andilt e shown that this
approach leads us tocanstraints satisfaction problem (CSP) (see e.qg., [8] for notions
related CSP and applications) which can be solvédiehtly using interval constraints
propagation. The étiency of the approach is illustrated on an experiment where
actual underwater vehicle is involved. In this problem, weto find an envelope for
the trajectory of the robot and to compute sets which coatsime detected sea marks
(such as mines).

Set-membership methods have often been considered favdhkzhtion of robots
(see, e.g., [13], [7], in the case where the problem is Indasituations where strong
nonlinearities are involved, interval analysis has beawshto be particularly usefull
(see e.g. [12], where one of tfiest localization of an actual robot has been solved with
interval methods). Interval analysis has been shown to figiesft in several SLAM
applications (see [4] and [14] where interval analysis i@sady been used in the con-
text of SLAM for wheeled robots). But the approach is here enadre eficient by the
addition of constraint propagation techniques. Note thexta exist many other robotics
applications where interval constraint propagation maghmave been successful (see,
e.g., [1] for the calibration of robots, [15] for state estimatj¢6] for dynamic localiza-
tion of robots, [10], [17] for control of robots, [3] for topmgy analysis of cofiguration
spaces,..).

2 Robot

The robot to be considered in our application is an autonemowerwater vehicle
(AUV), namedRedermor (see Figure 1). This robot, developed by GESMA (Groupe
d’Etude Sous-Marine déAtlantique), has a length of 6 m, a diameter of 1 m and a
weight of 3800 Kg. It has powerful propulsion and controltsys able to provide hov-
ering capabilities. The main purpose of tRedermor is to evaluate improved naviga-
tion by the use of sonar information. It is equipped with a KNEB400 side scan sonar
which makes it possible to localize objects such as rockdmesnlt also encloses other
sophisticated sensors such as a Lock-Doppler to estinsaspaed and a gyrocompass
to get its Euler angles.

3 Method

In the graphSLAM approach [16], a criterion is built by tadiall constraints into ac-
count. Then, a local minimization method, such as conjugeddient, is used ténd

a good solution of the SLAM problem. Here, we adopt a simifgsraach, but instead
of building a criterion, we cast the SLAM problem into a hugmstraints satisfaction



Fig. 1. The Redermor inside the water and the boat from which it has Bespped

problem (CSP). For our problem, these constraints are digtw.
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In these constrainty = (p., py,p-) denotes center of the robdt), 0, p) denote
the Euler angles of the robat,(7) is the number of théth detected object; (7) is the
time corresponding th&h detection andn(j) is the location of theith object. From
this CSP, a constraint propagation procedure (see, €}jgcdB thus be used to contract
all domains for the variables without loosing a single olut

4 Reaults

A constraints propagation procedure has been used to cbatrdomains of our CSP.

The results obtained are represented on Figure 2i@ub (a) represents a punctual
estimation of the trajectory of the robot. This estimatias been obtained by inte-
grating the state equations from the initial point (repnése on lower part). We have



also represented the 6 objects that have been dropped atttbenkof the ocean dur-
ing the experiments. Stigure (b) represents an envelope of the trajectory obtained
using an interval integration, from a small initial box, aloed by the GPS at the begin-
ning of the mission. In Sulgure (c) afinal GPS point has also been considered and a
forward-backward propagation has been performed up tdiledguim. In Figure (d) the
constraints involving the object have been consideredifoptopagation. The envelope

is now thinner and enveloping boxes containing the objemts hlso been obtained (see
Sulfigure (e)). We have checked that the unknown actual positarribe objects (that
have been measured independently during the experimdhts)lang to the associ-
ated box, painted black. In Sfipure (f), a zooming perspective of the trajectory and
the enveloping boxes for the detected objects have beeasemed. The computing
time to get all these envelopes in less than one minute witardidm Ill. About ten
forward-backward interval propagations have been peddrto get the steady box of
the CSP.

In the case where the position of the marks is approximatetyvk, the SLAM
problem translates into a state estimation problem. Thelepe for the trajectory be-
comes very thin and a short computation time is needed. Thabddies of interval
propagation methods for state estimation in a bounded eorttext have already been
demonstrated in several applications (see e.g., [5], 12][6], [8]).

Figure 3 contains the reconstructed waterfall (above) aredzoom (below). Each
line corresponds to one of the six seamarks=(0,...,5) that have been detected.
The gray areas contains the set of all feasible pdirsp — m;||), associated to the
migration hyperbola. The twelve small black disks correspond to the detected snark
From each disk, we can get the timat which the mark has been detecteebkis), the
number of the mark (corresponding to the line), and the witsta; between the robot
and the marky-axis). Black areas correspond to all feasifsle-;). Some of these areas
are tiny and are covered by a black disk. Some are larger andtdmntain any black
disk. In such a case, an existing mark may have been missduebyperator during
the scrolling of the waterfall. As a consequence, with thp béFigure 3, the operator
could scan again the waterfall afidd undetected marks much moréeéntly. If the
operator (which could be a human or a program) is able to tatézast one more mark,
then, the propagation algorithm could be thrown once moigeta thinner envelope
for the trajectory, thinner black areas in the reconstdigtaterfall and thus a higher
probability to detect new marks on the waterfall, The operator can thus be seen as a
contractor ([8]) inside a constraint propagation process.

5 Conclusion

In this paper, we have shown that interval constraints ratian could be applied to
solve eficiently SLAM problems. The approach has been demonstratesh@xperi-
ment made with an actual underwater robot (@edermor). The experiment lasted two
hours and involved thousands of data. If all assumptionderbbunds of the sensors,
on theflat bottom, on the model of the robot,. are satified, then their exists always
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Fig. 2. Results obtained by the interval constraint propagation
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Fig. 3. The reconstructed waterfalls can heldited undetected marks

at least one solution of our problem: that correspondindné¢oactual trajectory of the
robot.

When outliers occur during the experiment, our approacloigeliable anymore
and one should take care about any false interpretationeofasults. Consider now
three different situation that should be known by any useunfapproach for SLAM.

Situation 1. The solution set is empty and an empty set is returned byritygap
gation procedure. Our approach detects that their existastt one outlier but it is not
able to return any estimation of the trajectory and the fosstof the marks. It is also
not able to detect which sensor is responsible for the failur

Situation 2. The solution set is empty but nonempty thin intervals ferhariables
are returned by the propagation. Our approach is ntiefit enough to detect that
outliers exist and we can wrongly interpret that an accumateguaranteed estimation
of the trajectory of the robot has been done. Other mdieiert algorithms could be
able to prove that no solution exists which would lead us ¢osituation 1.

Situation 3. The solution set is not empty but it does not contain thezdtttajectory
of the robot. No method could be able to prove that outliecsindgain, our approach
could lead us to the false conclusion that a guaranteed astimof the trajectory of
the robot has been done, whereas, the robot might be soneelser

Now, for our experiment made on the Redermor, it is clear dhdiers might be
present. We have observed that when we corrupt some datatanly (to create out-
liers), the propagation method usually returns rapidly tleasolution exists for our set
of constraints. For our experiment, with the data collectezldid not obtain an empty
set. The only thing that we can conclude is that if no outlidste(which cannot be
guaranteed), then the provided envelope contains thel aajgctory for the robot.
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