
Master’s thesis in industry with RigiTech

Improving simulation conditions and video
of an Unmanned Aircraft Vehicle.

Antoine Wanctin
ROB 2023

Supervisor: Victor Delafontaine

August 25, 2023

Abstract

Drones are a rapidly growing sector. More and more companies are developing them for very
specific tasks. RigiTech is a Swiss start-up that is developing a whole ecosystem around fast, au-
tonomous delivery with a wide range of action. The drone’s autonomy is ensured by a whole range
of functions with different roles, but all working together to make the drone operator’s job easier.
Ultimately, a single operator should be able to manage multiple delivery routes simultaneously. I
have found my place in this working group in two ways.

Firstly, my work on the video part of the drone has led to improvements in all aspects of streaming
and recording. My research into optical streaming has helped to make the method more feasible.
I was also able to test the possibility of implementing a Detect and Avoid solution using video,
which could be implemented on the drone itself in the more or less long term.

On the other hand, my work on the simulation will have increased its realism. I have effectively
implemented the integration of wind into the simulation and made great progress in creating a
height map to simulate the elevation of the world. This paves the way for further improvements
and new features.

Lastly, I’ve been asked to do some additional work. Whether it was fixing bugs, implementing
new features or Research and Development, it all contributed to the continuous improvement of
the drone and its cloud interface.

Acknowledgements

I’d like to express my sincere thanks to Victor Delafontaine for his unfailing support, his patience
with my numerous questions and the many answers he was able to give me. I would also like
to thank the entire RigiTech team, who have provided me with a friendly and serious working
environment and whose experience and knowledge have been priceless over these six months. I’d
also like to thank the PX4 team, especially Ramón Roche, who took the time to try and solve
my problems. I also want to thank Pierre Bosser, without whom I wouldn’t have been able to
achieve my geographic projections. Finally, I would like to thank my family and friends who have
supported me throughout this enriching experience.

I

Contents
1 Video 2

1.1 Improve stream . 2
1.2 Optical Flow . 6
1.3 Detect And Avoid (DAA) with Sense Aeronautics 15

2 Simulation 22
2.1 Wind . 23
2.2 Elevation . 25

3 Other tasks 38
3.1 Bug Fixing . 38
3.2 Unit Testing . 39
3.3 Vertical geocage boundary . 40
3.4 Auto-exposure . 40
3.5 DronePort . 41

References I

List of Acronyms III

Appendices IV

II

List of Figures
1 The Eiger on the landing pad designed for precision landing 2
2 The cloud interface with the front camera streaming 3
3 The simulated video using GStreamer . 5
4 The aperture problem; On the right we see the missing orthogonal component . . . 8
5 Two types of Optical Flow from [1] . 9
6 Optical Flow visualization on the Eiger using the down camera 13
7 Relation between distance and Optical Flow . 14
8 Relation between speed and Optical Flow . 14
9 The dynamic interface . 17
10 The coordinates used by the video Detect And Avoid (DAA) 18
11 False detection . 19
12 Comparison between optical and acoustic Detect And Avoid (DAA) 22
13 The drone flying in Gazebo. 23
14 Gazebo structure and dependencies from [2] . 24
15 The drone in the cloud in grey with the wind in white 25
16 Digital Elevation Model (DEM) of the Geneva lake 26
17 What the Application Programming Interface (API) returned in red versus what we

asked in green . 29
18 A Digital Elevation Model (DEM) with a non standard resolution for Gazebo 30
19 Different resolutions for the same height map . 31
20 Different paradigms for height maps from [3] . 34
21 A correct Delaunay interpolation from [4] . 35
22 Referential used in Gazebo from [5] . 37
23 One of the scenarios to test the function. The buffer zone is in red, the geocage in

yellow and the pre-geocage in green . 39
24 Summary of the altitude frames used to define the max altitude of the geocages. . . 40
25 Sprint organization in RigiTech . IV
26 Another scenario for unit testing . IV
27 Another scenario for unit testing . V
28 Another scenario for unit testing . V

III

Antoine Wanctin

Introduction
Mobile robotics is undergoing a significant boom that has only intensified in recent years. Whether
for scientific, defense, leisure, or utility purposes, it is increasingly being used in a wide range of
sectors.

RigiTech is a Swiss start-up operating in the market for airborne transport with Unmanned Aircraft
Vehicle (UAV)s. Its latest drone, the Eiger, is capable of carrying a load weighing up to three
kilograms over a radius of one hundred kilometers in just one hour. This technological feat is made
possible by vertical take-off and landing (VTOL) technology, which gives the drone two modes of
operation. In quadcopter mode, it takes off vertically with four propellers. Once airborne, it
switches from this first mode to fixed-wing mode. The rear propeller takes over and propels the
drone, which then flies like a conventional aircraft thanks to its wings that provides the necessary
lift. This uses much less battery power than a conventional quadcopter and increases the range
tenfold when compared to standard quadcopters.

The Eiger is capable of performing Behind the Visual Line Of Sight (BVLOS) missions, which by
definition do not require a pilot or visual control. RigiTech’s main market today is the delivery of
medical sampled to remote areas. Using the Eiger drone allows to speed the laboratory analysis
and reduce the carbon footprint when compared with classical means of transportation such as
trucks or cars.

An extremely comprehensive cloud interface has been developed to monitor and program the
drone’s missions. It allows you to plan the drone’s missions, monitor it in flight, access its logs,
and simulate its behavior for development purposes.

During my internship, my main task was to improve the simulator. I also had the opportunity
to work on all aspects of video. The drone has two cameras, one facing forward and one facing
down. When I arrived they were mainly used for streaming and more recently for precision landing
using AruCo markers. During my internship, I was able to work on the implementation of optical
flow to compensate for drift in the event of Global Navigation Satellite System (GNSS) loss at
low altitudes. I also had the opportunity to work hand-in-hand with another start-up, Sense
Aeronautics, which is developing a Detect And Avoid (DAA) system using a video stream.

Finally, being in a start-up, I was given less substantial but more urgent tasks. These mostly
involved debugging or continuous improvement of existing functionalities. RigiTech follows the
logic of development sprints, at least for all software. Each development sprint lasts one month, at
the end of which all code improvements are released on a test server. This contains only relatively
stable code that has already been tested on a development server. Customers can access the test
server and make suggestions for new features, or report bugs. Every three months, after intensive
testing and fixes, what is on the test server is moved to the production server for customers.
However, this imposes very strict testing protocols on the company, as they are limited in time.

Master’s Thesis August 25, 2023 Page 1/41

Antoine Wanctin

1 Video
The drone is equipped with two high-definition cameras, one facing forward and one facing down-
ward. These cameras allow the drone to do several things. First, it can stream what the cameras
see in real-time. This provides real-time visual feedback on what’s happening during the mission,
even when the drone is BVLOS. The main benefit of the down camera is precision landing. This
feature was just being implemented when I arrived. By performing image processing on the down
camera and placing a landing target on the ground in the form of AruCo markers, the drone can
locate itself in space and correct its position accordingly, right up to the final landing. The drone’s
precision is truly remarkable: thanks to this technology, it can land with a margin of error of less
than 10 centimeters. This allows it to land on a parking lot, for example, which is an impressive
feat for a drone with a wingspan of 2.70 meters.

Figure 1: The Eiger on the landing pad designed for precision landing

1.1 Improve stream

When I arrived, the drone’s software structure for the onboard computer was divided into several
nodes, each representing a particular function of the drone. So it was logical for me to work on
the video_node, the part that handled all the video.

To test all the code development and new functionality, simulators were set up. I’ll come back
to this in more detail in the section dedicated to it, but in this case, they were used to visualize
what the drone would see using the cameras connected to the computer where the simulation was
running.

Master’s Thesis August 25, 2023 Page 2/41

Antoine Wanctin

First steps with video_node

To get started with video_node, I first had to come up with an efficient method to debug the
precision landing feature, which was quite new at the time. To do so, I’ve developed a function
that automatically recorded a video of the drone landing. It was crucial at this time to take
into account the computational cost as a Raspberry PI was used as an onboard computer. This
feature then allowed me to thoroughly review the performance of the precision landing in detail.
Most notably, it allowed to robustify the landing target detection algorithm against false positive
detections

Figure 2: The cloud interface with the front camera streaming

Robot Operating System (ROS) services were already available to start and stop streaming or
recording. I was able to reuse the existing structure to start these services at the right time. To
determine that moment, I used the way missions are coded. During a mission, the drone follows
a set number of waypoints to its final destination. It is able to determine the type of waypoint
in advance, up to two waypoints ahead. By starting the recording service as soon as the landing
waypoint was detected, it retrieves a video that wasn’t too long and met expectations. To keep
some flexibility in the functionality, I also implemented a parameter that enables or disables the
activation of the recording.

Promotional mode

One of my next tasks was to improve the streaming and recording quality. Mainly for bandwidth
reasons, the videos are streamed and recorded in 640x480, which is fine for observation purposes,
but has significant potential for improvement. One of the goals was to create high-quality promo-
tional videos by increasing both resolution and frames per second.

Again, by creating a suitable parameter and modifying the video pipeline, I was able to achieve my
goal. It did, however, require a bit of code restructuring. I ran into two problems during this task.
The first, took me some time to figure out. I wanted to record a video with a resolution of 1080p

Master’s Thesis August 25, 2023 Page 3/41

Antoine Wanctin

and 30 fps. When I ran my tests on my computer’s webcam, it refused to show what I wanted.
This was because, contrary to my expectations, it didn’t support the resolution I requested.

The second problem occurred once the promotional_mode was working properly on my computer.
When I tested it on the drone’s onboard computer, it couldn’t reproduce the expected quality, and
the video was jerky and accelerated at times. This was due to the insufficient processing power
of the Raspberry PI. In fact, with all of the drone’s code to process, the CPU was insufficient for
high-definition video processing. To improve performance, I tried lowering the quality required,
but to no avail. Changing the way the video was processed, especially the bit rate, didn’t help
either.

Nevertheless, one of the advances that may have helped was the change in video encoding. By
switching from MJPEG to H264, we’ve gained in performance, both in terms of speed and in terms
of the amount of space required to record video. For example, a one-minute video that used to take
up 23 Mb of storage now takes up only 4 Mb by switching to H264. MJPEG compresses individual
images whereas H264 compresses across frames. In H264 the first frame is compressed by itself
and the following frames record changes from the previous frame. This is why it compresses much
more and uses less bandwidth than MJPEG.

Simulated video

Still working on improving the use of video, I then turned my attention to video simulation. The
goal was to be able to use all the video-related functions in the simulator without having a camera
connected. To achieve this, I had to change the way video was processed. Previously, each camera
frame was passed through OpenCV [6] methods and functions. In particular, to create a simulated
video, I used GStreamer [7].

GStreamer is a library for creating and managing multimedia content. It extends its functionality
through a system of plugins that allow it to support different formats or add new features. You
can choose your video encoding format or the way it is encapsulated, for example in mp4 or avi.
The way the video is compressed by the codec is also manageable. For example, switching from
streaming and recording to H264 has greatly improved performance. The H264 codec is actually
used in most of video processes around the world.

Master’s Thesis August 25, 2023 Page 4/41

Antoine Wanctin

Figure 3: The simulated video using GStreamer

I mainly used it as a data pipeline. With GStreamer, it is possible to input one type of multi-
media data and then apply various modifications to it to get the desired output. So, thanks to
a GStreamer option to create a simulated video, I was able use it in the cloud. Again, I used a
parameter to start this video simulation or not, and adjusted the pipeline according to what was
needed. This wasn’t easy because there seemed to be two ways to get the same result. I could
either change the video capture pipeline or the way the video was encoded after it was written.
I started with the latter option without success. Changing the capture pipeline was successful,
but it required me to take into account whether or not the video was simulated upstream in the
program.

I also took the opportunity to change the recording and streaming behavior of both cameras so
that only one camera could be streamed or recorded at a time.

Adaptive Bitrate

In order to improve the quality of the stream without pushing the CPU to its limits, I then turned
to the question of bitrate. Bitrate is a measure of the amount of data encoded in a given amount of
time. The higher the bitrate, the better the quality, but the greater the bandwidth and computing
power required. It is expressed in bits per second. After meticulous testing, I was able to leverage
GStreamer to find the optimal bitrate that optimized the quality and the computation required
by the processor.

The next step was to create an adaptive bitrate. This is what is implemented in most online video
players today. When quality is set to automatic, it will increase or decrease depending on the
available bandwidth, allowing the video to have the best possible quality while minimizing the
delay required to receive it.

Master’s Thesis August 25, 2023 Page 5/41

Antoine Wanctin

The response time between the moment the camera captures the image and the moment the
operator receives the video is extremely important. When using video streaming to monitor a drone
BVLOS, it is crucial to be able to react to hazards quickly. This can only be done by minimizing
the time delay between the instant when the camera image is captured and the moment when the
operator receives it. This is why adaptive bitrate is a viable solution. By reducing the quality
when the network drops, the stream keeps the latency low. There are several different technical
solutions to overcome this problem, as explained in [8] or [9].

Again, I decided to use GStreamer for several reasons. First, it seemed possible to achieve adaptive
bitrate with this library. Second, I was beginning to have enough experience with it that I didn’t
want to jump into something new.

To achieve adaptive bitrate I used GStreamer’s target-bitrate command. However, due to plugin
compatibility issues, this never worked. Having different configurations between my machine and
the video_node docker image did not help either.

In the end, we decided to use a fixed bitrate to suit our needs.

1.2 Optical Flow

Context

Our goal at RigiTech is to have a fully autonomous drone. It must also be able to comply with
current regulations, especially with regard to safety standards. In addition to a powerful guidance
and control system, this also includes backup systems in case of hardware or software failure. To
solve this problem, a failsafe system replaces the onboard computer in case of failure. The failsafe
consists of very simple functions designed to be as robust as possible. It is completely electrically
isolated from the onboard computer and is powered by a separate battery. Its main purpose is to
land the drone in the event of a major malfunction to ensure the safety of potential bystanders.

But before we get to that point, there are other ways to compensate for the loss of a sensor, such as
redundancy. This is what optical flow is all about. The goal is to compensate for the loss of GNSS
when the drone is in quadcopter mode, i.e. relatively close to the ground. By visually estimating
the drone’s movements using the optical flow and weighting them with distance measurements to
obtain a real displacement, it is possible to continue precision landing without access to position,
for example. This technique has already been used for heading estimation in [10] using a phase
correlation technique coupled with an Intertial Measurement Unit (IMU). It could also be used as
a precision landing technique as in [11].

Introduction to Optical Flow

When using image processing, we have to keep in mind that what we’re processing is just a
projection of real motion. This leads to an inability to correctly measure real motion in two
dimensions. We can only perceive the apparent motion of objects.

Master’s Thesis August 25, 2023 Page 6/41

Antoine Wanctin

These two motions can be identical under certain conditions. For example, a gradual change in
the position of the light source illuminating the observed object will introduce apparent motion
without real motion. Similarly, in rare cases, there may be a real rotational motion and an apparent
translational motion. This is what happens when we observe a worm screw, for example.

Optical flow is the apparent motion of objects, surfaces, and contours in a visual scene caused by
the relative motion between an observer and the scene. A common analogy is that of an observer
sitting in a moving vehicle. As he observes the landscape, he will notice that the objects he sees
are receding relative to him. This is the part of the optic flow that determines speed. What’s more,
he can estimate how far away he is from the objects in the landscape. For example, a mountain
in the background will have a much slower relative motion than an object at the edge of the path,
which will pass by extremely quickly, to the point of blurriness.

These relationships between object distance and apparent speed also depend on the viewing angle.
In the example above, the optical flow is maximal because the considered objects are at 90° to
the actual motion of the observer. If the observer is moving toward the object in question, then
on average he will have zero optic flow. However, as the object tends to expand, an optical flow
can be observed that expands from the center of the image. This center is called the Focus Of
Expansion (FOE). It represents the direction in which the observer is moving, its actual motion.

That’s what we’re interested in here. We want to use the optical stream to compensate for the
drift due to GNSS loss. The goal is to detect this loss and avoid drifting away from the last known
position by using the optical stream. To do this, we’ll try to minimize it at each point so that we
have a zero global vector. Most of the following theoretical background come from [12]

Theoretical Background

We are looking for a vector field that represents the movement of each point such as:

σ(t, ·) :R2 → R2

(x, y) 7→ (σ1(t, x, y), σ2(t, x, y))
(1)

The basic principle is that the intensity of a point remains constant along its trajectory. To achieve
this, we make two assumptions, one that we are interested in small displacements with little change
in illumination, and the other that there is no occlusion or transparencies in our image.

If at time t an object is at position (x, y), then at time t+dt it will be at position (x+dtσ1(t, x, y), y+
dtσ2(t, x, y)).

In this case, we are looking for σ such that :

u(t, x, y) = u(t+∆t, x+∆tσ1(t, x, y), y +∆tσ2(t, x, y)) (2)

Using a Taylor expansion to first order, we have :

Master’s Thesis August 25, 2023 Page 7/41

Antoine Wanctin

u(x+dtσ1(t, x, y), y+dtσ2(t, x, y)) = u(t, x, y)+∆t
∂u

∂t
+∆tσ1(t, x, y)

∂u

∂x
+∆tσ2(t, x, y)

∂u

∂y
+O(∆t2)

(3)

This finally gives us the Optical Flow constraint:

∂u

∂t
+ ⟨▽u, σ⟩ = 0 (4)

with ∂u
∂t

the variation in image intensity over time, and ▽u its spatial variation which is known or
at least estimated. Since the time displacement is considered to be between two frames in a row,
∆t = 1.

However, σ = (σ1, σ2). So we have an equation for two unknowns, The system is underconstrained
and it shows in what is called the aperture problem. Only the vector component in the spatial
gradient direction is given. Its perpendicular component is not known, resulting in a loss of
information. This can be seen in Figure 4, taken from [13]

Figure 4: The aperture problem; On the right we see the missing orthogonal component

This issue is more likely to occur when calculating pixel optical flow, resulting in a gradient too
small to observe. This problem can be solved by choosing to calculate the optical flow at the corner
level.

Master’s Thesis August 25, 2023 Page 8/41

Antoine Wanctin

Horn-Schunck

There are two classical methods for processing optical flow. The first was proposed in 1981 by
John Horn and Brian Schunck in [14]. It aims to compute the optical flow for each pixel in the
image to obtain a dense optical flow.

(a) Dense Optical Flow (b) Sparse Optical Flow

Figure 5: Two types of Optical Flow from [1]

This method is based on several assumptions, some of which have already been mentioned:

1. Brightness Constancy Constraint: The intensity of a pixel does not change significantly
between two successive images.

2. Spatial Smoothing: The optical flow varies continuously in space, which implies that neigh-
boring pixels have the same displacement vectors.

3. Temporal regularization: The optical flow changes slowly and uniformly between two suc-
cessive images.

To respect this last assumption, a smoothness constraint is added to the system. We then have :

E2
c =

(
∂σ1

∂x

)2

+

(
∂σ1

∂y

)2

+

(
∂σ2

∂x

)2

+

(
∂σ2

∂y

)2

(5)

This introduces an error corresponding to the difference between a vector and its neighbors. To
obtain a global error corresponding to a dense optical flow, we sum these errors over the entire
image. This gives us an error to minimize of :

E2 =

∫ ∫
∂u

∂t
+ ⟨▽u, σ⟩+ α2

((
∂σ1

∂x

)2

+

(
∂σ1

∂y

)2

+

(
∂σ2

∂x

)2

+

(
∂σ2

∂y

)2
)
dxdy (6)

Master’s Thesis August 25, 2023 Page 9/41

Antoine Wanctin

The first term is the optical flow constraint equation and the second is the smoothness factor
multiplied by a weight constant α.

To solve this equation, the Horn-Schunck method recommends using a digital estimate of the
Laplacian to obtain two equations for each pixel, one for each direction of the optical flow gradient.

An iterative method is then used to solve this system. Each optical vector component is calculated
using the previous iteration of the average of the neighboring vectors.

One of the interesting effects of this method is the propagation of the optical flow calculation. As
the iterations progress, the neighbors of the already computed regions are taken into account until
all regions of the image have optical flow vectors.

Lucas-Kanade

Another technique for calculating optical flow is the Lucas-Kanade method. It was proposed in
[15]. It is implemented in PX4 and will be used in the following. It is based on the tracking of
characteristic points. The computed optical flow will be sparse.

The most important assumption for this method is the following. We need to approximate the
fact that the optical flow vector at a point will be similar in a Ω neighborhood surrounding that
pixel.

The optical flow at (x, y) is then approximated by a least squares method such as:

Eu =
∑
p∈Ω

W 2(p)(▽I(p) • v + ∂p

∂t
) (7)

Where ▽I(p) is the spatial gradient and It(p) is the temporal gradient of the neighboring pixel p.
v is the optic flow vector for pixel (x, y) and W (p) is the weight associated with the neighboring
pixels.

We then solve using the method of least squares.

This method is widely used because of its many advantages. By computing a sparse optical
flow, you don’t need the entire image to estimate the global optical flow. Also, images with large,
homogeneous areas don’t pose a problem. In fact, with methods similar to Horn-Schunck, iterating
to extrapolate the gradient can lead to a false result. What’s more, calculating the optical flow
only in a defined set of points makes the calculation much faster and less resource-intensive, which
is interesting in our case since we’re using a Raspberry PI.

Pyramids

Optical flow, and in particular the Lucas-Kanade method, only works correctly in the presence of
small movements. However, there is a way around this problem: the pyramid method. The aim

Master’s Thesis August 25, 2023 Page 10/41

Antoine Wanctin

is to create a series of images of progressively lower resolution and then recalculate the optic flow
on each image.

By taking the lowest resolution, a large movement is reduced to a much smaller one and can
therefore be used by the optical flow. The optic flow is then recalculated on a higher resolution
image, taking into account smaller movements, until the original image is reached. The result is
an optical flow that takes into account every amplitude of movement.

Harris and Shi-Tomasi corner detector

The basis for the computation of an optical flow is the detection of corners since their intensity
changes strongly with the slightest movement. For this purpose, Harris proposed an edge and
corner detection algorithm in 1988 in [16].

It’s based on the aforementioned principle that a corner causes a significant change in intensity
when moved. It will therefore move a window w(x, y) on an image, considering the intensity of
a point I(x, y) and its intensity after the movement I(x + u, y + v). We then have the change in
intensity for a displacement [u, v] such that:

E(u, v) =
∑
x,y

w(x, y)
[
I(x+ u, y + v)− I(x, y)

]2 (8)

We can make a bilinear approximation, which leads us to:

E(u, v) ≃ [u, v]M

[
u
v

]
(9)

Where M =
∑

x,y w(x, y)

[
I2x IxIy
IxIy I2y

]
We then calculate the eigenvalues of M , which will give us the type of feature detected. If both
eigenvalues are low, we’ve detected nothing, if one eigenvalue is much higher than the other, we’re
on an edge, and if both eigenvalues are high, we’ve detected a corner.

To make these cases more visible, we set R = detM − k(traceM)2. The Harris algorithm will
then find the points for which the value of R is greater than a given threshold and select those
that correspond to the local maximum of R.

Existing implementation

For the autopilot part, the drone uses PX4. PX4 is an open-source autopilot system aimed at
building low-cost drones for both professional and consumer use. They support a large number of
ambitious projects and provide numerous tools and integrations with other services such as ROS,
MAVLink, and QGroundControl.

Master’s Thesis August 25, 2023 Page 11/41

Antoine Wanctin

As far as optical flow is concerned, PX4 has an implementation of this functionality. It uses sparse
optical flow computed by the Lucas-Kanade method, coupled with pyramids as explained above.

For each frame captured by the camera, a sequence of functions is performed to achieve the desired
optical flow:

1. A certain number of noteworthy features are extracted from the entire image. As input to the
function, we specify the maximum number of features, and the function returns the active
features present in the image. Active features are the notable points in the image that remain
present over time. Therefore, we will necessarily have as many or fewer active features as the
requested features. Classically, these features are corners detected by the Harris algorithm
as explained above.

2. The camera calibration is then used to correct the possible distortion of the image. This
distortion can be caused by the camera plane not being parallel to the ground or by a distorted
angle of view due to an excessively large FOV. To correct the image, the function takes each
point to which a feature corresponds and applies a judiciously chosen transformation. It is
implemented in a practical OpenCV function which can be found in [17]

3. Next, all features are averaged along the X and Y axes of the image. The result is a raw
mean.

4. The raw mean is then recalculated, taking into account the variance and standard deviation,
to obtain a mean with a chosen confidence interval. This allows the result of the optical
flow to be taken into account to a greater or lesser extent, depending on the confidence level
granted.

5. At the same time, the signal quality is calculated by subtracting the number of active features
from the total number of features used.

Visualization

To provide a more accurate representation of what the algorithm has returned, a visualization
function has been developed. For each image on which an optic flow has been calculated, this
visualization shows the points of interest retained by the algorithm. These are divided into two
categories: those used to compute the global optic flow (in green) and those not used because they
are outliers (in red). The global vector is also visible, as is the proportion of the image used to
calculate the optic flow. The more of the image that is used for the calculation, the more accurate
the optic flow will be, as the features are distributed throughout the image.

Master’s Thesis August 25, 2023 Page 12/41

Antoine Wanctin

Figure 6: Optical Flow visualization on the Eiger using the down camera

Determination of the noise

Before taking full advantage of optical flow, it was necessary to determine whether the measure-
ments obtained during position correction were of sufficient amplitude not to be confused with
noise. In fact, as explained above, the relative movements of the target become smaller the farther
away the camera is from the target.

In our case, the optical stream would be used up to a height of thirty meters. It was therefore
necessary to determine the relative movements of the pixels at this height.

To do this, the pinhole camera equations were used. The relationship between height and pixel
displacement is given by:

x = D ∗ f/Z (10)

Where x is the displacement in pixels, D is the displacement in meters, f is the focal length of the
camera, and Z is the altitude. We can easily plot the pixel displacement as a function of ground
distance.

Master’s Thesis August 25, 2023 Page 13/41

Antoine Wanctin

Figure 7: Relation between distance and Optical Flow

It is also possible to plot the optical flow as a function of speed to compare it with the noise. At
low speeds, as in our case, the components of the optical flow are not very significant, which can
distort the calculations.

Figure 8: Relation between speed and Optical Flow

Unfortunately, due to conflicting schedules and changing priorities, I didn’t have time to analyze
the noise from the optical stream while the drone was hovering.

Master’s Thesis August 25, 2023 Page 14/41

Antoine Wanctin

Nevertheless, I did get a head start on all the data processing pipelines to integrate the optical
stream into PX4’s Extended Kalman Filter (EKF). This means that whoever takes over my job
will have a solid base to work from.

1.3 DAA with Sense Aeronautics

Context

The safety of an autonomous drone flight involves several steps. One of them is DAA. The goal
is to ensure that if there is an unwanted presence in the drone’s path, the drone can make the
appropriate decisions to ensure the safety of other users. For the time being, this is only achieved
through transponder detection. The drone receives the position of a transponder-equipped aircraft
and transmits its own position.

However, the major drawback of this approach is that it assumes that all aircraft flying in the
vicinity of the drone have transponders, which is far from being the case. Therefore, alternative
and complementary methods are being tested and implemented.

During my internship at RigiTech, another student developed a solution for locating aircraft by
sound. He uses a ground station in the take-off and landing zone to monitor the presence of aircraft
in the area.

Nevertheless, this does not take into account the BVLOS part of the flight. One solution considered
was to use the drone’s front camera for distance detection and estimation. I’ve been working on
this implementation.

To do this, I worked with Sense Aeronautics, a Spanish startup that specializes in machine learning
aircraft detection. They offer a video processing service that runs on their servers. This was a
prerequisite when looking for companies capable of detection. In fact, the onboard Raspberry is
not powerful enough to run machine learning algorithms on top of everything else. The Sense Aero-
nautics solution allows the most demanding calculations to be performed outside of the onboard
computer.

Detection in IA

Since all machine learning computations are managed by an outside company, the algorithms used
are not open source, so it is not possible to know in detail how they are coded. Sense Aeronautics
uses the YoloX-S_640 algorithm, based on the Yolo algorithm. Yolo stands for "You only look
once". Yolo’s main goal is to detect and locate objects in an image in real-time.

It works according to the following principle:

1. The image is divided into a grid of cells.

2. Each cell predicts several bounding boxes, characterized in particular by confidence scores.

Master’s Thesis August 25, 2023 Page 15/41

Antoine Wanctin

3. Each confidence score is then calculated to determine whether the bounding box contains an
object.

4. For each bounding box, YoloX classifies the possible objects by assigning a confidence score
to each class of object. The classes with the highest confidence scores are considered the
most likely classifications for that box.

5. Redundant boxes are removed. All that remains is to return the detection result.

YoloX is a newer, simpler and more performant version of Yolo.

Implementation and testing

Sense Aeronautics’ entire service is divided into two parts. They sell a kit consisting of a camera,
an onboard computer, and a ground station that allows image processing to be done locally by
integrating it into the drone. This system is completely autonomous from the rest of the drone,
so integration is easy and comes only at the price of increased weight and power consumption.
Unfortunately, Sense Aeronautics seems to have production problems with these kits, and it was
not possible to obtain one despite our repeated requests.

So we had to resort to the second service offered by Sense Aeronautics. This consists of an
Application Programming Interface (API). With an Internet browser and the appropriate access
rights, you can access their treatment process.

This process is divided into several phases.

1. Source creation: This is where you specify the video stream to use as input. Currently,
you can process a video uploaded to YouTube or a stream using the Real Time Streaming
Protocol (RTSP) by specifying its URL and resolution.

2. Process creation: A computing process is then created using the previously specified source
as input. Once the process is created, it is launched and begins processing the source video
stream.

3. Data Retrieval: When a process is launched, two actions become available. There is an option
to view the processed video stream in real-time via an URL, modulating the processing time.
It is also possible to make a call to the API to retrieve data corresponding to a precise
moment in time.

The first problem I encountered when trying to test the system was the incompatibility of the
source types with our existing software. In fact, the stream we send is managed by GStreamer and
a UDP protocol.

Since setting up a stream using an RTSP protocol was not obvious at first, I started by processing
YouTube videos.

What’s more, while waiting for access to the API, I searched for drone videos that would be of
interest in our case. In fact, to test the reliability of the system, I needed videos of drones flying

Master’s Thesis August 25, 2023 Page 16/41

Antoine Wanctin

at different altitudes and speeds, more or less far from the camera, and in configurations that were
difficult for a detection algorithm.

I found what I was looking for in [18]. The goal of the Drone vs. Birds challenge was to develop
detection algorithms that could distinguish drones from birds. This was exactly what I needed to
test the Sense Aeronautics program.

So I was able to start testing their program, first by using their API via their website. This
wasn’t very practical, as each step had to be entered by hand. What’s more, as I was dealing
with relatively short videos, of the order of thirty seconds or so, I had little time to observe what
was going on. However, the stream of the video showing whether or not it had been detected was
a first step in assessing the quality of the detection. At first glance, the algorithm seemed to be
performing well, drones were detected in most cases and the tracking of a single drone was good.

Figure 9: The dynamic interface

To make testing and data processing easier, I started automating the process of calling the API.
To do this, I wrote a script using Bash scripting.

Bash is a command-line programming language. It is used by all distributions that run a Linux
kernel, for example. You can write a sequence of instructions in a file (a script), which is then
executed one after the other. This has the advantage that it is very close to the machine and
can be quickly set up and tested for simple applications. For more complicated calculations and
structures, it’s best to use a more advanced language.

In my bash script that called the API, I also included a way to retrieve the processed stream locally
and to start a log of the retrieved data.

Master’s Thesis August 25, 2023 Page 17/41

Antoine Wanctin

This data retrieval was not practical. In fact, as mentioned earlier, one data point corresponds to
one API call. During our discussions, Sense Aeronautics assured me that they were working on
a continuous data stream, but this apparently didn’t happen before I left RigiTech. So I had to
code a while loop that made API calls as long as the video was being processed. The downside of
this method, besides the fact that it can lead to server problems, is its relative slowness. I had a
data capture frequency of between five and ten hertz.

The next step was to determine how the data would be processed. For each data point, several
quantities were recorded.

1. id : the identifier of the detected drone. If the algorithm lost the drone and then found it
again, the id will be different.

2. Bearing: The angle of the drone to the north.

3. Azimuth: Cylindrical coordinates.

4. Elevation: Cylindrical coordinates.

5. Range: The distance between the drone and the camera.

6. Recommendation: A boolean indicating whether the detected drone should be avoided or
not.

7. Bounding Box: The coordinates of the bounding box around the detected drone.

8. Confidence: The confidence in the detection.

9. Timestamp: The UTC time the drone was detected. This was added at my request, but is
only accurate to the second.

Figure 10: The coordinates used by the video DAA

Master’s Thesis August 25, 2023 Page 18/41

Antoine Wanctin

A confidence is calculated on bearing, azimuth, elevation and range. Like the recommendation or
the global confidence, I did not know how they were calculated. So I didn’t take them into account
when I started processing the data.

I then developed a kind of graphical interface in Python to dynamically visualize the drone’s
position and the data of interest. This visualization was almost in real-time, modulo the video
processing time. When sending a YouTube video for processing, there was a delay of about five
seconds. As a comparison, my final system with a RTSP stream and ROS publisher had a fifteen
seconds delay.

In the course of these tests, I became aware of a rather annoying issue. The false positive rate
was extremely high. I noticed this problem on one of the Drove vs. Birds challenge videos. On
this video the false positive rate reached 67%, which is extremely high. As highlighted by Sense
Aeronautics, this video did not represents a normal situation that could have happened to the
drone. In fact, the camera was fixed to the ground and detected fixed objects such as a lamppost.

Using video from the drone’s front camera reduces the false positive rate, but does not eliminate
it. Some man-made structures are still detected as drones. So are waves or boats in the ocean.

This is a serious issue for RigiTech because one of the drone’s missions is to drop packages on
offshore wind turbines. If waves and wind turbines are detected as drones to be avoided, then this
method is not viable.

(a) Boat (b) Wind turbine

Figure 11: False detection

The goal of this task was to perform a demonstration to prove the interest of this method. We have
therefore decided to ignore this problem for the time being and have notified Sense Aeronautics to
work on it.

Integration to the existing system

After my tests, the goal was to be able to integrate it into existing code infrastructures. There was
already a module that could send information from a Raspberry PI to the cloud. By sending the
right information in the right format to the output of my program, the position of the detected
drone would appear on the cloud.

Master’s Thesis August 25, 2023 Page 19/41

https://www.youtube.com/watch?v=x-ib3SHc-0M

Antoine Wanctin

To do this, I had to perform a number of steps:

1. Create an RTSP stream

2. Transmit it to Sense Aeronautics

3. Integrate the whole thing into a Docker

4. Create a publisher so the received data can be sent to the cloud

So the first step was to be able to stream video from a camera to the Sense Aeronautics servers.
To achieve this goal, I had to comply with their standards. As mentioned above, they only accept
YouTube videos or RTSP streams as input. Since the first option was obviously not valid, I had
to set up an RTSP stream from a Raspberry PI.

Some cameras have this option built in. All you have to do is connect to their address and set
a password to access the stream from anywhere. Our goal was to use the drone’s front camera,
which doesn’t have this option. However, Sense Aeronautics took into account the specifics of the
drone and calibrated its algorithm accordingly. To send an RTSP stream from a Lambda camera
to a Raspberry PI, I had to use two things.

The first is Libcamera. It’s an open-source library that provides tools for everything related to
managing camera streams on embedded systems running Linux. You can use it to control any
kind of camera and connect it to other processes that use video streams.

This is the case with Mediamtx, a tool that can be used to create a real-time multimedia server
that follows numerous protocols, including RTSP. The combination of these two tools, after some
laborious installation and configuration, allowed me to obtain a stream via RTSP in real-time,
visible from any device connected to the local Wifi network.

But I needed to retrieve this stream from a global address so that the Sense Aeronautics servers
could also access and process the stream. To do this, there’s a technique that’s not very recom-
mended from a security perspective called port forwarding. This involves opening a port on a
network router to the public. Anything coming through that port will be redirected to a network
address, for example. This allows an application outside the network to access an internal service
inside the private network.

In our case, we would have given Sense Aeronautics a global RTSP address, which would then be
redirected to the internal address where the stream is actually running.

Port forwarding only works if the router is configured to give static IP addresses so that the external
process can always connect in the same way. At RigiTech, however, the router is configured to
provide dynamic IP addresses. These will therefore change over time, rendering port forwarding
obsolete.

To solve this problem, we can set up a dynamic Domain Name System. A DNS is what converts
Internet addresses used by humans into IP addresses that machines can understand. To set up

Master’s Thesis August 25, 2023 Page 20/41

Antoine Wanctin

a dynamic DNS, you need to use an external service provider that redirects a certain number of
dynamic domain name addresses to a static address.

I’ve tried to set up this whole system for a long time without success.

In the end, the cloud has ports dedicated to communicating with the outside world. By using port
forwarding to point to my RTSP stream, it was visible to the outside world.

So I had a real-time stream that could be processed by Sense Aeronautics and send data back to
me. All I had to do was integrate it into the existing structure.

Docker and ROS

The existing structure is a ROS node running on an Edge Node. The Edge Node is a drone
port manufactured by RigiTech. It provides internet access to the drones and at the same time
sends information to the cloud. That’s what we’re interested in here. On the Raspberry of an
Edge Node, you’ll find all the code infrastructure needed to send information to the cloud. It’s a
ROS node, but it has the peculiarity of sending what it publishes to Redis, a database capable of
high-performance real-time work.

Like all code developed by RigiTech, this bridge between the edge node and the cloud takes place in
a Docker. A Docker is an application that is isolated from the system on which it is deployed. This
ensures the reproducibility of working and development environments. A Docker image contains
everything you need to build an application, including dependencies, libraries, and code. All you
have to do is deploy it on another machine to find exactly what you need in the first place.

So I had to integrate all my dependencies into Docker to run Libcamera and Mediamtx. Then, in
the code that would run inside the Docker image, I added a publisher and a ROS subscriber to
be able to transmit the data I was processing. An existing function took care of passing the ROS
information to Redis.

Demo day and post processing

In order to coordinate with the other student doing acoustic DAA, I had to make some improve-
ments and adjustments to my data processing. For example, in order to have a similar position
on the cloud, I had to return positions in degrees. But I only had access to azimuth, elevation,
and bearing. I also had range. So I used the following formula to find a position for the detected
drone, knowing the camera coordinates Latc and Lonc.

Latf = arcsin(sin(Latc) ∗ cos(range/R) + cos(Latc) ∗ sin(range/R) ∗ cos(azimuth))

Lonf = Lonc + arctan2(sin(azimuth) ∗ sin(range/R) ∗ cos(Latf), cos(range/R)− sin(Latf)
2)

(11)

Note that the angles are in radians, which also gives us Latf and Lonf in radians.

Master’s Thesis August 25, 2023 Page 21/41

Antoine Wanctin

So I had a video stream that gave me the geographic position of the detected drone on the cloud.

At the very end of my course, we went out for some real-life tests. These consisted of a drone,
manually controlled by a pilot, making passes both in the field of view of my camera and in the
listening range of the microphones. It was a pleasant surprise to see that the results were more
or less the same. Despite a long delay of about fifteen seconds on my part, and an approximate
calibration of both the camera and the placement of the microphones, the detected position of the
drone, particularly at altitude, was relatively similar and at least comparable.

Due to lack of time, we were unable to process the data to a higher quality, but this remains
promising for the future of the Detect and Avoid project.

Figure 12: Comparison between optical and acoustic DAA

2 Simulation
Simulation is an essential step in R&D. In the past, prototypes had to be built at great expense
before they could be tested in the field. This was a long and expensive process. The development
of computer simulation tools has eliminated both of these disadvantages. Whether for testing
situations that are difficult to reproduce in a real test, or for extensive testing of a wide range of
scenarios, simulation is a practical and widely used tool. Its main drawback lies in its ability to
accurately simulate the real world. If simulation tests differ from what would happen under similar
conditions in the real world, then simulation is meaningless and irrelevant. However, an extremely
sophisticated simulation is not necessarily necessary, as it depends largely on the tests that are
being run on it. At RigiTech, simulation is an important part of every development process. It’s
even possible to simulate a real drone in the cloud. All its parameters and characteristics are taken
into account, so that a simulation flight in the cloud is similar to a real flight.

Master’s Thesis August 25, 2023 Page 22/41

Antoine Wanctin

There is still room for improvement, especially when it comes to the influence of the outside world
on the drone. That’s one of the areas I’m working on.

Figure 13: The drone flying in Gazebo.

2.1 Wind

PX4 and Gazebo

The entire physical simulation of the drone is managed by PX4. More specifically, PX4 integrates
and uses a version of Gazebo. Gazebo is an open-source 3D simulator that is widely used in
robotics. It allows you to create complete environments for simulating robots, taking into account
their actuators, motors, interactions with the environment and the physics of the world.

There are two ways to create a world and a robot in Gazebo. The first and easiest way is to use the
simulator’s graphical interface. You can add simple shapes, set the simulator’s physics and import
user or community created models. It is much less easy to connect this creation to something else.

It is also possible to program in a different way with Gazebo. It’s a simulator based on a set of
files that can be modified at will. Worlds and robots can be created in Simulation Description
Format (SDF) files. These use a system of tags to specify everything from geometry and physics
to objects, sensors and simulation environment parameters.

Traditionally, a simulation is divided into two or three main files. The robot is described in the
Unified Robotics Description Format (URDF), a standard originally developed for ROS. The world
is described in a .world file, which is an overlay of SDF. A configuration file can also be written
to set simulation options, physical properties and object and robot behavior. This is usually in
.yaml.

Master’s Thesis August 25, 2023 Page 23/41

Antoine Wanctin

Figure 14: Gazebo structure and dependencies from [2]

All these files, called in the right place, are easy to interface with other systems used in robotics.
It’s very common to run Gazebo inside a ROS node. Gazebo has an internal messaging system
similar to ROS.

PX4 makes interfacing easy. All you have to do is call up the model you want to simulate and
the world you want to run it in, and all the connections are made so that the drone can also be
simulated via PX4. We then have a complete model capable of reproducing with good fidelity
what would happen in reality.

To integrate all this into the RigiTech structure, the whole simulation part is integrated into a
Docker.

Task realization

My first contact with simulation under Gazebo and PX4 at RigiTech was to carry out a fairly
simple task. Gazebo allows you to simulate wind using a plugin. I’ll come back to this particular
structure later. When I started, the wind had a constant direction and speed. My aim was to
make it controllable when the simulator was started.

To start this I had to find and write my first Bash script. In fact, to set up the simulator and
get feedback from the cloud at the same time, I had to include my calculations and modifications
when creating the Docker image. As I did later for my Detect and Avoid integration, I placed
myself in the entry point of the docker file to directly modify the world invoked by the simulation.

To simulate wind in Gazebo, the plugin only needs two pieces of information: wind speed and
direction along the X and Y axes. It is also possible to set other parameters such as gust strength
and frequency, but this was not of interest in our case.

In order to run the simulation with the correct parameters, I had to call up the correct world and
change these values within the file. This can be done using the sed command in bash, which looks
for a text pattern in a file and replaces it with another.

All that remained was to implement the necessary calculations to switch from one angle to two
projections along the X and Y axes. It’s a simple projection calculation, but it requires the use

Master’s Thesis August 25, 2023 Page 24/41

Antoine Wanctin

of sines and cosines. This was the main difficulty of the task, as it’s not easy to do complex
calculations like this in Bash.

Figure 15: The drone in the cloud in grey with the wind in white

After a bit of research and discovery, I learned of the existence of a library for this type of calculation
in bash [19]. This saved me a lot of trouble, as one of the recommended methods for calculating
trigonometric functions was to use integer series.

After implementation and testing, the wind worked fine! By the time I left, another intern special-
izing in the frontend was implementing this function to access and change these parameters from
the cloud.

2.2 Elevation

After this warm-up, the real work began. During the mission tests, the pilots had encountered a
problem with the drone’s reactions. If the departure and arrival altitudes weren’t the same, the
drone wouldn’t react well. It would crash in mid-flight if the arrival altitude was higher than the
departure altitude, and sink to the ground if the departure altitude was lower.

There was a simple reason for this. The world in Gazebo is basically represented by an infinite
plane on which the drone starts. This is the only point of support it has in the world, so it’s bound
to collide with it at some point. To avoid this issue, I had to implement a Digital Elevation Model
(DEM) in the world to solve it. A great introduction to DEM and the way to store and use them
could be found in [20].

Master’s Thesis August 25, 2023 Page 25/41

Antoine Wanctin

As with the Gazebo wind implementation, I had to do my manipulations on the simulator before
starting it. The DEM had to be centred on the drone’s position and the model had to be adapted
to the drone’s maximum range. We couldn’t fly without a DEM, but it couldn’t be too large for
performance and memory reasons. The strategy I used to implement a DEM was as follows:

1. Retrieve the DEM for the region of interest

2. Create a world file to use with the DEM

3. Position the DEM correctly in relation to the world coordinates

4. Launch simulation with world and drone

Figure 16: DEM of the Geneva lake

Fetch the DEM

For various functions, including this one, the entire world modeled by Copernicus in DEM is
uploaded to RigiTech’s servers. An extract can be downloaded via a special API request. By
specifying a pair of coordinates in degrees and size in kilometers, we get the requested DEM file.
This is a Geotiff file, which assigns latitude, longitude, and altitude to each pixel. The coordinate
system is available, as is other information that I’ll return to later.

However, after learning how to make requests to an API, I realized that the file returned was not
exactly what I had requested. This is because, by default, the Copernicus model is divided into tiles

Master’s Thesis August 25, 2023 Page 26/41

Antoine Wanctin

whose corners are geographical coordinates in half-degree increments. If we take a quadrilateral
with a side of one degree, we’ll have four tiles.

What the API returned were the tiles contained in the requested area, rounded up. So the requested
point and area were included in the returned file, but the center of that file did not match the
requested point.

By default, Gazebo centers DEM files around the world and makes the drone appear in the center
as well. It was therefore convenient for me that this central point should be the correct one. I
then had two options. I could either download the Geotiff file and then resize it to my liking, or
solve the problem upstream and download the correct file directly.

Although the whole part of controlling what was returned by the API calls was handled very
differently from the code I was used to. It was Javascript, coded asynchronously so that nothing
would block the code. As the only person dealing with this part of the code was extremely busy,
I started by coding something that would take the result of the API call as input and re-encode
the result to get the expected format.

To work efficiently with Geotiff files, I used the Geospatial Data Abstraction Library (GDAL). This
is a very powerful open-source library for manipulating geographic data. In particular, it allows
conversion between formats, image transformation and access to the metadata of Geotiff files.
To visualize the resulting files, I first used online Geotiff viewers. However, they offered limited
functionality and didn’t gave me the opportunity to check what I wanted. I then used QGis,
a specialized software package that allowed me to validate the sizes of the files I was resizing.
Without this software, it wasn’t an

To get the desired square, I had to find its corner coordinates, taking into account the center,
whose position I knew. There’s a function that takes as input a pair of coordinates LonM/LatM ,
a distance D and an angle b, and returns the corresponding pair of coordinates. We then have :

LatF = arcsin(sin(LatM)) ∗ cos(d/R) + cos(LatM) ∗ sin(d/R) ∗ cos(b)
LonF = LatM + arctan2(sin(b) ∗ sin(d/R) ∗ cos(LatM), cos(d/R)− sin(LatM) ∗ sin(LatF))

(12)

Using d = D ∗
√
2/2 you get the sides of the square of the desired size. All angles and coordinates

are given in radians. R is the radius of the Earth, approximated to be 6371000 m.

In order to run tests quickly, I started by implementing these equations in my Bash script after
downloading the global Geotiff file. This allowed me to perfect my code and get what I wanted
by modifying a Python file locally, which was much faster than the API code. In fact, to test my
changes in Javascript, I had to commit each time to a git and run a pipeline that built me the
adapted image. For a long time, I didn’t have a Javascript environment on my PC because the
installation process was so cumbersome. However, I couldn’t be satisfied with my local function.
In fact, every time I called the API, I was downloading an extremely large map, too large to keep
just a small part of it. This meant that my process took far too long, for no justifiable reason.

Master’s Thesis August 25, 2023 Page 27/41

Antoine Wanctin

I worked on the Javascript code to implement these equations upstream in the data processing
stack. The latter had the particularity of using only asynchronous functions, which gave me
quite a lot of trouble. In fact, I learned to code with synchronous functions, where calling one
function after another results in one response after another. This is not the case with asynchronous
functions, which are executed simultaneously, depending on which one takes the longest and uses
thread priority and management.

I spent a lot of time trying to get this part to work in Javascript. I had functions that fetched
variables that I thought had been defined earlier, but hadn’t been because the previous part of
the function hadn’t run yet. This would, for example, result in Geotiff files of the correct size and
position, but with zero elevation everywhere.

To control this kind of behavior you need to use the await function and promises. The use of
await interrupts the execution of the function, freeing a thread, until the expectation conditions
are met. This is done by resolving a promise. A promise is a representation of a value that may
be available now, in the future, or in the past. Once the promise has been fulfilled, execution of
the function can resume. It is also possible to rely on the non-resolution of a promise to keep a
function running.

After a lot of experimentation, installing a proper Javascript development environment and help
from the cloud expert at RigiTech, I managed to get something working. In the end, I didn’t use
the above equations directly. Instead, I used a function from the GDAL async library, [21] which
had the advantage of working directly in asynchronous mode. However, it used the same equations
underlying it.

So I had a well-placed file of the right size as soon as I called the API. The next step was to insert
the card into Gazebo and place it correctly.

Master’s Thesis August 25, 2023 Page 28/41

Antoine Wanctin

Figure 17: What the API returned in red versus what we asked in green

DEM related stuff

To integrate a height map, Gazebo provides a structure similar to that used to introduce 3D
objects into the world. This involves specifying the position and size of two entities: the visual of
the object and its collision model.

Gazebo works this way for a simple reason. Collision models are generally very simplified compared
to visuals. They require a lot of computation, which is not necessarily desirable in a simulation to
maintain fluidity. For example, the collision model of a car could be approximated by a rectangular
parallelepiped.

This is not the case with a DEM. In fact, it’s desirable for the collision model to be as close to
reality as possible, which inevitably leads to greater complexity.

So I knew quite easily how to integrate a height map into a Gazebo world. For the choice of the
size, this corresponds to the real dimensions, if not specified. I also had to take into account the

Master’s Thesis August 25, 2023 Page 29/41

Antoine Wanctin

height of the desired point when creating the DEM.

By default, Gazebo places the center of the DEM at the origin. The drone, when it appears,
must also be positioned at the origin so that PX4 uses the correct elevation and doesn’t create an
offset. This requires moving the center of the elevation map to the origin and therefore knowing
its elevation.

I had two ways to do this. Either I used known positions of the drone in the real world to reproduce
them in the simulation, or I used another call to the cloud API that returned the altitude of a
point whose coordinates were sent to it. This way I had a DEM that seemed to be well placed in
the world.

That’s when I noticed a problem that wasn’t happening all the time. As my tests progressed, my
process became more and more automated. At first, I used external software to make my API
calls and manually integrated the resulting DEM into a version of Gazebo running standalone on
my computer. It was a process that I mastered every step of, but it had the disadvantage of being
very slow.

By automating everything with a Bash script, I was able to run my tests much faster. However,
some of my API calls returned a DEM which was like being cut in half. One half was normal,
while the other half had no elevation.

Figure 18: A DEM with a non standard resolution for Gazebo

After much research, it seems that Gazebo can only handle height maps of a certain resolution.
The DEM must be square and have a resolution of 2N + 1 to be displayed correctly. Once these
considerations were taken into account, I got a height map that displayed correctly every time.
Before that, I had already changed the resolution, but only to maintain the width/height ratio

Master’s Thesis August 25, 2023 Page 30/41

Antoine Wanctin

of the base image. Without reducing the resolution or the size of the base image, loading under
Gazebo was very slow at best and impossible at worst.

So for my tests I drastically reduced the resolution and size of the height map to have something
fast to test. The slow loading of the DEM was not a problem during the final integration into PX4’s
Gazebo. In fact, the Gazebo was started without a graphical interface, which greatly reduced the
loading time. It was therefore in my interest to choose the highest possible resolution to get a
simulated world as close to reality as possible. That’s why I added a part to my height map
generation bash that allows me to choose the highest possible resolution without exceeding the
initial one, always respecting the 2N + 1 constraint.

I also took the opportunity to do some CPU testing. By running a Docker image, it’s quite easy to
observe the percentage of CPU it uses. Changing the resolution when the GUI was not present had
no noticeable effect on CPU usage. I could therefore increase the resolution as much as possible
without affecting the speed of the simulation, which in our case should be as close to real-time as
possible.

(a) The extrapolation is too high, there is
some data losses

(b) A high resolution with a Pixel=Area
paradigm

Figure 19: Different resolutions for the same height map

Task realization

So I was at a point where I had mastered the map I was generating, both in terms of size and
resolution. It was also integrated into Gazebo. All that remained was to place it correctly in the
world.

As explained above, Gazebo places the center of the DEM at the origin of the world by default.
I had already more or less set the position along the Z axis. However, I needed to add a margin
of about two meters. By using the exact elevation value at the origin, the drone tended to appear
in the DEM, which caused collision problems and made it move quite violently. This offset was
not constant and I had to change it with a trial and error method until finding the good value. It
couldn’t be too small to avoid collision problems, nor too large, as the drone would then tend to
fall away from its initial position and flip over. This behavior was very strange, I’ll explain it in
details a bit later.

Master’s Thesis August 25, 2023 Page 31/41

Antoine Wanctin

I also had to make sure that the X and Y positioning was correct. The drone was always slightly
out of position. To do this, I had to correlate Gazebo’s reference frame and coordinates with those
of the PX4, which are the most commonly used in the real world.

The main problem was Gazebo’s handling of movement. To move a DEM, you have to specify
a distance in meters along the three axes of a conventional Cartesian coordinate system. This is
easy for the vertical Z axis, since elevation is generally expressed in meters. For the other axes,
however, I had to convert from a geographic projection in degrees to a Cartesian projection.

To do this, I used Harvesine’s formula. This gives the distance in meters between two geographic
coordinates, written as :

Haversin(θ) = sin2

(
∆lat
2

)
+ cos(lat1) · cos(lat2) · sin2

(
∆long

2

)
(13)

Where :

• ∆lat and ∆lon is respectively the difference in latitude and longitude between the two points
in radians.

• lat1 and lat2 are the latitudes of the two points in radians.

Once the Harvesine has been calculated, the distance between the two points can be deduced using
the following equation:

d = 2 ·R · atan2
(√

Haversin(θ),
√

1− Haversin(θ)
)

(14)

Knowing the actual position of the drone and its desired position, it is then possible to find the
distance between the two and provide it to Gazebo. In order to have data that can be used to
move the map, though, this distance needs to be broken down along the X and Y axes. I did this
using a Python library that specializes in projections.

To do so, I had to specify my input and output coordinate systems and transform my start and
end points into the input system. After the transformation, I was able to find the displacement I
was looking for by calculating the difference between the two coordinates along the X and Y axes.

I now had all the information I needed to achieve my goal - all I had to do was test it on the cloud
simulators. That’s when the problems began.

Projection Problems: Resizing

To test my modifications, all I had to do was call up the correct image that integrated Gazebo
when I launched the simulator. I then had a view of the simulated drone placed on the map in the
cloud. Visually, everything was fine. The drone seemed to be in the right place and at the right

Master’s Thesis August 25, 2023 Page 32/41

Antoine Wanctin

altitude. However, when I launched a mission to check that it was working properly, everything
changed.

In fact, position tests are performed before a mission is launched to ensure accurate take-off and
correct initialization of parameters, especially GPS. These tests allowed me to determine that the
drone was not in the correct position. The error ranged from three to fifteen meters.

For internal use, this wasn’t a big problem. All you have to do is increase the tolerance of the
position tests at the beginning to get something functional with a small error. However, from the
customer’s point of view, it wasn’t possible to tolerate this error. In fact, some of our customers
had to launch a drone from a rooftop. Visually, it would have appeared next to it, which could
have caused confusion. So I had to figure out the source of the issue.

I started by changing the way I was resizing the DEM. In fact, using a GDAL function could
gradually accumulate errors as the elevation map was transformed. For comparison, I used two
different resizing methods. The first took a DEM corresponding to what was needed as input and
resized it, keeping all geo-referenced pixels. This was the method I implemented initially. The
second method took a larger DEM as input and cropped it to the correct dimensions without
resizing it. I specified the dimensions and coordinates of a square of pixels extracted from the
global elevation map. This avoided the resizing problems I hadn’t solved, but introduced others.
In fact, the choice of pixels on which to base the square was not obvious and led to positioning
errors.

In terms of pixels, a DEM can be encoded in two different ways. It can associate an elevation
with a point or with a region of the image, which will then have a uniform elevation [3]. The main
difference between the two approaches lies in the way the calculations involving pixels are handled.
When they are considered as discrete points, the value associated with them corresponds to the
center of the pixel. This keeps the data accurate when resizing. What changes is the distance
between pixels. Locally, the height remains the same. An interpolation is calculated between
each pixel, which introduces inaccuracy. This can be controlled to some extent by changing the
interpolation method.

Master’s Thesis August 25, 2023 Page 33/41

Antoine Wanctin

(a) Pixel=Point (b) Pixel=Area

Figure 20: Different paradigms for height maps from [3]

Considering that a pixel corresponds to an area on the DEM, the inaccuracy increases. In fact,
in this paradigm, when GDAL reduces the resolution, the pixels are aggregated to provide a new
value for the pixel resulting from the operation. The initial value of a pixel, when considered as a
surface, is one of its vertices. When the DEM is resized, this value is lost in the calculation, and
fine details may be lost.

Redimensioning could therefore pose a problem. I tested three different approaches:

1. Resize the DEM by treating pixels as local points

2. Resize the DEM by treating pixels as areas

3. Crop a larger DEM to the right size.

Unfortunately, these methods didn’t produce any conclusive results. So I approached the problem
from a different angle.

Projection problems: Spherical Coordinates in Gazebo

It turns out that Gazebo can integrate spherical coordinates directly into the world. This is
specified when the world file is initialized and allows objects to be placed in the world by geo-
referencing them. This seemed like a straightforward solution to my problem. So I tried to place
the elevation map at the exact coordinates needed by the drone. But then I noticed a curious
behavior. No matter what coordinates I entered, the drone always placed itself at the coordinates
corresponding to the upper left corner of the DEM. What’s more, physically it was always at the
origin of Gazebo, i.e. at the center of the elevation map. After much research, this was due to
a bug in Gazebo when integrating a DEM into a world. Its coordinates overwrote the spherical

Master’s Thesis August 25, 2023 Page 34/41

Antoine Wanctin

coordinates defined in the world as explained here [22] by the specialist of Gazebo in the PX4
company.

To solve this problem, I tried to stop using height maps directly by transforming them into another
object. I had two options:

1. Transform the DEM into a 3D object and import it into Gazebo as such.

2. Remove the geo-referencing from the original Geotiff, while keeping the elevation.

The first method had the advantage of eliminating all external coordinate systems in favor of
Gazebo’s own. What’s more, a 3D model can be easily integrated into a world and is, in fact, its
basic component.

To transform a DEM into a 3D model, I had to take each of its points and then perform a
Delaunay triangulation on them. Delaunay triangulation consists of dividing a set of points into
non-overlapping triangles with certain properties. These are as follows:

1. The length of the sides of the triangles is minimal.

2. The angles of the triangles are minimum.

3. The circumscribing circle of each triangle contains no points.

4. The transformation is unique except for a particular configuration.

Figure 21: A correct Delaunay interpolation from [4]

It is therefore possible to reconstruct coherent surfaces on a three-dimensional point cloud. How-
ever, this method is computationally expensive for a point cloud with more than 500 points [4].
For the surfaces I needed to process, my computer was not powerful enough to perform the trans-
formation. Despite its advantages, this was not a viable method for implementing a DEM in
Gazebo.

That left me with the second method. Using GDAL, I was able to convert my Geotiff to a png image
that behaved like a DEM, while removing all geo-referencing. This method had the advantage of

Master’s Thesis August 25, 2023 Page 35/41

Antoine Wanctin

being extremely fast, and I was hoping that Gazebo’s spherical coordinates would override and
replace those of the elevation map. Unfortunately, this was not the case. The drone was positioned
at zero latitude and zero longitude. In the end, Gazebo behaved exactly the same as [22].

Trying to position the DEM using spherical coordinates was therefore not possible. So I looked
for a different solution.

Projection problems: Moving the DEM

I then set out to revise the way I was moving the height map, assuming that my method of
calculation was wrong. So I immersed myself in the theory of geodesy.

First, I calculated my displacements by switching from the WGS84 world reference frame (EPSG
4326) to a Cartesian reference frame in EPSG 3857. These two projections correspond respectively
to a classical reference frame expressed in latitude/longitude and to a plane that has been projected
according to the Mercator projection.

I did the same when I switched from WGS84 to UTM. In fact, this projection is quite similar to
Mercator’s, but takes into account the distortion introduced by the latter. The Mercator projection,
traditionally used for cartography, is highly distorted in certain places. The most common example
is Greenland, which appears much larger on a map than it actually is.

By dividing the earth into several smaller zones, the UTM projection reduces the distortions
inherent in the Mercator projection. To implement this method, I had to automate the search for
the number corresponding to the UTM zone in which I wanted to make the projection. I used the
following method.

1. Take the longitude in decimal degrees and add 180.

2. Divide by six.

3. Round up to the nearest whole number.

But that didn’t solve my problem. I still had a discrepancy between the actual position of the
drone and the desired position. This tended to increase with the size of the DEM requested.
Finally, with the help of one of the hydrography professors at ENSTA Bretagne, I again changed
my projection to a local tangent plane. This is indeed the projection used by Gazebo within a
world. The unclear documentation had caused me to miss this essential information.

Master’s Thesis August 25, 2023 Page 36/41

Antoine Wanctin

Figure 22: Referential used in Gazebo from [5]

To calculate the displacement in this projection, I used the equations from [23]. The problem
raised by [24] was also very useful. I was now sure that I was using the correct projections to
calculate the displacement between the drone’s actual position and its desired one.

It was also at this point that I understood why the Z offset was not constant. As explained earlier,
when I changed test locations, I had to change this value quite significantly.

Again, this was due to a Gazebo bug. When a height map is moved, only the visual moves. The
collision model remains static, centered on the world origin [25]. To solve this problem, I set out
to develop a plugin that would synchronize the movement of the visual and the collision.

A Gazebo plugin is a software module that can be loaded into a URDF or world file to change its
properties. They can be used to add a further level of customization to the world, for example by
changing its physical properties. So I tried to develop the missing functionality. However, despite
my best efforts, I was never able to move the collision model.

In desperation, having run out of ideas to solve my problem, I turned to the Gazebo and PX4
Internet communities. By explaining my problem in their forums, I kept the hope alive that a
solution or a new idea would be suggested to me. I even participated in a call with the CEO
of PX4 and some of the engineers in charge of development. They referred me to [22], which I
unfortunately already knew. We tried to revive the issue, without much success.

After spending a lot of time on it, I stopped working on it. I sincerely hope that someone will take

Master’s Thesis August 25, 2023 Page 37/41

Antoine Wanctin

over my work and finish it. There are still a few things to improve.

To consider for the future

The most obvious clue is a new version of Gazebo. In fact, the new version of PX4 integrates
a different version of Gazebo. With any luck, the bugs that were present in the version I was
working on will have disappeared. Nevertheless, it’s a lot of work for RigiTech to change the
autopilot version, because it requires checking all existing functions. We have to make sure that
the existing features work in the same way and that the new features are compatible with the
drone.

I was also interested in the case that motivated the whole implementation of elevation in Gazebo,
i.e. taking off from a building. A file obviously does not contain buildings. It only takes the
ground elevation into account. One possible way to implement this feature would have been to
have the drone take off from a plane elevated to the height of the building. However, the positional
problems remain.

3 Other tasks
During my internship at RigiTech, I also had the opportunity to work on tasks that took much less
time than the ones mentioned above. From the point of view of a startup working in successive
sprints, there are always small side tasks, whether it’s the quick improvement of an already existing
feature or bug fixing.

3.1 Bug Fixing

I had to fix a couple of bugs that came up mainly during test flights. I didn’t deal with them at the
very beginning of my stage, but I was able to take on more responsibility as I gained experience.
That’s why the bugs I was able to fix were all in the drone’s vision and camera. There were two
main ones.

Precision landing not triggered

The first was precision landing, more specifically, not being triggered when performing an emer-
gency maneuver. The drone has several of these functions so that it can have a defined behavior
in the event of a problem. In this case, the feature in question was the one that allowed the drone
to fly directly to a rally point. Rally points are places on the map where the drone can land in the
event of a problem. There will be one or more per mission. The default rally point is the drone’s
launch point. This is the point that could be used in case of an emergency landing, e.g. due to
the triggering of an ACD program.

However, when an SRP was triggered, precision landing was not activated. This was because the
waypoints were not updated in the return mission. Once this was fixed, everything worked as

Master’s Thesis August 25, 2023 Page 38/41

Antoine Wanctin

expected.

Crash of video_node

The second bug I had to deal with was more of a testing nature. When calling the ROS service in
the video node, it had a strong tendency to close unexpectedly due to a wrong function call order.
This had already been fixed by the time I picked up the task. My goal was to run some services
in a loop for a while to see if the bug had been fixed. It had been fixed.

3.2 Unit Testing

Another task I was able to take on was writing unit tests for a function. This function checked
whether a point was in a geocage by returning true or false.

Geocages are physical areas in which the drone can fly according to regulations. There are three
interlocking zones that correspond to certain safety requirements. There is the pre-geocage, which
is where the drone should fly at all times. It is contained within the geocage, which the drone
must not cross under any circumstances. Finally, the buffer zone is the area where the drone can
land in the event of a parachute opening. It corresponds to the maximum drift of the drone when
its parachute opens.

Figure 23: One of the scenarios to test the function. The buffer zone is in red, the geocage in yellow
and the pre-geocage in green

Master’s Thesis August 25, 2023 Page 39/41

Antoine Wanctin

In order to carry out this task, I created scenarios such as in Figure 23 in which I tried to find
corner cases for the function that checks whether a point belongs to a geocoding type or not. I
then ran unit tests for each point, giving them the expected value and automatically checking that
the function to be tested returned the same thing.

3.3 Vertical geocage boundary

While working on the geocages, I also had the opportunity to delve a little deeper into the workings
of PX4 by adding a previously unused parameter. This parameter controls the maximum height
of the geocage that the drone cannot exceed. Previously, this parameter was only used in the
onboard computer. If the onboard computer failed, this safety feature was lost. So I took it upon
myself to assign the correct value to this parameter when starting a mission. This allowed me to
understand the PX4 messaging system and how it interacted with MAVLink. I also had to pay
attention to the altitude reference frames, which were not the same between the older parameter
and the new one as shown in Figure 24.

Figure 24: Summary of the altitude frames used to define the max altitude of the geocages.

3.4 Auto-exposure

In relation to all the video features, I had to set up an auto exposure parameter. This was useful
for the precision landing. In fact, depending on the brightness, the ARUCO markers on the landing
pad were detected more or less well. By activating the auto-exposure parameter, the detection was
more consistent depending on the weather conditions. To activate this parameter, I had to insert
a line in a bash file at the right place, which got the parameter value with sed and set it to the
desired value.

Master’s Thesis August 25, 2023 Page 40/41

Antoine Wanctin

3.5 DronePort

The last task I had to complete was different to anything else I’d done on the course, as it had
a much stronger hardware connection. One of RigiTech’s R&D projects is the development of a
DronePort that can automatically load and unload parcels. I was responsible for controlling the
motor that pushes the parcel into the drone or, conversely, unloads it smoothly. To do this I had
to use a motor shield on a Raspberry. I also had to integrate two inductive proximity sensors into
my system.

The advantage of this project was that I was given a lot of autonomy. I started from scratch and
had to produce working code for a demonstration. My code also had to be reusable by someone else
in the future. So I created a whole class to make my functions intuitive to use. The demonstration
went very well.

Conclusion
During my internship at RigiTech I had the opportunity to work on two main aspects of drone
development. Firstly, I got to work on all aspects of the video. Whether it was theory or imple-
menting new features, this gave me a great start to my internship. Completing the Detect and
Avoid project was a very satisfying end to my internship. Despite the difficulties and setbacks, the
fact that we ended up with a coherent result was a pleasant surprise. The fact that I was working
with a foreign company with which I had only occasional contact was very formative. In a way, this
contrasted with the easy collaboration between my friend who was developing an acoustic ACD
solution, the RigiTech staff and myself. Whether it was solving the network problems, integrating
the code into the cloud, or taking us out into the field at odd hours to do some testing, there was
always someone there to support me.

The failure of my second major project, involving the integration of a 3D model into the simulation,
was something I found very hard to let go of. I spent an enormous amount of time on this project,
probably too much, before exhausting all the available solutions one by one. However, I learnt a
lot about a less common area of robotics. It also earned me the status of Gazebo expert within
RigiTech, given the level of complexity I reached during my research. It also made me aware of
any weaknesses I might have in managing and organizing my time, so I could work on them.

The side tasks were welcome and helped me to try out new things quickly. Overall, I learned a
lot during this internship. Working closely with the software gave me an overview of much of the
drone’s software operation. What’s more, RigiTech’s development of cloud tools is very advanced
and a radical change from what I learned at school. Finally, I’d like to pay tribute to the excellent
team management I’ve had the opportunity to be part of. When working in this company, it’s
easy to feel part of a whole that is moving in the same direction: the development, from scratch
to production, of a high quality drone.

Master’s Thesis August 25, 2023 Page 41/41

Antoine Wanctin

References
[1] C. en Lin, “Introduction to motion estimation with optical flow,” 2023. https://nanonets.

com/blog/optical-flow/ [Accessed: (13/08/23)].

[2] V. Tinoco, B. Malheiro, and M. Silva, “Design, modeling, and simulation of a wing sail land
yacht,” Applied Sciences, vol. 11, p. 2760, 03 2021.

[3] jratike80, “Deal correctly with geotiff pixel-is-point vs pixel-is-area,” 2020. https://github.
com/opengeospatial/ogcapi-coverages/issues/92 [Accessed: (12/06/23)].

[4] D. T. Lee and B. J. Schachter, “Two algorithms for constructing a delaunay triangulation,”
International Journal of Computer & Information Sciences, vol. 9, pp. 219–242, Jun 1980.

[5] Gazebo, “Spherical coordinates,” 2023. https://gazebosim.org/api/gazebo/6.0/
spherical_coordinates.html [Accessed: (13/08/23)].

[6] “Opencv,” 2023. https://opencv.org/ [Accessed: (24/08/23)].

[7] “Gstreamer,” 2023. https://gstreamer.freedesktop.org/ [Accessed: (24/08/23)].

[8] A. Domi, “Low latency adaptive video encoding,” in Computer and information sciences,
vol. 113, 05 2019.

[9] Y. Shuai, M. Gorius, and T. Herfet, “Low-latency dynamic adaptive video streaming,” in 2014
IEEE International Symposium on Broadband Multimedia Systems and Broadcasting, pp. 1–6,
06 2014.

[10] J. Stowers, A. Bainbridge-Smith, M. Hayes, and S. Mills, “Optical flow for heading estimation
of a quadrotor helicopter,” International Journal of Micro Air Vehicles, vol. 1, pp. 229–239,
Dec 2009.

[11] L. Rosa, T. Hamel, R. Mahony, and C. Samson, “Optical-flow based strategies for landing vtol
uavs in cluttered environments,” IFAC Proceedings Volumes, vol. 47, no. 3, pp. 3176–3183,
2014. 19th IFAC World Congress.

[12] P. Maurel, “Analyse de séquences d’images, flot optique,” 2023. https:
//perso.univ-rennes1.fr/pierre.maurel/Prepa_Agreg/CM/agreg06_flot_optique_
presentation.pdf [Accessed: (13/08/23)].

[13] P. J. O’donovan, “Optical flow : Techniques and applications,” 2005.

[14] B. K. Horn and B. G. Schunck, “Determining optical flow,” Artificial Intelligence, vol. 17,
no. 1, pp. 185–203, 1981.

[15] B. Lucas and T. Kanade, An Iterative Image Registration Technique with an Application to
Stereo Vision (IJCAI), vol. 81. Apr 1981.

[16] C. G. Harris and M. J. Stephens, “A combined corner and edge detector,” in Alvey Vision
Conference, 1988.

Master’s Thesis August 25, 2023 Page I/V

https://nanonets.com/blog/optical-flow/
https://nanonets.com/blog/optical-flow/
https://github.com/opengeospatial/ogcapi-coverages/issues/92
https://github.com/opengeospatial/ogcapi-coverages/issues/92
https://gazebosim.org/api/gazebo/6.0/spherical_coordinates.html
https://gazebosim.org/api/gazebo/6.0/spherical_coordinates.html
https://opencv.org/
https://gstreamer.freedesktop.org/
https://perso.univ-rennes1.fr/pierre.maurel/Prepa_Agreg/CM/agreg06_flot_optique_presentation.pdf
https://perso.univ-rennes1.fr/pierre.maurel/Prepa_Agreg/CM/agreg06_flot_optique_presentation.pdf
https://perso.univ-rennes1.fr/pierre.maurel/Prepa_Agreg/CM/agreg06_flot_optique_presentation.pdf

Antoine Wanctin

[17] OpenCV, “Documentation for the undistortpoints() function.,” 2023.
https://docs.opencv.org/3.4/da/d54/group__imgproc__transform.html#
ga55c716492470bfe86b0ee9bf3a1f0f7e [Accessed: (13/08/23)].

[18] D. Workshop on Small-Drone Surveillance and C. Techniques, “Drone-vs-bird detection chal-
lenge,” 2022. https://github.com/wosdetc/challenge [Accessed: (12/06/23)].

[19] S. Tips!, “How to do advanced math calculation using bc?,” 2020. https://www.shell-tips.
com/linux/how-to-use-bc/ [Accessed: (12/06/23)].

[20] R. Trent, “The secret life of geotiffs,” 2023. https://blogs.loc.gov/maps/2023/05/
the-secret-life-of-geotiffs/ [Accessed: (12/06/23)].

[21] M. Momtchev, “gdal-async 3.7.0,” 2022. https://mmomtchev.github.io/node-gdal-async/
[Accessed: (12/06/23)].

[22] Jaeyoung-Lim, “Dem origin overrides spherical coordinate flags defined in .world,” 2020.
https://github.com/gazebosim/gazebo-classic/issues/2884 [Accessed: (10/08/23)].

[23] P. S. A. Society, “Conversion of geodetic coordinates to the local tangent plane,” Portland
State Aerospace Society, 2007.

[24] swissknight, “Reproject wgs84 raster file to topocentric ltp-enu using gdal with a
custom proj string,” 2021. https://gis.stackexchange.com/questions/384512/
reproject-wgs84-raster-file-to-topocentric-ltp-enu-using-gdal-with-a-custom-proj
[Accessed: (12/06/23)].

[25] O. Robotics, “Setting position on heightmap creates offset between collision and visual,” 2023.
https://github.com/gazebosim/gazebo-classic/issues/868 [Accessed: (12/06/23)].

Master’s Thesis August 25, 2023 Page II/V

https://docs.opencv.org/3.4/da/d54/group__imgproc__transform.html#ga55c716492470bfe86b0ee9bf3a1f0f7e
https://docs.opencv.org/3.4/da/d54/group__imgproc__transform.html#ga55c716492470bfe86b0ee9bf3a1f0f7e
https://github.com/wosdetc/challenge
https://www.shell-tips.com/linux/how-to-use-bc/
https://www.shell-tips.com/linux/how-to-use-bc/
https://blogs.loc.gov/maps/2023/05/the-secret-life-of-geotiffs/
https://blogs.loc.gov/maps/2023/05/the-secret-life-of-geotiffs/
https://mmomtchev.github.io/node-gdal-async/
https://github.com/gazebosim/gazebo-classic/issues/2884
https://gis.stackexchange.com/questions/384512/reproject-wgs84-raster-file-to-topocentric-ltp-enu-using-gdal-with-a-custom-proj
https://gis.stackexchange.com/questions/384512/reproject-wgs84-raster-file-to-topocentric-ltp-enu-using-gdal-with-a-custom-proj
https://github.com/gazebosim/gazebo-classic/issues/868

Antoine Wanctin

Acronyms
API Application Programming Interface

BVLOS Behind the Visual Line Of Sight

DAA Detect And Avoid

DEM Digital Elevation Model

EKF Extended Kalman Filter

FOE Focus Of Expansion

GDAL Geospatial Data Abstraction Library

GNSS Global Navigation Satellite System

IMU Intertial Measurement Unit

ROS Robot Operating System

RTSP Real Time Streaming Protocol

SDF Simulation Description Format

UAV Unmanned Aircraft Vehicle

URDF Unified Robotics Description Format

Master’s Thesis August 25, 2023 Page III/V

Antoine Wanctin

Appendices

Figure 25: Sprint organization in RigiTech

Figure 26: Another scenario for unit testing

Master’s Thesis August 25, 2023 Page IV/V

Antoine Wanctin

Figure 27: Another scenario for unit testing

Figure 28: Another scenario for unit testing

Master’s Thesis August 25, 2023 Page V/V

FICHE D'APPRECIATION DE STAGE

A renseigner et à viser par le tuteur entreprise puis faire retour sous aurion
rubrique « mise à jour de PFE »

Organisme Rigi Technologies SA
Dates du stage 01.03.2023 – 31.08.2023

NOM, Prénom du stagiaire WANCTIN Antoine

Cocher les cases appropriées

F
(échec)

E
(insuffisant)

D
(passable)

C
 (assez bien à

bien)

B
(bien à très

bien)

A
(remarquable)

Critères d’intégration – Savoir être

Adaptabilité x

Disponibilité x

Culture de l’entreprise x

Puissance de travail x

Qualité d’expression x

Conduite du projet

Identification des tâches x
Organisation/répartition des tâches

dans le temps x

Respect des délais des livrables
demandés x

Force de proposition x

Éventuellement : travail en équipe x

Rapport de stage

Forme (présentation, style…) x

Fond (exactitude) x

Exploitabilité par l’organisme x

Appréciation de la formation ENSTA Bretagne

Les compétences scientifiques et techniques
répondent à mes attendus x

Les compétences méthodologiques
répondent à mes attendus x

Sur quels sujets a-t-il fallu former le stagiaire
avant qu'il ne soit autonome ? Gestion du temps de travail, certaines specificités de git

Quelles seraient les compétences ou les
contenus de formation à renforcer ? Gestion personnelle de taches

Appréciation générale
Antoine a été un très bon stagiaire et a su s’adapter aux différentes tâches que nous lui avons assignées.
Il est devenu notre expert résident sur une partie du code de l'entreprise (simulateur) et s'est intégré au sein de
l'entreprise. Les deux grands thèmes confiés à Antoine étaient complexes et variés, mais Antoine les a brillamment
réalisés.
Bien que son travail et son intégration dans l’équipe soient tous deux adéquats, nous n’avons actuellement pas
d’ouverture de poste au sein de l'entreprise pour son profil, mais nous le recommandons à quiconque voudrait
l’embaucher. Nous lui souhaitons beaucoup de succès dans ses futurs projets.

Si vous disposiez d’un poste correspondant au profil du stagiaire, souhaiteriez-vous lui proposer ? NON

NOM, Prénom du tuteur entreprise : DELAFONTAINE Victor Date : 17.08.2023

Fonction : Ingenieur software et communication Signature :

	Video
	Improve stream
	Optical Flow
	DAA with Sense Aeronautics

	Simulation
	Wind
	Elevation

	Other tasks
	Bug Fixing
	Unit Testing
	Vertical geocage boundary
	Auto-exposure
	DronePort

	References
	List of Acronyms
	Appendices

