
Path-following and OA algorithm for an UAV
&

Minimal rigid-body transform contractor using
interval approaches

Danut POP : danut.pop@ensta-bretagne.org

Leibniz Universität Hannover (LUH)
Welfengarten 1, 30167 Hannover

Supervisers : Aaronkumar Ehambram & Bernardo Wagner
emails : ehambram@rts.uni-hannover.de & wagner@rts.uni-hannover.de

École Nationale Supérieure des Techniques Avancées de Bretagne

2 Rue François Verny, 29200 Brest

Supervisers : Luc Jaulin & Benôıt Zerr

emails : lucjaulin@gmail.com & benoit.zerr@ensta-bretagne.fr

1

Index

1 The equipment & the framework 4
1.1 The drone & the sensors . 4
1.2 The framework: architecture and requirements . 5

2 Research of the algorithms and tools 6
2.1 Path-following algorithms . 6

2.1.1 Pure Pursuit . 6
2.1.2 Lyapunov Method . 7

2.2 Path Frame and error equation . 7
2.2.1 Path Frame . 7
2.2.2 Path Error Equation . 8

2.3 Mathematical convergence of the controller . 9
2.4 Obstacle Avoidance Algorithm . 10

2.4.1 The different algorithms . 10

3 Implementation 11
3.1 Results of the first tests . 11
3.2 Analysis & explanation of the results . 12
3.3 Solution to deal with overshooting & delay . 14
3.4 Final results in simulation . 16
3.5 Tests and results on the real drone . 17
3.6 Obstacle Avoidance . 18
3.7 Conclusion . 19

4 Second phase: building a rigid-body transform minimal contractor for SLAM pur-
poses 19
4.1 The polar equation . 19
4.2 Minimal contractor for the 3D polar constraint . 19

5 Conclusion 21

2

Introduction

Across the entirety of the globe, regardless of temporal proximity, seismic activity, coastal disturbances
such as tsunamis, or natural degradation, owing to aging, can precipitate the collapse of buildings.
The recent occurrences in cities like Marseille, regions bordering Turkey and Syria, or even within the
United States, serve as compelling evidence that such unfortunate events can manifest ubiquitously and
unpredictably:

• Border between Turkey and Syria (Feb. 6 2023): https://www.youtube.com/watch?v=buLMbZhp5rI

• France, Marseille (Apr. 9 2023): https://www.youtube.com/watch?v=VAJSIuj0SSA

• US, Miami (June 24 2021): https://www.youtube.com/watch?v=iO9kjwo4x-0

In these dire circumstances, individuals face the risk of sustaining injuries or even losing their lives.
Consequently, the response to such catastrophic events must be both swift and secure. In practice, this
necessitates the coordinated mobilization of a team of firefighters, medical personnel, and rescue teams.
Their primary objective is to efficiently enter the affected building, conduct thorough search and rescue
operations to locate victims, and then safely transport them to designated zones for proper medical
treatment and care.
As shown in news reports, building collapses often exhibit a cascading effect, potentially impacting
neighboring structures with undetermined time intervals that span from several minutes to numerous
hours. This uncertain period poses considerable risks for rescuers, as the danger of entering a collapsed
building to search for victims remains equally hazardous after a few minutes, hours, or even an extended
duration such as a day.

Hence, there is a pressing necessity for a rapidly deployable and non-human rescue solution. One promis-
ing approach involves deploying drones to conduct internal scans of the affected building and search for
victims. Upon completing the reconnaissance phase, the drones would return from the building equipped
with a detailed interior map, along with the positions of potential victims. Thus far, the most suitable
system for this crucial mission is the UAV (Unmanned Aerial Vehicle), more commonly known as an
autonomous flying drones, given their adaptability and self-directed capabilities.

The Leibniz Universität Hannover (LUH) is conducting a research project formally named UAV-Rescue
to demonstrate the feasibility of using drones for rescue operations.

Objectives

During the initial phase of the internship, spanning from March to the end of August, the primary objec-
tive is to implement and validate a robust and highly accurate state-of-the-art path-following algorithm.
This algorithm will be tested and refined through simulations on the Gazebo platform before being de-
ployed on the actual drone. It must ensure that the UAV’s position error concerning the intended path is
kept within a stringent tolerance of less than 10 cm. Additionally, the algorithm should enable the UAV
to promptly rejoin the path in case of disturbances, such as wind-induced deviations.

Furthermore, a second essential functionality, local obstacle avoidance, must be developed. The UAV
should possess the capability to circumvent unforeseen obstacles encountered during its flight path. In
the event of a significant obstruction, the system should halt its original path-following trajectory and
prompt the path planner to compute an alternative course.

During the subsequent and last phase, the focus shifts to solving a Simultaneous Localization and Mapping
(SLAM) graph algorithm using interval analysis methods, contributing to further advancements in the
UAV’s navigational capabilities. More specifically, when the UAV is in motion, the same 3D point clouds
can be observed from different perspectives between two consecutive measurements. The relationship
between those two point clouds is affine and the problem amounts to finding the coefficients. Those
coefficients represent the rotation and translation between the cloud points. Therefore, the last phase
of the internship is dedicated to employing an interval-based approach to develop a succinct, minimal
rigid-body contractor to effectively tackle this intricate problem.

3

1 The equipment & the framework

1.1 The drone & the sensors
The selected vehicle for deployment is an octocopter-like drone. Herewith is an image depicting the
system:

Figure 1: UAV and its sensors

It is equipped with the following sensors:
NVIDIA Jetson AGX-Xavier GNSS
Cube Orange FCU (Flight Controller Unit) Inertial Measurement Unit (IMU)
LiDAR Velodyne & Radar Point Laser Sensor

Herein is a detailed account of the sensors utilized to ensure effective operation and navigation: The
NVIDIA Jetson serves as the embedded motherboard responsible for essential computations. The Cube
Orange Flight Control Unit utilizes desired accelerations as input to calculate motor commands required
for flight control. To enable SLAM capabilities, the system integrates the Velodyne LiDAR sensor along
with an IMU and a Laser Point sensor, which collectively contribute to mapping the environment and
estimating local position and speed.

In situations where the drone commences its operation outdoors, the GNSS is employed to transform the
SLAM’s local reference into a global one, providing accurate global positioning information. Moreover,
the system incorporates a Radar sensor, which plays a key role in human detection. By combining these
components, the drone system achieves a comprehensive and advanced suite of functionalities, facilitating
safe and efficient operations in diverse environments.

4

1.2 The framework: architecture and requirements
The LUH Team has developed a framework based on ROS 1 to facilitate seamless software integration
that enables it to control the drone effectively through the utilization of MAVROS (MAVLink-based
communication node for ROS).
As part of the team’s ongoing efforts to enhance functionality, programs will be implemented as packages.
However, it is essential to consider certain specific requirements during this process:

• Detect and always allow the user to take over control inputs via the remote. This feature ensures
that operators have the ability to intervene and override autonomous commands, thereby enhancing
safety during operations.

• Implementation of a ROS Action Server architecture for takeoff, landing, and path-following. Uti-
lizing the ROS Action Server will enable efficient coordination of these maneuvers. Additionally,
the system will feature a real-time Human-Machine Interface (HMI) that displays essential infor-
mation, providing operators with real-time data for informed decision-making during flight. This
combination of user control override, ROS Action Server, and real-time HMI will create a reliable
and capable drone control system, suitable for a wide range of applications.

Figure 2: Framework Architecture

NOTE: MAVROS stands for MAVLink on ROS. It is a ROS package that enables the communica-
tion between computers running ROS and MAVLink-enabled autopilots (e.g. the FCU). MAVLink is a
lightweight messaging protocol that is commonly used in the drone industry.
MAVROS provides a number of features for controlling drones. These features include:

• Communication: MAVROS provides a reliable and efficient way to communicate with MAVLink-
enabled autopilots.

• Control: MAVROS can be used to control the movement and behavior of drones.

• Telemetry: MAVROS can be used to collect telemetry data from drones, such as their position,
speed, and altitude.

For example, the BlueROVs at ENSTA Bretagne use MAVROS for receiving commands.

5

2 Research of the algorithms and tools

2.1 Path-following algorithms

A thorough search of the most used path-following algorithms was conducted. Herein are the results:

2.1.1 Pure Pursuit

A former intern already implemented a path-following algorithm using a pure pursuit method. Herein
is a more detailed description of the protocol: The algorithm starts by representing the desired path
as a series of waypoints. As the vehicle moves, it picks a point on the path to reach, known as the
lookahead point, by considering its current location and a lookahead distance (free parameter to adjust).
This lookahead point is then adjusted to lie on the path. The algorithm calculates the steering angle
required to direct the vehicle toward this adjusted target point. By iteratively updating the target point
and steering angle, the vehicle follows the path while adapting to changing conditions and maintaining a
smooth trajectory. Presented below is an illustration of this procedural sequence:

Figure 3: Pure Pursuit Algorithm

Figure 4: Pure-Pursuit lookahead distance influence

6

2.1.2 Lyapunov Method

The Lyapunov method was invented by the Russian mathematician Aleksandr M. Lyapunov in 1899.
Lyapunov was interested in the stability of dynamical systems, and he developed the method bearing his
name as a way to prove that a dynamical system is stable.
The Lyapunov theorem is stated below:

Definition (Lyapunov function):

Let the following system ẋ(t) = f(x(t)) with x ∈ (Rn)R and 0 being an equilibrium point. A system
evolving in agreement with this equation is termed an autonomous system (the system’s variations rely
solely on its state). Let V ∈ RRn be a real value function. Let V̇ define V̇ (x) = ∇V (x)f(x). Then, V is
said to be a Lyapunov function if it satisfies:

• V is positive definite

• ∀x ∈ Rn, V̇ (x) < 0 and V̇ (0) = 0

Lyapunov functions are like energy functions. The conditions stated above assure that every state is
dissipative and only the null state is stable.

Theorem (Lyapunov global asymptotic stability):

Let the following system ẋ(t) = f(x(t) with x ∈ (Rn)R and 0 being an equilibrium point (i.e f(0) = 0).
If there exists a Lyapunov function, then all the trajectories (i.e. the solutions to the differential equation)
converge to the null vector. We would say that the system is globally asymptotically stable.

We can use the Lyapunov theorem to prove the convergence of nonlinear control laws in robotics for
example.

2.2 Path Frame and error equation
2.2.1 Path Frame

The Frenet-Serret frame, though commonly employed for parameterized curves in 2D space, was not
utilized in this 3D context due to its inherent singularity, which arises when the curve has vanished
second derivative (the frame is not defined). Indeed, the second vector of Frenet’s frame always points in
the direction of the curvature and when curvature becomes zero locally, the second vector has to go from
its current value to the opposite instantly. Instead, the Parallel Transport Frame method was chosen
as an alternative approach. The decision to opt for the Parallel Transport Frame stemmed from its
capability to (as the name suggests) transport an initial frame along the path in a continuous manner.

Let a parameterized curve f in 3D in terms of its curvilinear abscissa s. We can attach a frame at each
s. The Frenet frame composed of the three vectors

(
T N B

)T (with T being tangent to the path)
satisfies the following equation:

d

ds

T(s)
N(s)
B(s)

 =

 0 κ(s) 0
−κ(s) 0 τ(s)

0 −τ(s) 0

T(s)
N(s)
B(s)


With κ(s) and τ(s) being respectively the curvature and torsion of the curve.

The Parallel transport frame satisfies the following equation [1]:

d

ds

T(s)
N(s)
B(s)

 =

 0 k1(s) k2(s)
−k1(s) 0 0
−k2(s) 0 0

T(s)
N(s)
B(s)


With k1, k2 being determined as such:

k1 = κ cos(θ)
k2 = κ sin(θ)

θ = −
∫ s

0
τ(x) dx

(1)

7

We will call Q the proportionality matrix tying
(
T N B

)
to it’s derivative with respect to the curvi-

linear abscissa.

2.2.2 Path Error Equation

In this section we will establish the error equation of the point on the path. Let a Robot evolving in the
3D space be described by its position P and orientation matrix R such as:

Figure 5: Vehicle moving in 3D space

Let p,q respectively represent the vectors −−→
OP,

−−→
OQ in the Frame (I).

Let e represent the error vector expressed in the path’s frame, i.e., the vector −−→
PQ in Frame (Q).

Let RQ =
(
T N B

)
be the rotation from (Q) to (I) and R =

(
û v̂ ŵ

)
the orientation of (P).

Deriving with respect to the inertial frame (I) yields:

dp
dt

= dq
dt

+ d(RQ × e)
dt

⇐⇒ dp
dt

= dq
dt

+ dRQ

dt
e + RQė

⇐⇒ RT
Q
dp
dt

= RT
Q
dq
dt

+ RT
Q
dRQ

dt
e + ė

⇐⇒ RT
QV =

(
ṡ 0 0

)T + ωQ ∧ e + ė

⇐⇒ VQ =
(
ṡ 0 0

)T + ωQ ∧ e + ė

⇐⇒ ė = VQ −
(
ṡ 0 0

)T − ωQ ∧ e

(2)

The quantity ωQ = RT
Q

dRQ
dt represents the angular rotation rate of Frame (Q) with respect to (I)

expressed in (Q). VQ = RT
QV is the velocity of the vehicle expressed in (Q). Moreover we can develop

ωQ∧ as follows:

ωQ∧ = RT
Q
dRQ

dt

ωQ∧ =
(
T N B

)T ×
(

dT
dt

dN
dt

dB
dt

)
ωQ∧ = ds

dt

(
T N B

)T ×
(

dT
ds

dN
ds

dB
ds

)
ωQ∧ = ṡ

(
T N B

)T ×
(
T N B

)
× QT

ωQ∧ = ṡI3 × QT

ωQ∧ = −ṡQ

ωQ∧ = −ṡ

 0 k1 k2
−k1 0 0
−k2 0 0

 =

 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0



(3)

Therefore we can write ωQ = ṡ
(
0 −k2 k1

)T .

8

Combining this information with Equation (3), the resultant equation governing the error can be formu-
lated as follows:

ė = VQ −
(
ṡ 0 0

)T − ωQ ∧ e (4)

2.3 Mathematical convergence of the controller
The following notations refer to the system above. Therefore, let us suppose that we have a holonomic
system. This means that V can be controlled independently of the orientation. Furthermore, a model
for the dynamics of the vehicle is required.
We will assume the system follows a general model for a vehicle moving in 3D space as follows:

V̇r = 1
m

fr − ωr ∧ Vr (5)

Vr and ωr respectively represent the linear and angular velocities expressed in the body frame (P).
fr expresses the forces that are applied on the system. Those forces could, for instance, be the thrust of
the motors. Given the holonomic nature of the system, we can presume that we directly control V̇r by
the simple fact that fr can take any vector value and the relation is fully invertible.

Subsequently, the intention is to build a function and derive it such that the variables of control appear.
Hence, they could be selected in a manner that ensures compliance with the Lyapunov theorem. In
practice, using the norm of a vector squared as a Lyapunov function usually yields good results. Therefore,
let us define a potential Lyapunov candidate function and derive it as follows:

L(t) = 1
2∥e(t)∥2 = 1

2eT × e

=⇒ L̇(t) = ėT × e

⇐⇒ L̇(t) = (VQ −
(
ṡ 0 0

)T − ωQ ∧ e)T × e
⇐⇒ L̇(t) = VT

Q × e −
(
ṡ 0 0

)
× e

⇐⇒ L̇(t) =
(
uQ vQ wQ

)
× e −

(
ṡ 0 0

)
× e

⇐⇒ L̇(t) =
(
uQ − ṡ vQ wQ

)
× e

(6)

Unfortunately, L cannot be a Lyapunov function because it is enough that VQ = e and ṡ = 0 to have
L̇ = 0 and the state of the system not being the null state.
Nevertheless, let us assume for an instant that the system was controlled by its velocity and not its
acceleration. In (6), let vQ = −k × e2, wQ = −k × e3, ṡ = uQ + k × e1 (k ∈ R+) and uQ free.
This would yield:

L̇(t) = −k∥e∥2 ≤ 0

It is a well-known fact that if a function asymptotically converges to 0 as t −→ ∞, its derivative does
not necessarily to 0 and the reverse is also true. Nevertheless, the technique used in [2] can be employed,
and therefore the following Lemma can be used to prove the convergence of the system:

Barbalat’s Lemma

If f : R −→ R is differentiable twice, f ′ is uniformly continuous function and lim
t→∞

f(t) ∈ R,
Then lim

t→∞
f ′(t) = 0.

For a function to be uniformly continuous, it is sufficient that its derivative is bounded.
It is easy to see that L̈ is bounded because L̇(t) = −k∥e∥2 = −k.L(t) =⇒ L̈ = −k.L̇. Therefore,
L̇(t) = L(0)e−kt, which yields that L̈ is bounded. Thus L̇ is uniformly continuous.
Moreover, the convergence of L is assured because it is a positive function with a negative derivative.
Barbalat’s theorem exhibits that L̇(t) −→

t→∞
0, i.e., e −→

t→∞
0.

(Note that here Barbalat’s lemma was not necessary to prove that L̇ goes to 0, due to its expression, but
this is a showcase of the theorem).
Consequently, all solutions to (4) converge to 0 as time approaches infinity. In simpler terms, the error
diminishes to zero, resulting in the vehicle’s convergence to the intended path.
This technique is powerful because it not only provides a proof of convergence but also yields the control
law which might not necessarily be linear.

9

Regrettably, in our case, the system’s control lies in its acceleration rather than its velocity. How-
ever, the silver lining will be Lasalle’s principle, which will be utilized to address the dynamic case. Put
simply, Lasalle’s theorem will provide the mathematical substantiation that having an acceleration that
asymptotically drives the velocity of the vehicle towards the desired velocity (VQ found previously), the
error still converges to zero. Let us provide some definitions and properties necessary to state Lasalle’s
theorem.

Definition (Positive invariant set):

Suppose ẋ = f(x) is an autonomous system, x(t, x0) is a trajectory, and x0 is the initial point.
Let O = {x ∈ Rn | φ(x) = 0} where φ is a real-valued function.
The set O is said to be positively invariant if x0 ∈ O implies that ∀ t ≥ 0, x(t, x0) ∈ O.
Put simply, if the start of a trajectory resides in O, it will remain in O.

Theorem (LaSalle’s invariance principle):

Let Ω be a positively invariant set of the autonomous system. Suppose that every solution starting in
Ω converges to a set E ⊂ Ω and let M be the largest invariant set contained in E. Then every bounded
solution starting in Ω converges to M as t −→ ∞.

Figure 6: An illustrative overview of Lasalle’s theorem

Consequently, let x denote the state of the system. Let Ω = Rn, with n being the dimension of the state
space.
Let E denote the set {x ∈ Ω/

(
ṡ vQ wQ

)
=
(
uQ + ke1 −ke2 −ke3

)
}.

This set corresponds to the trajectories possessing the exact desired velocity. Above, it was shown that
trajectories included in this set converge towards the set M = {x ∈ Ω/e = 0}. Therefore, M is the
largest invariant set of E (if the error is null, the expression chosen for the velocity assures that the error
stays null). Lasalle’s theorem implies that every trajectory starting in Ω will converge to the set M . In
simple terms, every trajectory is such that we convege to the path.
We chose as a control law (ṡ, vQ, wQ) = (uQ + ke1,−ke2,−ke3).
In practice the control law (ṡ, vQ, wQ) = (uQ + νd.th(e1

d0
),−νd.th(e2

d0
),−νd.th(e3

d0
)) is better suited be-

cause it is bounded and it allows to control the approach velocity to the path (νd > 0) as well as the
aggressiveness (d0 > 0 is a characteristic distance). To find the necessary accelerations, the previous
expressions can be derived and used as control desired values for a PD controller.
Using the same approach and with simplicity, it can be demonstrated that this control law also drives
the system’s error to converge to zero.

2.4 Obstacle Avoidance Algorithm
2.4.1 The different algorithms

During the course of this internship, an additional task was requested, which involved the development
of a local obstacle avoidance (OA) system alongside the preexisting path following algorithm. This
supplementary task entailed a process encompassing research, implementation, simulation validation,
and real-world experimentation within a limited time frame of one and a half months.

In this research phase, where a thorough search into the intricacies of obstacle avoidance algorithms was
conducted, the following results [3][4] were found: the most frequently used algorithms are, depending on
the context and need, A*, Rapidly-exploring Random Trees (RRT), RRT*, and RRT* Connect. These
algorithms were evaluated in terms of their suitability for addressing the task of local obstacle avoidance
within the given context as well as the given time constraint. Subsequently, we will be proceeding with
the implementation of the RRT algorithm. The choice was determined by a main factor: simplicity.

10

3 Implementation

3.1 Results of the first tests
The preceding control law was implemented in Python and evaluated within the Gazebo simulation
environment. It’s important to note that the model and drone employed in the simulation differ from the
practical drone. An intern was engaged in developing the simulation for the actual drone. Consequently,
a more lightweight and agile quadcopter drone was utilized in the simulation, which means that upon
practical implementation, certain major adjustments to the gains may be necessary.
Nevertheless, the control law was tested on different tracks as such:

Figure 7: Test tracks

Several flight trajectories were devised to evaluate the drone’s performance under diverse conditions. The
selected trajectories include a U-turn, a sinusoidal wave, a spiral, and a straight-line path.

The straight-line trajectory was incorporated as a fundamental reference, serving as a baseline for assessing
basic flight capabilities. Its simplicity allows for a clear examination of the drone’s stability and tracking
accuracy.

The choice of a U-turn trajectory is substantiated by its relevance to indoor environments, where the
drone frequently executes such turns. Additionally, u-turns exhibit pronounced curvature, making them
suitable for assessing the drone’s agility and maneuverability.

The adoption of a spiral trajectory derives from its real-world applicability, as spiraling flight paths are
commonly encountered. This trajectory enables the evaluation of the drone’s ability to navigate complex
paths with increasing curvature.

Finally, the sinusoidal wave trajectory was included to challenge the drone’s performance under conditions
of significant variations in the flight path. This choice aims to gauge the drone’s response to intricate
and dynamically changing tracks.

And here are the results:

11

Figure 8: Results of the simulation

3.2 Analysis & explanation of the results
The results highlight two important problems linked to the controller. To begin with, the UAV overshoots
at high speeds in curved turns. Given that the convergence of the algorithms was proven, the problem
could only come from the commands. In the implementation, the acceleration command was bounded
to 3 m/s2 due to safety issues. However, the drone has a measured maximum acceleration of 4.5m/s2.
Nevertheless, in a turn, the centrifugal acceleration is equal to ac = κv2 with κ the curvature of the turn
and v the speed of the vehicle. The spiral path has for instance a maximum curvature of 3.16 m−1. A
swift computation shows that with κ = 3.16 m−1 and v = 1 m/s, ac = 1 × 3.16 ≤ 4.5 m/s2.
Therefore, a frequency response test was performed on the acceleration. Since the drone is symmetric,
exciting in with a sin wave in any direction in the (Oxy) plane should yield the same result. Thus, the
benchmark to test the frequency response is composed of two inquiries: one is the frequency response in
the (Ox) direction and the second in (Oz).
Hence are the plots of the desired command and the real command extracted from the IMU:

Figure 9: Desired commands (red) and actual axcommand (blue)

12

Figure 10: Desired commands (red) and actual azcommand (blue)

Primarily, the response in the (Oz) plane seems ordinary. However, in the (Ox) plane, a distinct delay
becomes apparent, particularly at higher frequencies.

This phenomenon has a dual explanation. Initially, when a command is transmitted to the Flight Con-
trol Unit (FCU), an internal control command is employed to steer the UAV in the required direction,
simultaneously aligning a slight portion of its thrust with the intended course. This is likely executed
through a PID-based control law. Consequently, the accelerations ẍ and ÿ are artificially governed, while
solely z̈ is genuinely controlled. This predicament is rooted in the fact that the drone is maneuvered
using high-level commands, a characteristic intrinsic to MAVROS.

The second explanation stems from physical considerations. The UAV solely generates thrust along
one axis, namely the vertical direction. For instance, when an acceleration in the forward direction is
requested, the UAV needs to rotate and orient itself forward, introducing a time delay. This delay is
negligible for minor accelerations, yet for sharp and swift turns, the drone must transition swiftly from
nearly zero acceleration to a significant one. For instance, envision being oriented left and having to
promptly switch to a rightward direction—a transition that cannot occur instantaneously, resulting in a
delay τ . Consequently, the drone overshoots during turns, as it needs time to align its thrust with the
new direction. An illustration of this phenomenon is presented below:

13

Figure 11: Drone changing the direction of thrust

A potential resolution would involve controlling the drone using both its thrust and angular acceleration.
Formulating a Lyapunov-based control law for this purpose would present a formidable challenge. A
practical approach could entail assuming control of the drone via its linear accelerations and angular
velocities, given its high responsiveness in achieving the desired angular velocity. An analytical solution
might therefore be envisioned [5].

This alternative involves controlling the drone’s thrust and angular velocity. Such a topic exists in
MAVROS. However, a constraint exists on the thrust’s range—bounded between 0 and 1—where 0 sig-
nifies no thrust, 0.5 corresponds to hovering, and 1 signifies ”maximum thrust.” A difficulty arises due
to the fact that this designated ”maximum thrust” value does not align with the simulation’s actual
maximum thrust. Efforts were made to ascertain this value’s adjustment but proved unsuccessful. Al-
though such discrepancies might not pose an issue on the actual drone, the limitation emerged during
simulation. Notably, due to spatial constraints within the university’s laboratory, it was unfeasible to
test the MAVROS topic’s maximum thrust in real-world conditions.
Consequently, the only feasible solution was to control the drone using ”artificial accelerations.”

3.3 Solution to deal with overshooting & delay
So as to solve the UAV’s overshoots, it is necessary to look ahead to prepare for highly curved turns.
The UAV has the necessary thrust to overcome a given turn in the test tracks, but it must first align
the axis of thrust in time, before arriving in the previously mentioned corner. For instance, if the drone
has to make a U-turn, it would suffice that it changes orientation slightly from neutral to slightly tilted
backward a few moments before the U-turn comes, as depicted here:

Figure 12: Drone preparing in advance to take a highly curved turn

Still, how would we achieve to change the tilt of the drone when the yaw is the sole orientation variable

14

accessible using the MAVROS acceleration topic? After careful observation, it was noticed that when
the drone slows down it tilts backward. Therefore, would could add a term to our forward acceleration
that governs the UAV to slow down when the curvature and the speed are high. This term could then
be bound for stability issues.
Therefore, let this term be denoted by t. Multiple formulas were tested empirically. The simplest form
of expression amounting to a multiplication was of course tested: t = −k.κ.v (k ∈ R∗

+).
After careful consideration, analysis of tests showed that a term that is null for small curvatures and
grows rapidly with a given threshold when the curvature is high is required. This should remind us of a
quadratic expression ”y = (x

x0
)n”. If n has a high value, then, x values between 0 and x0 get attenuated

substantially and those greater than x0 amplified significantly:

Figure 13: Quadratic curve

Given that the centrifugal acceleration is ac = κ.v2, it hints that a natural form of expression to test is
t = −k.κ.v2. In practice, when the curvature was overly high, the drone would stop almost completely
with this expression. Therefore, a saturation was required on the curvature with a given threshold as
such: t = −k.tanh(κ

κ0
).v2. We also want this term to not affect the drone when it is far away from

the path. Thus t = −k.tanh(κ
κ0

).v2.(1 + dpath

d0
)−1. The coefficients were found empirically and the final

expression of t is therefore:

t = −k.tanh(κ
κ0

).v2.(1 + dpath

d0
)−1, k = 5, κ0 = 6 m−1, d0 = 1 m (7)

The incorporation of this term has effectively eliminated the issue of overshooting. However, there is
still a minor inconvenience that requires our attention. Indeed, at very high speeds the drone overshoots.
This comes from physical limitations. Indeed, the drone has a maximum thrust. In order to avoid such
scenarios we need to limit the speed of the drone to a threshold given by the curvature and the maximum
acceleration the drone is capable of producing. In turns, the driving force comes from the centrifugal
acceleration as ac = κ.v2. The drone has a maximum acceleration amax. Thus the velocity needs to
satisfy the following:

v ≤ q.

√
amax

κ
(8)

q is a safety factor. In practice q = 0.7 (30% of margin).
Subsequent sections will detail the outcomes of the tests conducted in both simulation and on the actual
drone.

15

3.4 Final results in simulation
Hence are the final results after the implementation of the previous solutions:

Figure 14: Drone changing the direction of thrust

We employ the infinity norm to quantify the error, which is determined by the difference between the
current position and the point at the curvilinear parameter s along the path. Consequently, as the
Euclidean sphere 2 (unit sphere) is encompassed within the infinity sphere, the actual real error is
smaller. The ensuing error graphs illustrate the aforementioned tracks:

Figure 15: ∥.∥∞ of spiral

16

Figure 16: ∥.∥∞ of u-turn

Figure 17: ∥.∥∞ of line and sine wave

The u-turn trajectory exhibits a notable error spike at approximately t ≃ 19 s. This spike, however, is a
false alert, arising from the registration of rosbags that introduce a delay in the control loop update.
However, it is worth highlighting that while the error stays below the required 10 cm, once it enters this
region (light green zone), it can be observed that t is predominantly confined within the range of under
5 cm (blue-green zone) on most occasions.

Nevertheless, it is worth wondering about the stability of this controller. The added term is empirical
and there is no guarantee that divergences might not occur. The only guarantee is that in testing the
common scenarios, we did not encounter any issues.

3.5 Tests and results on the real drone
The real UAV at our disposal is not the most efficient system. It has a considerable size and emits a
substantial volume of noise, not to mention that the spinning blades produce strong winds. It consumes
around 1500W (as much as an oven).
Testing this system is thus very dangerous. Taking into account the reduced size of the laboratory, we
were not able to test it while registering rosbags. Indeed, if lag emerges, the drone might remain stuck
on the last commands for a long period and crash into a wall.
Fortunately, we did two measurement campaigns: one in Mosbach (South of Germany) and one in
Vienna. Having substantially more space, in the unfortunate case of an issue, the remote might be acted
to manually fly the UAV.
Moreover, due to time constraints as well, we were only able to test straight lines in Mosbach. Depicted
below are the results of the aforementioned tests:

17

Figure 18: Straight lines test on the real drone

Those tests allowed us nevertheless to adjust the real gains. When implemented on the actual drone, the
gains were approximately halved.

3.6 Obstacle Avoidance

Following the research stage, the implementation phase was initiated. Rigorous testing was executed
through simulation scenarios, aiming to validate the functionality and efficacy of the local obstacle avoid-
ance system. RRT was implemented in Python and was heavily optimized by vectorization of the oper-
ations, allowing the use of numpy arrays, and therefore faster computation.

Nevertheless, two problems arose: the algorithm did not generate optimal enough paths within a minor
number of iterations and was slightly slow even after optimization. The paths exhibited were uneven and
erratic trajectories, and therefore required a smoothing process. A promising process for path smoothing
was found in [6]. This algorithm alone was insufficient because it was required to reduce the length of the
paths to an acceptable size as well. Therefore, a hybrid model was deployed combining [6] and another
process. The algorithm starts by erasing points that make the path erratic. Thereafter, it also adds new
points halfway between existing points. Ultimately, it tries to tie those new points to neighbors resulting
in a shorter total path length. The algorithm has one advantage and one inconvenient:

The problem arises from the fact that some scenarios get the algorithm to be stuck in a fixed point
configuration. After reaching this stage, new iterations do not change the path.

The advantage is that this fixed point configuration happens solely when the path is getting close to the
shortest path. For paths that are extremely large, plots showed that the length of the path diminishes
exponentially with the number of iterations up to a threshold which occurs when getting close to the
minimal length. Therefore, RRT can generate very jagged and long paths for a minor number of iterations
which would then be smoothened with this process that is very efficient in the first iterations.

However, due to constraints in terms of time and resources, the final phases of the project, involving
testing in both simulation and real-world environments the OA algorithm, were not fully validated and
require further experimentation.

18

3.7 Conclusion
The finality of the project is the demonstration at the military base in Vienna. The path following
algorithm was implemented and respected the stringent constraint of ≤ 10 cm of error.

The scenario was the following: the drone starts at the entrance of the building and then takes off. It
scans and sends feedback to a control station. The control station sees the environment and generates
obstacle-free paths that the drone has to follow. The drone follows them and in the exploration phase, it
encounters victims. Once it is done exploring, it lands.

The demonstration was a success, but due to confidentiality issues, it cannot be shown.

4 Second phase: building a rigid-body transform minimal con-
tractor for SLAM purposes

The last 3 weeks of the internship were directed towards an active field of research: interval analysis.
More specifically, the task at hand is the following:

We register with a depth camera a point cloud from two different perspectives. Can we use interval
analysis to bound (in a guaranteed manner) and contract (minimally) the transformation tying those two
point clouds?

Another scenario is SLAM. between two consecutive measurement frames, a vehicle could see the same
point cloud from different perspectives. Using an algorithm like SIFT or SURF might allow us to associate
those points. Therefore, finding the transformation will allow it to find and update its current pose. This
problem was already encountered and a solution can be found in [7].

After exchanging with my supervisor Aaronkumar Ehambram, the focus was shifted towards the rotation
because it was the variable not getting contracted minimally.

Time constraints were very present and therefore efficiency and organization were necessary. After ex-
changing and brainstorming, we came to the hypothesis that the problem might be translatable into a
3D polar constraint. Therefore, if a minimal contractor can be built for the 3D case then the problem
would be solved.

4.1 The polar equation
The polar equation can be expressed as such:

X = R

ρ0
0


R ∈ SO(n), X ∈ Rn, ρ ∈ R+∗

(9)

When n = 2, it amounts to finding the angle θ as such:(
x
y

)
= ρ

(
cos(θ)
sin(θ)

)
| x, y, ρ, θ ∈ R (10)

We want to solve this problem using interval analysis. The 2D case was already solved in [8].

4.2 Minimal contractor for the 3D polar constraint
Using a similar approach as in [8], the 3D case could be solved. Indeed, the idea in [8] is to start from
a restrained set on which a minimal contractor is available and thereafter extend it to a more general
domain.

Let X be a point in space and let it be written in polar form. An illustration of the constraint is depicted
below:

19

Figure 19: Polar equation in 3D

X = ρ

 cos(ψ) cos(θ)
cos(ψ) sin(θ)
sin(ψ)


X ∈ R3, ρ ∈ R∗

+, ϕ ∈
[
−π

2 ,
π

2

]
, θ ∈ [−π, π]

A comparable approach to the one utilized in the description of the 2D polar contractor will be used.
The process will begin with a confined set denoted as Π0, which will subsequently be expanded through
box conservative operations. These operations primarily encompass symmetries and translations:

Π=̂

(x, y, z, ρ, θ, ψ) ∈ R6/X = Π

 ρ
θ
ψ


With Π

 ρ
θ
ψ

 = ρ

 cos(ψ)cos(θ)
cos(ψ)sin(θ)
sin(ψ)


And With Π−1

 [ρ]
[θ]
[ψ]

 =


√
x2 + y2 + z2

arctan(y
x)

arctan(z√
x2+y2

)


Let Π0 = [p0] ∩ Π with [p0] = R+4 ×

[
0, π

4
]

×
[
0, π

2
]

Theorem 1 (Minimal Contractor for Π0):

The minimal contractor consistent with Π0 is:

CΠ0

[x]
[y]
[z]

 =


[x] × [y] × [z] ∩ Π

 [ρ]
[θ]
[ψ]


[ρ] × [θ] × [ψ] ∩ Π−1

[x]
[y]
[z]





20

Theorem 2 (Minimal Contractor for Π)

Let us define the following functions:

σ1 : (x, y, z, ρ, θ, ψ) 7−→
(
y, x, z, ρ,

π

2 − θ, ψ
)

σ2 : (x, y, z, ρ, θ, ψ) 7−→ (x,−y, z, ρ,−θ, ψ)
σ3 : (x, y, z, ρ, θ, ψ) 7−→ (−x, y, z, ρ, π − θ, ψ)
σ4 : (x, y, z, ρ, θ, ψ) 7−→ (x, y,−z, ρ, θ,−ψ)
σ5 : (x, y, z, ρ, θ, ψ) 7−→ (x, y, z,−ρ,−θ,−ψ)
γ1 : (x, y, z, ρ, θ, ψ) 7−→ (x, y, z, ρ, θ + 2π, ψ)
γ2 : (x, y, z, ρ, θ, ψ) 7−→ (x, y, z, ρ, θ, ψ + π)

Therefore, the minimal contractor consistent with Π is:

Cπ =

⊔
j∈Z

γj
2 ◦

(⊔
i∈Z

γi
1 ◦ ⃝1≤k≤5 (I ⊔ σk)

) (Cπ0)

Proof:

The starting point will be the consistency of Cπ0 :

Cπ0 ∼ R+ × R+ × R+ × R+ ×
[
0, π

4
]

×
[
0, π

2
]

⇒ (I ⊔ σ1) (Cπ0) ∼ R+ × R+ × R+ × R+ ×
[
0, π

2
]

×
[
0, π

2
]

⇒ (I ⊔ σ2) ◦ (I ⊔ σ1) (Cπ0) ∼ R+ × R × R+ × R+ ×
[
− π

2 ,
π
2
]

×
[
0, π

2
]

⇒ ⃝1≤k≤3 (I ⊔ σk) (Cπ0) ∼ R × R × R+ × R+ × [−π, π] ×
[
0, π

2
]

⇒ ⃝1≤k≤4 (I ⊔ σk) (Cπ0) ∼ R × R × R × R+ × [−π, π] ×
[
− π

2 ,
π
2
]

⇒ ⃝1≤k≤5 (I ⊔ σk) (Cπ0) ∼ R × R × R × R × [−π, π] ×
[
− π

2 ,
π
2
]

⇒
[⊔

i∈Z γ
i
1 ⃝1≤i≤5 (I ⊔ σk)

]
(Cπ0) ∼ R × R × R × R × R ×

[
− π

2 ,
π
2
]

⇒
[⊔

j∈Z γ
j
2 ◦
(⊔

i∈Z γ
i
1 ◦ ⃝1≤k≤5 (I ⊔ σk)

)]
(Cπ0) ∼ R × R × R × R × R × R

The contractor is consistent with Π. The minimality comes from the fact that all functions and operations
are box conservative.

5 Conclusion
In conclusion, to sum up my work: it involved the successful implementation of a path following algorithm
using the Lyapunov method. The outcomes yielded an error rate consistently below 10 cm, with a majority
of instances displaying an error of inferior to 5 cm. In addressing the challenge of local obstacle avoidance,
the chosen algorithm was the Rapidly-exploring Random Trees (RRT), selected for its inherent simplicity.
However, the initial utilization of RRT resulted in paths that exhibited jagged trajectories. To mitigate
this issue, a hybrid approach was developed, aimed at not only reducing path length but also minimizing
jaggedness.

The final validation of the developed methods was carried out in Vienna, culminating in a successful
demonstration. In the subsequent and last phase of the internship, the focus shifted to the development
of a 3D polar contractor utilizing interval analysis techniques. This initiative was undertaken with the
intention of resolving the rigid body transformation equation encountered when examining the same point
cloud from diverse viewpoints.

Reflecting on this internship, I have gained invaluable insights across both technical and interpersonal
domains. The experience has underscored the real nature of engineering, where adeptly addressing
challenges extends beyond technical expertise. Proficiently managing issues is a fundamental aspect of
an engineer’s role. Equally important is the ability to effectively communicate intentions, as uncertainties
arise when one’s objectives are not clearly expressed, whether originating from my own perspective or from
those engaging in conversation with me. This period of professional growth has fortified my understanding
of engineering and its intricate interplay with communication skills.

21

References
[1] A. J. Hanson and H. Ma, “Parallel transport approach to curve framing,” 1995.

[2] L. Lapierre and D. Soetanto, “Nonlinear path-following control of an auv,” Ocean Engineering, vol. 34,
no. 11, pp. 1734–1744, 2007.

[3] D. Agarwal and P. S. Bharti, “A review on comparative analysis of path planning and collision
avoidance algorithms,” International Journal of Mechanical and Mechatronics Engineering, vol. 12,
no. 6, pp. 608 – 624, 2018.

[4] X. Wang, S. Williams, D. Angley, C. Gilliam, T. Jackson, R. Ellem, A. Bessell, and B. Moran, “Rrt*
trajectory scheduling using angles-only measurements for auv recovery,” 07 2019.

[5] V. Cichella, I. Kaminer, V. Dobrokhodov, E. Xargay, N. Hovakimyan, and A. Pascoal, “Geometric
3d path-following control for a fixed-wing uav on so(3),” 08 2011.

[6] R. Song, Y. Liu, and R. Bucknall, “Smoothed a* algorithm for practical unmanned surface vehicle
path planning,” Applied Ocean Research, vol. 83, pp. 9–20, 2019.

[7] A. Bethencourt and L. Jauli, “3d reconstruction using interval methods on the kinect device coupled
with an imu,” International Journal of Advanced Robotic Systems, vol. 10, p. 1, 02 2013.

[8] B. Desrochers and L. Jaulin, “A minimal contractor for the polar equation: Application to robot
localization,” Engineering Applications of Artificial Intelligence, vol. 55, pp. 83–92, 2016.

22

