
Develop learning control of autonomous sailboats for
oceanography

MUSELLEC Yann

Supervisor: Wan Jian
Tutor: Jaulin Luc

Address: Plymouth/Home

August 29, 2020

2

Contents

1 Introduction 9
1.1 Global health situation . 9
1.2 The goal . 9
1.3 The hardware architecture . 9
1.4 Software architecture . 11

2 Components 15
2.1 The sensors . 15
2.2 The actuators . 17
2.3 Calibration of the components . 18
2.4 Filtering the data . 20

2.4.1 Finding the Euler angles . 20
2.4.2 Filtering the wind sensor values . 23

3 Model 25
3.1 Vizualisation . 26

4 Control algorithm 29
4.1 Heading following . 30
4.2 Line Following . 30
4.3 Station Keeping . 30

5 Machine learning part 33
5.1 What is machine learning and why using it? . 33
5.2 Definition of the problem . 34

5.2.1 The chosen algorithm . 34
5.2.2 Implementation of the algorithm . 34

5.2.2.1 The reward function . 36
5.3 Results . 38

6 Conclusion 39
6.1 What’s next? . 39
6.2 Organization and knowledge . 39

3

4 CONTENTS

Acknowledgements

I express my deepest thanks to Dr. Jian Wan Lecturer in Control Systems Engineering at
the University of Plymouth for the opportunity of internship, his availability and for the help
all along the internship.

I would also like to thank Mr Jaulin for introducing me to this internship in Plymouth
and presenting me to the Dr. Wan.

And finally thanks to my parents for all the support during this peculiar period. All the
internship has been done from home due to the surge of the pandemic of Corona virus.

5

6 CONTENTS

Abstract

In nowadays society, questions about energy reduction, time saving, having more accurate
and more autonomous machines are becoming a hot topic. Thus, autonomous driving is more
and more studied. Self driving vehicules allow to save time for other activities and be a helpful
tool to increase the driver’s security. Autonomous driving is present in a lot of field such as
aerial exploration (with autonomous drones), for the railway (with autonomous train), for aerial
transport (with autonomous taxi). This is a very exploited area for research. The progress in
this field are very important since the computers are more and more sophisticated and effective.

Even in the maritime domain, machines and boats are created to make autonomous travels,
namely boats with a motor such as container carrier.

It is in this environment that my internship took place, to see if we can create a sailing boat
which could travel by itself and learn on its own how to do so.

This work is the continuation of other internships on the same sailboat.

7

8 CONTENTS

Chapter 1

Introduction

1.1 Global health situation
The internship was a project of the University of Plymouth in England. There was theo-

retically a competition for autonomous sailing in which the university should have competed.
However, due to the situation with the coronavirus, the event has been canceled. Moreover,
with the several lockdowns, I could’t go to the University of Plymouth, so I did all the intern-
ship from home. This situation was strange and difficult at the beginning, but when I received
the components of the boat sent by the postal way : the real internship began.

Due to the situation, a weekly meeting has been planned with the Dr. Wan on the software
Zoom. The goals of these meetings were to check my advancements and to solve if they were
some difficulties.

1.2 The goal
This project was the continuation of a project made by students of the ENSTA Bretagne

last year. They implemented algorithms for line following and station keeping. My mission was
to use what they did, to improve what needed to be changed, test new things on the sensors,
namely the calibration for some of them. Furthermore, to comment what I did in order to have
an easy to understand file and taking charge of the project.

The documentation was essential for future people who will continue the project after me.
They will have a better introduction on the project that I had. Therefore, all the code is
opensource and free to use on my github [MUS 2020].

Then, I had to implement a machine learning algorithm and more specially a reinforcement
learning algorithm to make the boat learn by himself to sail for a given mission.

1.3 The hardware architecture
The model of the sailboat used is the Ragazza Proboat (see the Figure 1.1).

9

10 CHAPTER 1. INTRODUCTION

Figure 1.1: Ragazza Proboat

Inside this boat:

• Sensors used are : an anenometer, a weather vane, an IMU and a GPS.

• Actuators are : 2 servomotors, one for the rudder and the other for the sail.

• Communication part was handle by a RCmodule.

• An Arduino Mega acquires the values of the sensors and a Raspberry PI 3b+ manages the
control of the boat. For an easier data acquisition and servomotor control, two Arduino
shields were used, Module Grove Base Shield and Adafruit 16-Channel 12-bit PWM/Servo
Shield.

Since the access to the boat was not possible, I worked on the system below:

1.4. SOFTWARE ARCHITECTURE 11

Figure 1.2: Physical system

As you may have seen on the previous picture, the Xbee module is not on the picture since
the outward communication wasn’t needed (it is also why we will not develop the communication
part in this report). Between each component, there are different communications as you can
see on the hardward architecture (Figure 1.3).

Figure 1.3: Hardware architecture

1.4 Software architecture
As you can see on the Figure 1.4, the low level composed of the sensors and the actuators is

handled by the Arduino board in order to have the best possible frequency on the sensors. Then,
the data are sent to the Raspberry PI for the filtering and controlling part. The Raspberry PI
and the Arduino board 1.5 are connected via USB, the messages between the two boards are
coded by ROS. The Arduino board has two shields plugged in, one shield 1.6 for an easy I2C
communication and the other one 1.7 is there for the control of the servomotors. Finally, the
Arduino board is an Arduino MEGA to have a better dynamic memory for ROS.

12 CHAPTER 1. INTRODUCTION

Figure 1.4: Software architecture

Figure 1.5: Arduino MEGA board on the top and Raspberry PI below

1.4. SOFTWARE ARCHITECTURE 13

Figure 1.6: Module grove base shield

Figure 1.7: Adafruit servo shield

14 CHAPTER 1. INTRODUCTION

Chapter 2

Components

This chapter is the presentation of the components (sensors and actuators) and how they
were used. Then, is the calibration part for the components that needed to be corrected.
Finally, there is the filtering part of the data with the Kalman filter.

2.1 The sensors

The IMU

The IMU used is the IMU 9DOF v2.2 (Figure 2.1). The information given are the angular
velocity, linear acceleration and the magnetic field. The euler angle of the boat can be estimated
with the filtering part that is explain later.

Figure 2.1: Picture of the IMU 9DOF v2.2

15

16 CHAPTER 2. COMPONENTS

Type of message

The ROS message used from the Arduino to the Raspberry PI is the ROS sensor_msgs
Imu message to communicate the values of the angular velocity. Also, the acceleration and
the acquisition time are on a single topic. The value of the magnetometer is inside the ROS
sensor_msgs MagneticField message.

The wind sensor

The wind sensor is composed of two sensors : a weathervane and an anemometer. Then,
we have information about the wind direction and intensity. The wind sensor data were also
filtered in order to define the good wind direction and a more consistant wind speed. The sensor
used is the Standard Weathervane Anemometer – 7911 – Davis Instruments sensor (Figure 2.2).

Figure 2.2: the Standard Weathervane Anemometer – 7911 – Davis Instruments

Type of message

The wind sensors data are put in two ROS messages Float32.

The GPS

The GPS’s model used is the BU-535-S4 (Figure 2.3). The GPS is directly connected to the
Raspberry PI via USB. The values from this sensor are quite good and steady, thus no filtering
action were needed.

2.2. THE ACTUATORS 17

Figure 2.3: GPS BU-535-S4

Type of message

The ROS GPSfix message from GPS_common is use for the communication part. This
message takes into account all the data that can be recovered from the frames (here the GPGGA
and GPRMC frames). The message type is able to take more information to improve the
acquisition code.

2.2 The actuators

Figure 2.4: On the right the servomotor for

The actuators are two servomotors (Figure 2.4), one for the rudder and the second one is for
the sail. The one for the rudder has a range of values from −Π

4 to Π
4 , and is directly connected

18 CHAPTER 2. COMPONENTS

to the rudder. The possible values for the angle of the sail sent by the controller are from 0 to
Π
2 , thanks to the wind we can have positive or negative values for the sail angle according to
the wind direction.

The signals sent by the controller to the motors are in PWM (Pulse With Modulation).
The value of the wanted angle is converted in PWM by the controller.

Type of message

The communication of the actuators’ values are made by the ROS message Float32.

2.3 Calibration of the components
The components that needed some calibrations were, the IMU, the wind sensor (more

precisely the wind direction part) and the servomotors.

The IMU calibration
In this calibration, there are 3 sensors to adjust : the accelerometer, the gyroscope and the

magnetometer.

The accelerometer
The accelerometer detects a force (often called Inertial Force) that is directed in the opposite

direction of the acceleration vector. Moreover, the acceleration value at the Earth’s surface of
the magnetic field is about 1g. An offset is often presents and will need to be estimated. Thus,
to calibrate the sensor, a sample of acceleration values is taken when the IMU is not moving.
The offset value is equal to the difference between the mean of the norm of the magnetic field
and 1g.

The gyroscope
A gyroscope measures the rotation around the axis (here 3 axis). It gives a value that is

linearly related to the rate of change of the angles around its axis. As for the calibration of the
accelerometer, a sample of values is taken when there is no rotation. On each axis, there is an
offset estimated by the mean of the values theoretically equal to zero.

The magnetometer
The calibration of the magnetometer is more difficult since it determines a heading relative

to the Earth’s magnetic North. This sensor is very sensible to every nearby magnetic field.
When the magnetometer is correctly calibrated, rotating the sensor around 360° and plotting

2.3. CALIBRATION OF THE COMPONENTS 19

the resulting data will create a sphere centered around (0,0,0). There are two types of distorsion
possible :

• Hard iron distorsion : It is when something (a magnet for instance) creates a additive
constant magnetic field to the Earth’s field. This may cause an offset from location (0,0,0).

• Soft iron distorsion : This distorsion is not additive to the Earth’s field. It is due to some
materials (nickel and iron for instance) that disturbs the Earth’s field. This distortion is
not constant regardless of the orientation, soft iron’ effects deform the sphere to produce
an ellipsoid.

In order to calibrate the magnetometer, the values of the hard iron (the b value) and soft iron
(the matrix A) distorsion must be found. The correct values of the magnetometer (hcal) will
be defined by the following equation (2.1).

hcal = A−1 ∗ (h− b) (2.1)

To calculate A and b, the use of the software Magneto which uses the “Li’s ellipsoid specific
fitting algorithm” to find the best ellipsoid was needed. A sample of data from the magnetome-
ter in every direction possible has been taken and was put as the input of the software.

After having the values for A and b the magnetometer was calibrated. There was no offset
from the localisation (0,0,0) and the shape was a sphere as you can see on the figure 2.5.

Figure 2.5: Before/After calibration values of the IMU

20 CHAPTER 2. COMPONENTS

The wind sensor calibration

The calibration of the wind sensor was meant for the weathervane. We had the wind
direction compared to the boat and not to the frame of the earth (this angle is called the true
wind direction). To do so, the calibrated and filtered values from the IMU were needed (more
specificaly the heading of the boat). Thanks to the right heading, the true wind direction and
intensity were known.

The servomotors

The two servomotors didn’t have the same specificities so the values found on one were not
usable for the other one. The command from the Arduino to the actuator are PWM signals, so
the extreme PWM values had to be found. For each motor, empirically this value was found
by sending a value then the value+1 with a delay of few seconds and so on. Once the extreme
values were found, functions were created given a wanted angle, with cross-multiplication. The
function gives us the good PWM value.

Then the constrains were encoded, δr ∈
[
−π

4 ,
π
4

]
and δs ∈

[
0, π2

]
where δr is the rudder angle

and δs is the sail angle.

For the actuators, the values of the angles of the rudder and the sail are limited in order to
protect the mechanical part of the boat.

2.4 Filtering the data

2.4.1 Finding the Euler angles

For the sail of the boat, we wanted to have the Euler angles. There are the three angles of
the boat with respect to a fixed coordinate system. These angles are the roll (around ~x), the
pitch (around −→y) and the yall (around −→z). You can see it on the figure 2.6.

2.4. FILTERING THE DATA 21

Figure 2.6: Euler angles on a sailboat

The three sensors in the IMU are able to give information about at least one angle:

• The accelerometer: It gives the acceleration vector pointing to the Earth’s center when
the sensor is not moving to fast. Thus it can give the values of the pitch (θ) and the roll

(ψ). This is doable by projecting the gravity vector −→g =

gx
gy
gz

 on plan xOz and yOz.

The equations are :

ψ = arctan(gy

gz
), and θ = arctan(gx

gz
)

• The gyroscope: It gives information about all the angles since the angular speed is given.
The relation between the angular velocity and the angle is defined below:

angle =
∫
angular−velocity ∗ dt

22 CHAPTER 2. COMPONENTS

• The magnetometer: It indicates the position of the magnetic North, by projecting this
direction in the xOy plan, the yaw is known.

Two values for the angles are now known. One of these values may be false due to a drift
of a sensor value through time or a big acceleration that need to be compensated. A fusion
algorithm was needed to correct the errors, in this case a Kalman filter was applied.

The aim of a Kalman filter is to estimate an unknown value with a serie of measurements.
It is used a linear problem and when the variables follows a Gaussian distribution. In this
project, the unknown value is an angle following a Gaussian distribution however, an angle is
none linear that is why an extended Kalman filter was implemented.

This algorithm is based on two equations:

• An evolution equation : xk+1 = f(xk, uk), after the linearization xk+1 = Fk ∗ xk + vk +αk
and vk = f(x̂k, uk)−Fk ∗ x̂k where Fk is the state transition model,uk is the control vector
and αk is a white noise.

• A measurement equation : yk = h(xk), after the linearization zk = Hk ∗xk +βk where Hk

is the observation matrix and βk is the observation white Gaussian noise.

Here, F = ∂f
∂x

and H = ∂h
∂x
.

The filter is used as a fusion algorithm.
You can find more information in the ENSTA Bretagne’s course on Kalman filter [JAU 19].
Here are all the expressions of the extended Kalman filter.
Prediction step:

x̂k|k−1 = f(x̂k−1|k−1, uk)

Pk|k−1 = Fk ∗ Pk−1|k−1 ∗ F T
k +Qk

Update step:

yk = zk − h(x̂k|k−1)

Sk = Hk ∗ Pk|k−1 ∗HT
k +Rk

Kk = Pk|k−1 ∗HT
k ∗ S−1

k

x̂k|k = x̂k|k−1 +Kk ∗ yk

Pk|k = (I −Kk ∗Hk) ∗ Pk|k−1

Next:

x =
(
x1

x2

)
=
(
cos(ψ)
sin(ψ)

)
Or, x =

x1

x2

x3

 =

cos(ψ)
sin(ψ)

cos(ψ)2 + sin(ψ)2

The cosinus and sinus functions are linear so the extended Kalman filter works. At the

beginning, a Kalman filter was already implemented with x ∈ R3 (see above) but after running

2.4. FILTERING THE DATA 23

some tests of the x ∈ R3 and x ∈ R2 (that you can find here 2.7), the x ∈ R2 was found
sufficient and the value of the angle didn’t recquire to force the convergence of the angle.

The matrix f, h, F,H are set to:

f(x, u) =
(
x1 − x2 ∗ dt ∗ u
x1 ∗ dt ∗ u+ x2

)
,F (x, u) =

(
1 −dt ∗ u

dt ∗ u 1

)
where dt is the sample period

of the IMU.
h(x, u) =

(
x1

x2

)
, H(x, u) =

(
1 0
0 1

)
A mesurement value is defined as below every time new values are published.

z =
(
cos(ψraw)
sin(ψraw)

)

Finally, the value of the angle is ψ = arctan(x2
x1

)
The same process is applied to find φ and θ .
Once the value is determined, the ROS geometry_msgs Vector3 message is used to contain

the value of the angles for future algorithms.

Figure 2.7: Comparation of extended Kalman Filter with x ∈ R2or ∈ R3

2.4.2 Filtering the wind sensor values
For the wind sensor, the wind direction calculates an angle so the extended Kalman filter

is once again applied. For the wind speed a low-pass filter has been chosen to avoid huge
fluctuations. From the previous values of the wind’s speed (vprevious) and the new one (vnew) a
value is calculated with the formula 2.2 by putting more weight on one of the values.

24 CHAPTER 2. COMPONENTS

v = γ ∗ vprevious + (1− γ) ∗ vnew (2.2)

γ is the gain which puts more weight on one of the values.

Chapter 3

Model

In order to test the behavior of the boat, the use of a model was compulsory because the
physical access to the boat was not possible. The model used is from a paper made by Luc
Jaulin [Jau 19].

Figure 3.1: Sailboat model

Where, (x, y, θ) is the position and the heading of the boat, v is its forward speed, ω is the
angular speed, fs is the force’s intensity of the wind’s speed in the sail, fr is the force’s intensity
of the water on the rudder, δs is the angle of the sail, a is the true wind speed, ψ is the true
wind vector’s direction and ωap is the apparent wind vector.

The values of the coefficients (p1, p2, ..., p10) are design parameters of the sailboat. The
values of these coefficients were taken from another similar boat of the University of Plymouth
.

25

26 CHAPTER 3. MODEL

This state machine representation is a key part of the project since the physical model
couldn’t be use, then all the future comments about the algorithms are only based on this
representation.

3.1 Vizualisation
In the first place, to see how the behavior of the boat with the state machine works. The

python’s library matplotlib was used (as you can see on the Figure 3.2), the real values of the
sensors are plotted on screen .

Figure 3.2: Real time values print on screen

With this library, the line following and station keeping were also tested. An exemple of a
mission is on the Figure 3.3, the mission is to follow three lines.

Figure 3.3: Vizualisation of three line followings

3.1. VIZUALISATION 27

Then, the use of a ROS tool was more appropriate and faster to implement, this tool is
Rviz. It allows to have a 3D representation of the boat (see the Figure 3.4). The visual aspect
allows to see how the boat react to his environment, we can focus and zoom on a special part
of the boat. All these operations are a lot easier to use since it is directly linked with the ROS
environment.

Figure 3.4: Vizualisation using Rviz

28 CHAPTER 3. MODEL

Chapter 4

Control algorithm

The control of a sailboat is quite compliquated because the behavior of the sailboat on the
sea can change really fast and they are some areas of the boat position where the boat can’t
move (the no-sail-zone, to see the Figure 4.1). In order to have a good control for the boat,
two main algorithms were implemented using a central algorithm.

Figure 4.1: Sailing zones

In this chapter, the wanted heading is represented by θ̄, the real heading is θ, the wind
direction is ψ, α are constants and u is the command.

29

30 CHAPTER 4. CONTROL ALGORITHM

4.1 Heading following
The control of the heading is a proportional command for the rudder and the sail. This

algorithm will be use for all the future higher level algorithms. The commands sent to the
servomotors are :

urudder = αrudder ∗ arctan(tan(0.5 ∗ (θ − θ̄)))

usail = αsail ∗ π4 ∗ (cos(ψ − θ̄) + 1)

The tangent and cosine function are here to avoid any non linear responses. The gains
αrudder and αsail are here to have a faster response if needed.

4.2 Line Following
The line following algorithm is taken from Luc Jaulin and Fabrice Le Bars’s paper on

sailboat [JLB 12]. The algorithm is the following4.2 :

Figure 4.2: Line Following algorithm

Where m=(x,y) is the position of the boat, the rest of the input are already defined.
This algorithm is based on an attractive vector field to the line defined by the two points

of the beginning.

4.3 Station Keeping
Different policies were possible and tested last year such as:

4.3. STATION KEEPING 31

• Turn around : The boat was turning arround a fixed point (Figure 4.3). The main
drawback of this option is that the boat can drift from its position without any correction.

Figure 4.3: Turn around strategy

• The 90 degree line : In order to avoid the no-sail-zone, the boat can follow a line perpen-
dicular to the wind direction (Figure 4.4). Nevertheless, at the end of the line the boat
as to do a turn around and may be in the no-sail-zone.

Figure 4.4: 90 degree line strategy

• The infinite symbol : In order to compensate the previous drawback, the infinite symbol
that you can see on the Figure 4.5 allows to never be in the no-sail-zone by following lines
and half circles in the good direction.

32 CHAPTER 4. CONTROL ALGORITHM

Figure 4.5: Infinite symbol strategy

Chapter 5

Machine learning part

The main algorithms for sailing have been implemented and tested. Now, the question arisen
is : would it be possible for a boat to learn autonomous sailing and to be more efficient than
the previous control algorithm? With machine learning, the sailboat could take into account
more data for the sailing such as all the Euler angles and so on.

5.1 What is machine learning and why using it?
The machine learning is an Artificial Intelligence (AI) technology. It allows a computer to

learn by itself with of without the help of a human to supervise a given task.
In this case, the task is to learn how to sail. However, there is no human to give information

to the algorithm if its actions are correct or not. This domain of AI is called reinforcement
learning.

Doing a supervised machine learning of the line following algorithm would have been easy
with a neurone network. But the question of an autonomous program is how the sailboat learn
and the result of it.

The aim of this type of algorithm can be described by the figure below 5.1:

Figure 5.1: Reinforcement learning principle

33

34 CHAPTER 5. MACHINE LEARNING PART

The main goal for the agent is to maximize its future rewards in an unknown environment.
All of this is handled by doing some trials and received feedbacks.

Basic reinforcement is modeled as a Markov decision process. There are states for the agent,
actions possibles, probability of transition p(s′, r|s, a) (the probability to go from a state s′ by
taking the action a in the state s), reward function (the reward after the transition s to s′ with
action a).

At the beginning of the problem it is possible to have information about the model of the
environment such as p(s′, r|s, a) if it is true, the problem is called model-based. The policy of
the agent is the best action that can be chosen to maximize the future rewards.

The policy is defined as follow π : S → A , it can also be probabilistic. The algorithm is
called on-policy, if the policy taken for the evaluation and the improvement is the same one
used during the learning phase. Off-policy algorithm are usually longer to be converged but
more generalizable.

For more information about the reinforcement learning, you can find useful information here
[Wen 18].

5.2 Definition of the problem

The algorithm will solve a station keeping problem. The boat will have to stay as close to
a point for the longest time possible.

5.2.1 The chosen algorithm

The choice of the algorithm’s type is very important. The more time spent on the choice
of the algorithm, the less time will be taken to debbug the program. To chose the algorithm’s
type, the problem need to be well defined. According to previous definitions of the type of
reinforcement learning, this is an off-policy and model-free problem. We don’t know what the
environment looks like.

There are different algorithms that correspond to these two criteria such as Q-learning, deep
Q network, Deep deterministic policy gradient, and so on.

The Q-learning algorithm has been chosen.

5.2.2 Implementation of the algorithm

The Q-learning is an algorithm in which the action space and the state spaces are discrete.
The Q-learning consists in creating a funcion Q(s, a) where s is the state and a an action (s
and a are the input data for a machine learning system, they are called features). The output
value is the possible reward considering the state s and the action a.

5.2. DEFINITION OF THE PROBLEM 35

Definition of the states and the actions

Since the actions and the states are discrete, the map was in the following Figure 5.2.

Figure 5.2: Discrete states of the map

At the beginning, the range of a ray, the number of ray and the number of angle parts are
defined. In the previous drawing, the range of a ray is 1 the number of ray is 5 and the number
of angle parts is 8.

There are also 8 different actions possible, these actions are headings to follow (Figure 5.3).

Figure 5.3: The 8 different actions

36 CHAPTER 5. MACHINE LEARNING PART

At the initialization of the algorithm, the number of trials is defined (100 iterations in this
case). At each time an action need to be taken. The algorithm has to chose wether or not to
explore and chose a random direction or to exploite the Q-table. In this case, the direction
taken is the one with the highest reward.

Learning part

At a t time, the equation to update the Q-table is the following 5.4:

Figure 5.4: Equation to update the value of the Q-table

Where α is the learning rate or the learning speed, higher this value is, the more important
the new value will be. γ is the discount factor, it determines the importance of the future
rewards (if it’s too close to 1, the solution may diverge).

5.2.2.1 The reward function

The reward function is composed of two elements. One, if the boat goes in the good
direction. Two, if it goes there the fastest way possible.

• For the good direction :

1. if the next ray is closer to the point to stay, then the reward is 1.

2. If it goes in the opposite direction, the reward is -1.

3. Finally, if the boat is on the same ray, and just the angle of the area as change, then
the reward is 0.01. The system is explain below (Figure 5.5)

5.2. DEFINITION OF THE PROBLEM 37

Figure 5.5: Reward function for the junction

• For the fastest way, the boat’s speed polars were used.

The boat’s speed polars are the representation of the boat’s speed according to the wind
intensity and speed. For each current boat’s speed, there is a different boat’s speed polar
diagram. This information allows to estimate the sailing time and take the best decision
concerning the security and the performance possible.

Since the boat’s speed polars have almost the same shape for different speed, the use of a
single boat’s speed polar has been created (see the Figure 5.6).

38 CHAPTER 5. MACHINE LEARNING PART

Figure 5.6: The boat’s speed polars for the reward function

Then if the direction chosen by the boat is the one with the max speed, the reward will be
1 and the smallest one is 0.

Hence, the reward function is define as below:
reward = polar + junction

5.3 Results
After half of the iterations, the boat began to behave more and more as an exploiter of

the Q-table and the behavior was quite stable. At the end, the sailboat understood that the
best way to stay at a point was to be in the no-sail-zone at the point and to go in the good
area when it is too far. We already know that this behavior creates a drift of the boat, but for
the simulation, it is indeed the best way to stay close to the point. If the Q-table is learnt in
the real environment, the behavior may be different. Thus, the conclusion of this part may be
different with a training part on the sea. A second improvement for this algorithm will be to
have a better reward function namely with the real boat’s speed polars and not with a look
like one.

Moreover, we may test another type of algorithm such as neurone network or a policy
gradient in which the values of s and a can be continuous.

Chapter 6

Conclusion

6.1 What’s next?

The next step will be to implement another type of reinforcement learning as the policy
gradient since the actions and states may be continuous. To try it on a station keeping mission.
Then, a line following algorithm will be needed.

Furthermore, the different machine learning algorithm (station keeping and line folowing)
could be assembled in order to have a whole mission.

If these algorithms work, the addition of other features may be needed in order to have a
more complex behavior.

6.2 Organization and knowledge

The global health condition during the internship didn’t help in its realization. I began the
internship fourteen days later and I couldn’t go to the University of Plymouth. Nevertheless,
with the help of my supervisor, I received every components and documentation needed to work
from home. At first, a planning was made for all the tasks but after two weeks, I understood
that I would need much more time to understand everything that has been done by the previous
students. In these previous works, few algorithms were explained, and some didn’t work.

39

40 CHAPTER 6. CONCLUSION

Actions R
ec
ei
vi
ng

al
lt

he
co
m
po

ne
nt
s

U
nd

er
st
an

di
ng

th
e
co
m
po

ne
nt
s

In
st
al
la
tio

n
an

d
in
iti
al
iz
at
io
n
of

al
lt

he
de
vi
ce
s
ne
ed
ed

D
oi
ng

th
e
lo
w

le
ve
ll
au

nc
h
w
ith

th
e
fil
te
rin

g
pa

rt

Im
pl
em

en
ta
tio

n
of

lin
e
fo
llo

w
in
g
al
go
rit

hm

Im
pl
em

en
ta
tio

n
of

st
at
io
n
ke
ep
in
g
al
go
rit

hm
s

C
re
at
in
g
la
un

ch
fo
r
ou

td
oo

r
m
iss

io
ns

M
ac
hi
ne

le
ar
ni
ng

pa
rt

Forecasted time (in weeks) 2 2 3 5 1 1 2 5

Table 6.2: First version of the Gantt diagram

Moreover, this project is mainly developed by students. So for the future students whom
will be working on it, an explanation of the algorithm was needed (at least a minimum). An
organization and an explanation of the codes have been made. You can find all the codes on
my github.

Then a second organization of the work as been followed, you can find it on the SADT
diagram (Figure 6.1), the arrows with a text below are the skills that I needed to acquire:

Figure 6.1: SADT diagram

6.2. ORGANIZATION AND KNOWLEDGE 41

On the diagram there is no concept of time because I needed to learn a lot of things and I
had the advantage to schedule my timetable as I wanted during the week.

During this internship, I learnt a lot about robotics and its tools namely ROS, the serial
communication bus, the Kalman filter and the use of github. I also improved some of my
knowlegde about arduino, the C++ language, python, machine learning with the reinforcement
learning, electronics with the low level, understanding and implementing complex algorithms.
This was an interesting autonomous internship with new fields of competences and a real
improvement of my knowledges in robotics.

42 CHAPTER 6. CONCLUSION

Bibliography

[MUS 2020] Musellec Y. Github repository. url: https://github.com/ymusell/plymouth2020.

[JAU 19] Jaulin L. Mobile robotic, KalMOOC. 2019.

[Jau 19] Jaulin L. “Robmooc”. In: (Mar. 2019). url: https : / / www . ensta - bretagne .
fr / jaulin/robmooc.pdf.

[JLB 12] Luc Jaulin and Fabrice Le Bars, A simple controller for line following of sail-
boats,2012.

[Wen 18] Weng L.,https://lilianweng.github.io/lil-log/2018/02/19/a-long-peek-into-
reinforcement-learning.html#key-concepts,Feb 19, 2018

43

	Introduction
	Global health situation
	The goal
	The hardware architecture
	Software architecture

	Components
	The sensors
	The actuators
	Calibration of the components
	Filtering the data
	Finding the Euler angles
	Filtering the wind sensor values

	Model
	Vizualisation

	Control algorithm
	Heading following
	Line Following
	Station Keeping

	Machine learning part
	What is machine learning and why using it?
	Definition of the problem
	The chosen algorithm
	Implementation of the algorithm
	The reward function

	Results

	Conclusion
	What's next?
	Organization and knowledge

