
Master Thesis

SPID – ROB 2018

Position Estimation by Merging Low Cost IMU
and Camera Data Using the Extended Kalman

Filter

Author: Philipe Miranda de Moura
Tutor: Michel Legris

Supervisors: Stefan Wierda
Evert Schippers

August 27, 2018

This page intentionally left blank.

Contents

List of Figures . 7
Abstract . 8
Résumé . 9
Acknowledgment . 10
Notation . 11
1 Introduction . 13

1.1 Background and Objectives . 13
1.2 Dissertation Outline . 14
1.3 Navigation . 14

1.3.1 Position Fixing . 14
1.3.2 Dead Reckoning . 15

1.4 SITE-SPOT . 15
1.5 QuickVision . 16

2 Reference Frames . 17
3 Attitude Representation . 19

3.1 Introduction . 19
3.2 Euler Angles . 19
3.3 Direction Cosine Matrix . 20

3.3.1 Overview . 20
3.3.2 Derivative of a Rotation 21

3.4 Axis-Angle . 21
3.5 Quaternions . 22
3.6 The Choice of Attitude Representation 23

4 Deterministic Processes . 24
4.1 Continuous-Time Systems Models 24

4.1.1 Ordinary Differential Equations 24
4.1.2 Transfer Functions . 24
4.1.3 State Space . 25

4.2 Discrete-Time Systems Equivalent Models 26
4.2.1 Calculation of Φk from F(t) 26

4.3 Observability . 27
4.3.1 Continuous Linear Time-Invariant Case 27
4.3.2 Discrete Linear Time-Variant Case 28

5 Inertial Sensors . 29
5.1 Overview . 29
5.2 Coning and Sculling . 29
5.3 Error Characteristics . 29

5.3.1 Bias . 30
5.3.2 Scale Factor and Cross-coupling 30

3

4 CONTENTS

5.3.3 Random Noise . 31
5.3.4 Full Error Characteristic 31

5.4 Error Model . 31
6 Strapdown System Mechanization . 33
7 Stochastic Processes . 35

7.1 Gaussian Distributions . 35
7.2 Random Noise Unfolding . 35
7.3 Synthesis of Notations Equivalences 36

7.3.1 General Notation . 36
7.3.2 This Thesis’ Notation 37

8 The Kalman Filter . 38
8.1 An overview . 38
8.2 The Standard Kalman Filter algorithm 38
8.3 A Simple Example . 40
8.4 The Extended Kalman Filter algorithm 41

9 Numerical Issues . 43
9.1 Covariance Matrix Symmetry . 43
9.2 Matrix Positiveness . 43
9.3 Quaternion Normalization . 43
9.4 Quaternion Ambiguity . 44

10 Application . 46
10.1 The Prediction Model . 46

10.1.1 The Simplified Kinematic Model 46
10.1.2 The Full Kinematic Model 47

10.2 Camera Aiding . 47
10.2.1 Camera to IMU Calibration 47
10.2.2 Observation Equations 47

10.3 Zero Velocity Update (ZUPT) . 48
10.4 Integration Architecture . 48
10.5 Data Rejection . 49
10.6 Material . 50

11 Tests and Results . 52
11.1 Calibration Using Robot ABB IRB-120 52
11.2 The First Dataset - Static Indoor 54

11.2.1 Vertical and Heading Determination 54
11.2.2 Results . 54

11.3 The Second Dataset - RDM Training Plant 56
11.3.1 Overview . 56
11.3.2 Vertical and Heading Determination 56
11.3.3 Results . 57

11.4 The Third Dataset - Outdoor . 60
11.4.1 Overview and Setup . 60
11.4.2 Results . 60

12 Conclusions and Recommendations . 64
12.1 Conclusions . 64
12.2 Recommendations for Further Research 64

Bibliography . 68

CONTENTS 5

Appendices 69

A Other Notations 70

List of Figures

1 View of laser scan intensities on RDM training plant extracted from SITE-
SPOT. 15

2 View of camera data on RDM training plant extracted from SITE-SPOT. 15
3 Render of an underwater application of QuickVision. 16
4 AR application of QuickVision in a refinery training plant. Assets that

are not in view are represented in the image’s border, pointing to their
directions. From the image, it is straightforward to identify flanges 002,
003, 004 and valve 005. 16

5 Representation of the axis of the inertial frame i, Earth frame e, navigation
frame n. 18

6 Representation of the axis of the body frame b and camera frame cam. . 18
7 Illustration of the gimbal lock limitation of Euler Angles representation of

attitude. 20
8 Illustration of Axis-Angle orientation representation 22
9 Block diagram illustrating the steps to estimate position in a strapdown

system. 33
10 Block diagram of the Kalman filter state equations. 39
11 Rearrenged block diagram of the Kalman, making clearer the existence of

a closed-loop. 39
12 Filter steps in time according to sensor data arrival. 48
13 Result of data rejection algorithm application in an indoor static dataset. 50
14 Some of the static poses performed using robot IRB-120. 52
15 Magnitude of the specific force output by the accelerometers in a calibra-

tion dataset collected using the robot. 53
16 Results obtained for orientation and position estimation during a 300-

seconds period without feeding aiding from t = 550s to t = 850s. 55
17 Refinery training plant overview. 56
18 Refinery training plant flanges closeup. 57
19 Last pose containing camera aiding (t = 156.6s). 58
20 Error in position x−component (blue dashed line) and y−component (or-

ange solid line) estimation in meters over time for the second dataset. . . 58
21 Sequence of estimated poses during a 5-seconds period without camera

aiding followed by aiding reestablishment. 59
22 Equipment used for the third dataset. On top, the antenna. At bottom-

left, the Rovins. Between the computer and the Rovins, the Camera
mounted to the DMU-11. Under the computer, the StarPort and StarPack. 61

23 Equipment used for the third dataset, zoomed in around the camera area. 61
24 Arrangement of patterns for third dataset, allowing a circular path of about

8 meters of diameter. 62

6

LIST OF FIGURES 7

25 Trajectory traversed during third dataset. 62
26 Results obtained for the dataset using a FOG to determine vertical and

heading. 63

8 ABSTRACT

Abstract
This work details the development of a positioning system that couples computer vision
and inertial navigation in order to improve safety in a refinery. This combination of
sensors was made since refineries typically are partially indoor – limiting the use of global-
navigation-satellite-systems – and require a particular spark-free certified smartphone to
be used. A client refinery has about 20,000 assets – among flanges and valves – that need
to be opened, closed or maintained. Ensuring intervention is performed in the correct
asset is currently done by checking QR codes attached to each one of them. However,
the current solution is expensive to be maintained and does not allow navigation.

The navigation based on computer vision is provided by the QuickVision system de-
veloped at Fugro. It consists of a camera able to detect a known pattern and determine
its pose with respect to the pattern coordinate frame.

The inertial navigation information was obtained using a MEMS IMU equipped with
both a 3D accelerometer and gyroscope. In addition, the fact that the smartphone is
hand-held by a human being walking through the plant allowed a Zero Velocity Update
(ZUPT) to be implemented in the vertical component in order to reduce drift. The main
contribution of this work was to investigate the accuracy over time of IMU-based position
estimation when no visual patterns were in view.

The results obtained in the office under perfect conditions show that the gyroscope’s
noise causes random walk in the estimated orientation typically 1° off the true orientation,
generating error in the estimated position in the order of a few meters after 10s without
visual aiding.

By comparing the results, it can be inferred that MEMS IMU are not suitable for
dead reckoning applications without holonomic constraints, for amounts of time greater
than a few seconds. As consequence, visual information should be used during pattern
absence as aid by tracking features present on images.

Keywords:

Localization, Extended Kalman Filter, MEMS, ZUPT

RÉSUMÉ 9

Résumé
Ce travail détaille le développement d’un système de positionnement qui associe la vision
par ordinateur et la navigation inertielle afin d’améliorer la sécurité dans une raffinerie.
Cette combinaison de capteurs a été adoptée dans la mesure où les raffineries sont par-
tiellement couvertes- ce qui limite l’utilisation de systèmes de navigation par satellite-
et nécessitent l’utilisation d’un smartphone certifié sans étincelles. Une raffinerie compte
environ 20 000 éléments à contrôler – dont des les brides et des les vannes - qui doivent
être ouverts, fermés ou entretenus. Une vérification à l’aide de QR codes est réalisée
afin de s’assurer que l’intervention ait été effectuée sur le bon élément. Cependant, cette
pratique est coûteuse et ne permet pas la navigation au sein de la raffinerie.

La navigation basée sur vision par ordinateur est assurée par le système QuickVision
développé chez Fugro. Il consiste en une caméra capable de détecter un motif connu et
de déterminer sa position et son orientation par rapport à son repère de coordonnées
du motif. Les informations de navigation inertielle ont été obtenues à l’aide d’un MEMS
IMU équipé d’un accéléromètre et d’un gyroscope 3D. En outre, le fait que le smartphone
soit tenu en main par un ouvrier traversant le site permet l’utilisation de la mise à jour
à vitesse nulle (ZUPT) du le composant vertical afin de réduire la dérive. La principale
contribution de ce travail était de fournir une estimation de la position basée sur l’IMU
alors qu’aucun motif visuel n’était visible.

Les résultats obtenus au bureau dans des conditions parfaites montrent que le bruit
du gyroscope provoque une marche aléatoire dans l’orientation estimée de un degré par
rapport à l’orientation réelle, générant une erreur dans la position estimée de l’ordre de
quelques mètres au bout de dix secondes sans aide visuelle. Le système a été évalué en
conditions réelles dans l’installation d’entraînement RDM et les résultats de la réalité
augmentée sont présentés dans ce travail.

Les résultats obtenus sur le terrain ont une erreur de l’ordre d’une fraction de mètre
pour une période d’indisponibilité d’aide visuelle de quatre secondes, ce qui satisfait les
exigences du projet à court terme.

En comparant les résultats, on peut inférer que les MEMS IMU ne sont pas adaptés
aux applications de navigation à l’estime sans contraintes holonomes, même pendant de
courtes périodes. En conséquence, des informations visuelles doivent être utilisées en cas
d’absence de motif afin de permettre le suivi des caractéristiques présentes sur les images.

Mots-clés :

Localisation, Filtre de Kalman Étendu, MEMS, ZUPT

10 ACKNOWLEDGMENTS

Acknowledgments
For me, writing this section was as tough as the thesis itself. In my opinion, this section
is supposed to enclose thanks to all people who directly or indirectly contributed to this
work. I am pretty sure I will not be able to cover every single person who deserves,
though.

First of all, I thank my grandmother in Portuguese, so she can read it by herself.
Bichona, aqui registro os meus mais sinceros agradecimentos por tudo o que você fez por
mim ao longo da minha vida. Acredite, você é a pessoa mais brilhante que eu já conheci,
tendo me ensinado lições que não estão escritas em livro algum. Eu dedico esse trabalho
especialmente a você.

From Fugro, I would like to especially thank my supervisor Evert Schippers – who
guided me relentlessly, having helped me every time I struggled analyzing partial results I
obtained. I am afraid I would not have managed to do this work without your assistance.
I could not forget to mention Alexander Steele – for uncountable hours spent preparing
datasets for me –, Antony Veness – for life lessons I will always carry with me –, Magdalena
Drozdz, Wojciech Straszewski and Francesca Panzetta – for the several discussions on the
Kalman filter algorithm –, Merlijn van Deen – who contributed with out-of-the-box ideas
that often made me figure out the problems I faced –, Stefan Wierda – who was my
line manager –, Diego Carvalho – for insights about QuickVision – and Yulia Melnikova,
Miguel Labayen, Harm-Simon Hegge and Paul Werker – who helped me especially with
Git, code debugging and encouraging words.

From ENSTA-Bretagne, I would like to thank Michel Legris – who always answered
my emails within just a few hours – and Luc Jaulin – who coordinates the Robotics
branch.

In addition, I would like to thank CAPES - Coordination of Improvement of Graduate
Personnel (in free translation) – for funding my academic exchange –, as well as all
teachers I had since I was a child – for your passion and effort you put in the beautiful
mission of forming people –, especially Rosângela Nezi, Celuta Reissmann and Valny
Boechat.

Finally, I would like to thank my relatives – uncle José Gonçalves, in particular –
and friends from childhood, university and notably those I met in Brest and have been
part of my life for the past two years, Jean Macedo, Rémy Tellier and Victor Pimenta
deserving special mention. Last, but in no means least, I thank my girlfriend Sarah for
good memories that will be in my mind for the rest of my life and for all the support you
give me.

NOTATION 11

Notation
1. Standard Lowercase Latin Alphabet

b Body frame
e Earth frame
f Transition function
h Output function
i Inertial frame
j j-ith instant
k k-ith instant
l Local frame
n Navigation frame
p Pattern frame
t Time
x x-component
y y-component
z z-component

2. Bold Lowercase Upright Latin Alphabet are vectors

a Acceleration
b Bias
f Specific force
g Gravity
q Generic quaternion
r Position
u Control input
v Velocity
w Noise
x Systems states
y Output states and Residual
z Observation states

3. Bold Lowercase Italic Latin Alphabet

u Generic (3D) vector
v Generic (3D) vector

4. Standard Uppercase Latin Alphabet

L Latitude

5. Bold Uppercase Upright Latin Alphabet are matrices

A Continuous-time transition
B Continuous-time input
C Continuous-time output
D Continuous-time feedforward
F Continuous-time transition Jacobian
G Noise transition
H Continuous-time observation Jacobian
K Kalman gain

12 NOTATION

M Observability
P States covariance
Q Prediction model covariance
R Observation covariance
S Innovation covariance

6. Bold Uppercase Italic Latin Alphabet are matrices
C Rotation
I Identity
Q Matrix obtained from QR decomposition
R Matrix obtained from QR decomposition

7. Standard Lowercase Greek Alphabet
µ Quaternion angle of rotation
ω Angular velocity

8. Bold Lowercase Greek Alphabet are vectors
λ Scale factor
ψ Orientation
ω Angular velocities

9. Bold Uppercase Greek Alphabet
Γ Discrete-time input matrix
Λ diag(λ)
Υ Q

(
q(ω)

)
Φ Discrete-time transition matrix
Ω Skew-matrix of angular velocities

10. Acronyms

AV Allan Variance
DCM Direction Cosine Matrix
ECEF Earth-Centered Earth-Fixed
EKF Extended Kalman Filter
ENU East-North-Up
FOG Fiber Optic Gyroscope
GPS Global Positioning System

GNSS Global Navigation Satellite System
IMU Inertial Measurement Unit
INS Inertial Navigation System

MEMS Microelectromechanical systems
NED North-East-Down
ODE Ordinary Differential Equation
PSD Power Spectral Density
QR Quick Response Code or QR factorization

ZUPT Zero Velocity Update

1. INTRODUCTION 13

1 Introduction

1.1 Background and Objectives

Localization is a crucial task accomplished by humans on a daily basis for moving between
reference points (such as home and work) and for identifying assets, thus avoiding hazards
(such as moving vehicles). In less friendly environments as power plants and refineries,
localizing can be significantly tougher, given the large quantity of similar features (pipes,
valves and flanges) in view. Also, the consequences of a mistaken localization can be
catastrophic, potentially leading to explosions and deaths. In these scenarios, one may
appreciate techniques for aiding the right decision to be taken.

The client refinery has approximately 20,000 flanges that need to undergo maintenance
regularly. Hence, they are interested in having a low-cost reliable solution to identify
them, improving safety while reducing time and therefore costs.

Nowadays a first step towards the automation of this process is already being used.
It consists of having a QR code attached to each one of their flanges. The employee
receives on a mobile phone application a list of instructions containing the ID numbers of
the flanges that need some kind of intervention. Apart from flange replacement, another
common procedure is to isolate two sides of a pipe, which is known as blinding the pipe.
Once the employee reaches a flange on the list using the refinery blueprint, he scans the
QR to verify he is looking to the right one. Then he intervenes on it and rescans to mark
the specific flange as done. The main point is to ensure all interventions were performed
at the right locations. Additionally, this method also allows real time monitoring and
avoids typing errors by removing all typing requirements. The main drawback of the
current solution is the requirement to install and maintain one QR code per flange.

As an alternative, Fugro is currently developing a solution that will integrate two of
its existing products – QuickVision and Site-Spot – with inertial navigation. QuickVision
allows pose estimation in camera images with preloaded patterns in view, while Site-Spot
is a web service capable of interacting in a screen with 2D and 3D environments previously
scanned by the company. Combining both solutions, one should be able to define the
position of flanges in the 3D model and pinpoint them in camera images. This fusion
alone would already represent an improvement to the QR code strategy by allowing the
detection of multiple flanges with a single pattern in view.

There is a high operational cost 20,000 QR codes. One of the aims of this work is
to facilitate this task by replacing all the QR codes by a small quantity of QuickVision
patterns. This work proposes accomplishing this objective by using inertial sensors to
determine mobile phone pose during periods in which patterns are not available.

Fiber Optic Gyroscopes (FOGs) are a type of high grade inertial sensors that have
been used for the past few decades for localization purposes during long periods and
distances. However, such an alternative is not suitable for this application due to its size
(∼ 20×20×20cm), weight (∼ 10kg) and cost (starting from 50,000e). A lighter, smaller
and cheaper type of inertial sensors are the Microelectromechanical systems (MEMS).
Their weight can range from 0.5g to 350g, measuring between 2×2×0.2cm and 7×7×7cm,
with the price ranging from 10e to 6,000e. Its downside is the poor performance for
navigation purposes. Nevertheless, there are some works in the subject, as in [1, 2, 3, 4, 5].

This thesis aims to develop an algorithm of pose estimation merging camera and
inertial sensors data that achieves the requirements specified by the client. For data
fusion, a Extended Kalman Filter algorithm will be implemented.

14 1. INTRODUCTION

It is well known that MEMS devices can cause position drift to grow considerably
fast compared to FOG devices. Because of it, this work focuses on investigating the filter
performance during small aiding outage periods, i.e. up to 30 seconds. Since this work
intents to obtain a Proof of Concept (PoC), we are using sensors that are larger than
the ones typically found in smartphones because it is more suitable to integrate in our
prototype. The gathered data is post-processed in an external computer.

1.2 Dissertation Outline

In the remaining part of this chapter, some basic concepts are presented. Also, the two
Fugro’s products (QuickVision and SITE-SPOT) that aided to calculate navigation data
are explained.

In chapter 2, the reference frames used in this work are presented. Chapter 3 is
dedicated to present different attitude representations, as well as its advantages and
drawbacks. By the end of the chapter, a choice is made and explained. Chapter 4 covers
the basics of deterministic systems, including the relation between different representa-
tions alternatives, the equivalence between continuous and discrete-time equations. The
concept of observability is also introduced.

Chapter 5 details the main sources of error of an IMU and describes the model that
will be used to represent them and in chapter 6, forward INS mechanization will be
stated. Following, chapter 7 introduces the concept of stochastic processes that arises
from taking noise into account in deterministic processes. The Kalman Filter algorithm
is enclosed by chapter 8, while 9 explains the main numerical issues faced during the
development of this thesis and presents the approaches used to overcome them.

Finally, chapter 10 wraps all concepts previously presented, allowing chapter 11 to
summarize the major findings of this research and chapter 12 to draw conclusions and
suggest further research.

1.3 Navigation

As can be inferred by comparing the definition of navigation given by [6] and [7], there is
no absolute consensus of what it exactly is. Nevertheless, they both agree navigation is
the capacity to determine position with respect to a known reference frame. Often this
concept is extended to the ability of reach desired positions, in addition to determining
them. This extension is out of the scope of this work, that focuses only in presenting a
short-hand theory background on aided inertial navigation. There are different techniques
for achieving required specifications and usually the adopted solution is a combination of
them, respecting a compromise between cost and accuracy.

1.3.1 Position Fixing

Position Fixing consists on measuring parameters (e.g. position, orientation, time of
travel, speed, etc) with respect to usually mapped objects in different reference frames.
This category encloses GPS and radar technologies, for instance. The main disadvantage
of this approach is the dependency on external environment for position determination.

1. INTRODUCTION 15

1.3.2 Dead Reckoning

Dead Reckoning relies on measuring the velocity or acceleration of an object with respect
to a known reference frame (from now on called navigation-frame) so that it can be inte-
grated in order to determine the object’s position. In most cases, the object’s reference
frame (body-frame) rotates with respect to the navigation-frame over time, making it
necessary to take the rotation between them into account for proper position determina-
tion. In addition, this method requires correct position initialization for it to work. Apart
from it, the requirement of precise velocity or acceleration measurement is considered to
be its main drawback, especially when low-grade sensors are used.

1.4 SITE-SPOT

SITE-SPOT is a web-based service that allows visualization of 3D laser-scanned areas.
Fugro is able to collect data from 360° laser scanners and cameras placed in several
locations. Afterwards, all data is linked with respect to each other, creating a model of
an entire site. Laser data is responsible to obtain 3D points and the camera improves
the appearance for the user. Once the model exists, it is possible to extract coordinates
of objects in the model, as well as overlay text or 3D models on the screen.

Figure 1 illustrates data obtained from the laser, while figure 2 displays the same
scene after laser-camera data matching.

Figure 1: View of laser scan intensities on RDM training plant extracted from SITE-
SPOT.

Figure 2: View of camera data on RDM training plant extracted from SITE-SPOT.

16 1. INTRODUCTION

1.5 QuickVision
QuickVision is a product developed by Fugro to allow real-time tracking of a pattern
position and orientation. By extension, it also allows to keep track of an object with
a pattern attached to it if the latter is measured with respect to the former. A pat-
tern consists on printing round dots on an uniform background. The computer running
QuickVision algorithm knows beforehand which patterns it is trying to find in the image
and is able to locate them even if they are tilted or partially occluded. QuickVision also
enables augmented reality (AR): a 3D model can be shown on the computer screen based
on patterns’ poses with respect to the camera. An example of the use of the QuickVision
for coupling two underwater structures is depicted on figure 3.

Figure 3: Render of an underwater application of QuickVision.

An example of the AR capabilities of QuickVision product is illustrated by figure
4. Note that the assets position’s were obtained after extracting their coordinates from
the 3D SITE-SPOT model. Also, it was needed to relate the reference frame used on
SITE-SPOT with the one used by the patterns.

Figure 4: AR application of QuickVision in a refinery training plant. Assets that are
not in view are represented in the image’s border, pointing to their directions. From the
image, it is straightforward to identify flanges 002, 003, 004 and valve 005.

2. REFERENCE FRAMES 17

2 Reference Frames
This section gives a brief explanation about the reference frames adopted throughout
the thesis. References [6, 7, 8, 9, 10, 11] dedicate dozens of pages to define each of the
reference frames used in INSs. As done in [1] [2], this chapter is intended only to give the
reader the basic knowledge for the following sections.

The inertial frame i is the coordinate frame with origin at the center of the earth,
with z pointing north and aligned with the Earth’s spinning axis, x pointing to the
vernal equinox and y completing the right hand rule.

The Earth frame e a.k.a. Earth-Centered Earth-Fixed (ECEF), is a coordinate frame
with the same origin and z axis as the inertial frame i, having x pointing to the
Greenwich meridian and y completing the right hand rule.

The navigation frame n is the coordinate frame in which the problem is desired to
be resolved. Its origin is in the plane tangent to the Earth at the location the
navigation is performed, with x pointing north, z pointing away from the center of
the Earth and y completing the right hand rule. The origin of the navigation frame
n is not fixed with respect to the origin of the ECEF frame, it moves along with
the location at which the navigation is performed. However, this work considers it
fixed, since the location studied varies in a range of less than 100m, representing a
change in latitude and longitude at the order of 10−4°.

The local frame l has the same origin as the navigation frame n, with x pointing north,
z pointing towards the center of the Earth and y completing the right hand rule.

The pattern frame p is the right-handed coordinate frame with the same origin as the
local frame l, same z axis and a fixed x and y misalignment from the navigation
frame n.

The body frame b is the right-handed coordinate frame with the same origin as the
navigation frame n (and, consequently, as the local frame l as well), fixed with
respect to the IMU and with axis determined by the IMU manufacturer, at which
the IMU outputs are valid.

The camera frame cam is the coordinate frame with origin at the camera pinhole,
with y pointing forward, z pointing up and x completing the right hand rule.

Figure 5 1 and 6 illustrate the frames presented. Note that the frames are denoted by
superscripts.

1Figure kindly extract from [12]

18 2. REFERENCE FRAMES

Figure 5: Representation of the axis of the inertial frame i, Earth frame e, navigation
frame n.

Camera cam

y

x

x

z

y

z

IMU Sensor b

Figure 6: Representation of the axis of the body frame b and camera frame cam.

3. ATTITUDE REPRESENTATION 19

3 Attitude Representation

3.1 Introduction

Many books and articles [6, 7, 8, 9, 13] dedicate entire sections on describing the math-
ematics behind different attitude representations. The goal of this section is to present
the basics of attitude representations, helping the reader to understand the advantages
and disadvantages of each one of them, as well as how to convert between them.

In this work, all rotations are around an orthogonal right-handed axis set and a
positive rotation is the one in the clockwise direction along the axis from the origin to
positive infinity, accordingly to what is used by most authors. Also, given that sometimes
there are several different possible options for a frame to be defined (ENU - x-East, y-
North, z-Up – NED - x-North, y-East, z-Down – and others), to avoid confusion, rotations
around x, y and z as roll, pitch and yaw when possible. Roll is defined to be the rotation
around the forward axis, while yaw is the one around the vertical axis and pitch is the
one around the remaining axis, regardless axis naming.

Some authors explicitly distinguish roll, pitch and yaw from bank, elevation and head-
ing, stating that the first three terms are the angular velocities associated with the angular
positions expressed by last three terms, respectively. Since some other authors use all
six words when referring to angular position, this convention will also be adopted in this
thesis, except when stated otherwise. Angular velocities will be usually represented by
the lowercase Greek letter omega (ω) and rotation matrices will be denoted by C (and
not C).

There are at least four different representations of attitude:

• Euler Angles

• Direction Cosine Matrix

• Axis-Angle

• Quaternions

3.2 Euler Angles

Euler Angles probably are the most intuitive way of imagine and interpret rotations. It
consists on three successive rotations around each one of the x − y − z axis in a given
sequence i.e. C = C1C2C3, where Ci is the rotation around the axis i. Often the first
rotation applied is roll (around the forward axis), then comes pitch (around the lateral
axis) and finally comes yaw (around the vertical axis). It is important to remark that
the order in which the rotations are applied matters, given that matrix multiplication is
not a commutative operation. The greatest advantage of this particular order is that it
keeps the heading constant regardless the roll and pitch applied, therefore explaining its
wide use - especially in marine applications.

Using Euler Angles to represent orientation has a huge drawback, the limitation known
as gimbal lock. Euler Angles correspond, by construction, to the rotation angles of each
one of the axis of a set of three gimbals, as shown in the image 7, in which roll is the
rotation around the blue axis, pitch is the rotation around the green axis and heading is
the rotation around the pink axis. Defining the full rotation as so creates a singularity
point when pitch equals ±90°. This means that the airplane in the figure 7b cannot rotate

20 3. ATTITUDE REPRESENTATION

(a) Gimbal Free (b) Gimbal Locked

Figure 7: Illustration of the gimbal lock limitation of Euler Angles representation of
attitude.

around the axis perpendicular to both green and pink ones, given that the blue axis has
became aligned with the pink one as direct consequence of pitching. This disadvantage
is enough for avoiding this technique for representing orientation during computation.
Nevertheless, Euler Angles will still be used for displaying results.

3.3 Direction Cosine Matrix

3.3.1 Overview

A Direction Cosine Matrix (DCM) is a 3× 3 rotation matrix that relates vectors in two
different frames, as follows:

rb = Cb
ar

a, (1)

where Cb
a is the rotation matrix expressing rotation from frame a to frame b. It is

important to keep in mind that a rotation matrix must be orthonormal with determinant
equals to positive 1, by definition. It needs to have determinant +1 in order not to scale
the output vector with respect to the input vector. A matrix can only be orthogonal if
it is a square matrix [14], which implies that a vector rotation always leads to an output
vector with the same dimension of the input one. The definition of an orthonormal matrix
is tied up by equation 22

C−1 = CT , (2)

Given the high cost of inversion of a general matrix, this property of rotation matrices
will prove to be very handy, since the matrix inversion is, in this case, synonym to matrix

transposition. For better understanding, we are going to multiply
(
Cb

a

)−1

on the left of
both sides of equation 1, resulting in:(

Cb
a

)−1

rb =
(
Cb

a

)−1

Cb
ar

a (3a)(
Cb

a

)−1

rb = ra (3b)(
Cb

a

)T
rb = ra (3c)

Ca
br

b = ra (3d)
2frames notations dropped for simplicity, without losing generality

3. ATTITUDE REPRESENTATION 21

3.3.2 Derivative of a Rotation

In order to be able to compute the orientation at every discrete instant k, one needs to
solve the differential equation that establishes the relation between the orientation and
its derivative.

Ċ
a

b (t) = lim
∆t→0

Ca
b (t+ ∆t)−Ca

b (t)

∆t
(4)

Given that Ca
b (t + ∆t) is also a rotation, then there is a matrix S(t,∆t) so that

Ca
b (t+ ∆t) = S(t,∆t)Ca

b (t), leading to:

Ċ
a

b (t) = lim
∆t→0

S(t,∆t)Ca
b (t)−Ca

b (t)

∆t
(5a)

Ċ
a

b (t) =

[
lim

∆t→0

S(t,∆t)− I
∆t

]
Ca

b (t) , Ωa
ab(t)C

a
b (t), (5b)

in which Ω is called rotation rate matrix and shall not be confused with rotation
matrix, meaning that rotation matrices properties may not apply.

According to [6], Ω is a skew-symmetric matrix, i.e. −Ω = ΩT . In other words, the

vector
(
ωx ωy ωz

)T
of angular velocities around x, y and z respectively leads to [11]:

Ωa
ab =

 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 (6)

that should be read as the angular velocity of the b-frame with respect to a-frame, ex-
pressed in a-frame. Note that ω also has the same subscripts and superscripts, that were
dropped for convenience.

Contrarily to the Euler Angles representation, Direction Cosine Matrices present no
singularity and are, thus, most suitable for a general application. Its downside comes,
however, from a practical point of view: 3 × 3 = 9 variables must be stored in memory.
Also, reminding that floating point precision is a restriction, Direction Cosine Matri-
ces can rapidly loose orthogonality, hence ceasing to be a rotation matrix (recall basic
properties of rotation matrices in 3.3.1). An algorithm may be performed to re-obtain a
rotation matrix to get around this issue.

3.4 Axis-Angle

Axis-Angle, also named rotation vector, is a orientation representation mainly used for
introducing quaternions, and it will be the case here. Axis-angle describes a rotation with
a (usually unitary) vector and a scalar, in which the vector defines the axis around which
the rotation will occur, while the scalar is in charge of the amount of rotation. Figure 8

presents a visualization for it, being the dark green line the axis,
(

1 0 0
)T

the vector
before rotation, the black line the rotated vector and the blue arc the amount of rotation.

One might get confused with the fact that a rotation in a 3-dimensional space was
defined using four parameters. To solve this, it is possible to incorporate the amount of
rotation into the director vector, by simply scaling it up or down. In other words, three

22 3. ATTITUDE REPRESENTATION

Figure 8: Illustration of Axis-Angle orientation representation

parameters are sufficient to define a 3-dimensional space and a fourth one was introduced
for convenience.

3.5 Quaternions

Similarly to the Axis-Angle representation, a rotation quaternion q (henceforth simply
called quaternion) is defined as follows: 3

q =


q0

q1

q2

q3

 =


cos(µ/2)

(µx/µ) sin(µ/2)
(µy/µ) sin(µ/2)
(µz/µ) sin(µ/2)

 , (7)

where µ is a rotation vector with magnitude µ and components
(
µx µy µz

)T
. A

quaternion is, therefore, a particular case of Axis-Angle representation. By inspection,
q0 is the term corresponding to the amount of angle, while the others define the axis of
rotation. The main advantage of defining the rotation in such way is that its magnitude
is always equals to 1, characteristic that will be used to get around numerical precision
issues, as addressed in 9.3.

It may be familiar to the reader the close existing relation between complex numbers
and rotations around one axis [15]. Quaternions can be seen as an extension of com-
plex numbers, with three imaginary components, instead of only one, allowing rotations
around any combinations of x− y − z axis. Hence, quaternions operations derivate from
complex numbers operations.

Quaternions do not present any singularities, contrarily to Euler Angles. Also, quater-
nions are represented by fewer parameters than DCMs (four compared to nine), which
requires less memory to storage. Finally, since quaternions transformations are inherently

3Note that only rotation quaternions are defined as 7

3. ATTITUDE REPRESENTATION 23

orthonormal, one may only need to apply normalization, instead of matrix orthogonal-
ization, being the latter more costly.

Further details can be found in [13, 16, 17].

3.6 The Choice of Attitude Representation

For the reasons discussed throughout the chapter, quaternion will be adopted as attitude
representation. Nevertheless, the notation used is a mix between DCM and quaternion.
As explained previously, quaternion operations are special and often it is preferable to
convert a quaternion into a DCM. Performance of the two methods should not be an
issue for modern computers. Numerical issues are discussed in 9.3.

24 4. DETERMINISTIC PROCESSES

4 Deterministic Processes
Up to now, equations were presented modeling each parameter’s dynamics over time. This
chapter will be dedicated to clarify the meaning of previous equations, as well as to present
other alternative representations for them that might be more familiar or intuitive for the
reader. This chapter will also present the equivalence between the continuous and the
discrete-time models and other useful concepts, specially for understanding the following
chapter about stochastic processes.

It is important to remark that many localization-related books do not address this
topic in a dedicated section, what can lead to confusion. One exception is [10] – having
inspired this chapter’s structure – and other alternatives are mainly books on control
theory, robotics or signal and systems, such as [18, 19, 20].

4.1 Continuous-Time Systems Models

4.1.1 Ordinary Differential Equations

According to [10], a single-input single-output linear dynamic system can be written in
the form of the ordinary differential equation (ODE) 8

y(n)(t) = αn−1(t)y(n−1)(t) + . . .+ α1(t)ẏ(t) + α0(t)y(t)+

βm(t)u(m)(t) + . . .+ β1(t)u̇(t) + β0(t)u(t)
(8)

In this context, y is the system output, u is the system input and the superscripts are
the j-th derivative. Note that order of an ODE is defined to be the highest derivative term
present on it and that its solution depends on the initial conditions y(0)(t = t0), y(1)(t =
t0), . . . , y(n−1)(t = t0), where t0 denotes the initial time.

The equations developed in [20] for a frictionless cart attached to a vertical wall by
a horizontal spring and damper moving along a horizontal straight rail, obtaining its
position equation 9 after having applied Newton’s laws to the free body diagram:

ÿ(t) +
B

M
ẏ(t) +

K

M
y(t) = f(t)⇔ ÿ +

B

M
ẏ +

K

M
y = f (9)

where M is the mass of the cart, K is the Hooke’s constant of the spring, B is the
damping coefficient and f is the horizontal force applied to the cart. Given that its
highest derivative is the second one, it consists of a second order ODE.

Carrying the time-dependency notation (t) is often cumbersome and, thus, is dropped.
When it is the case, one needs to infer from the context which of the variables are constant
or might vary in time. The equation 9 presented both notations and by only looking the
latter it is difficult to state if M , B, K and f are constant or not, but from the context
it is reasonable to assume that the mass, the spring and the damping coefficients are
constant, while the applied force may vary.

Ordinary differential equations are intuitive and usually is the first representation
undergraduates study. However it is not the most suitable one to be solved, either by
hand or by computers.

4.1.2 Transfer Functions

Transfer functions arise from the application of the Laplace Transform on equation 8,
which is a powerful method of solving ordinary differential equations. Even though its

4. DETERMINISTIC PROCESSES 25

relevance is within this domain, its use goes beyond the scope of this work, since the
studied systems are time-variant for which the solutions presented are obtained using
numerical methods.

Nevertheless, block diagrams will be used along the thesis and the goal of the current
section is to ask the reader to extrapolate the concept of block diagrams to time-variant
systems.

4.1.3 State Space

State space representation is an alternative to ordinary differential (and difference 4)
equations. One ODE of order n can be represented by n equations of order 1 [20].

Recall the cart’s ODE:

ÿ(t) = f(t)− B

M
ẏ(t)− K

M
y(t) (10)

Let x1(t) = y(t) and x2(t) = ẏ(t), yielding to:{
ẋ1(t) = ẏ(t) = x2(t)

ẋ2(t) = ÿ(t) = − B
M
x2(t)− K

M
x1(t) + f(t)

(11)

The equation 11 can be rewritten in the matrix form 12, in which y(t) is the output
of the system, typically defined as the system’s parameter that can be measured. In the
example, it is the cart’s position.

(
ẋ1(t)

ẋ2(t)

)
=

[
0 1

−K
M
− B

M

](
x1(t)

x2(t)

)
+

[
0

1

]
f(t)

y(t) =
[
1 0

](x1(t)

x2(t)

)
+
[
0
]
f(t)

(12)

Again, the time-notation can be dropped and equation 12 may be rewritten for a
general case as 13. {

ẋ = Fx + Bu

y = Hx + Du
(13)

where x is the state vector, y is the output vector, u is the input vector, F is the
system transition matrix, B is the control matrix, H is the output matrix and D is the
feedthrough matrix. The state vector (x) is composed of state variables (xi) and by
definition has the smallest possible dimension able to represent the system.

Note that in this context y refers to the ODE’s physical quantities, while y and y are
the system output for the scalar and vectorial cases, respectively.

State-space representation usually makes clearer which of the physical quantities can
be seen or measured. In other words, disregarding the feedthrough matrix D (that rarely
exists), the output is the product between H and x. In the previous example, only the

cart’s position can be sensed, given that H =
[
1 0

]
(and that x =

(
y ẏ

)T
). Sometimes

it is desired to infer hidden states (ẏ in this case), a process known as state estimation.

4This term is properly defined in section 4.2

26 4. DETERMINISTIC PROCESSES

Chapter 4.3 explains the conditions in which this problem is solvable, while chapter 8
presents one particular state estimator: the Kalman filter.

Even so, a system can be defined using state-space representation in infinite different
ways [18]. One of those infinite representations is usually more appropriate than others
for solving a particular problem. An intuitive way of understanding it is presented by [14]
when approaching change of basis. By inspection, the reader should be able to recognize
the same pattern in both cases.

4.2 Discrete-Time Systems Equivalent Models

As most of applications nowadays, in this work a computer will be used to numerically
solve the equations presented along the past chapters. However, a computer does not work
in continuous time: it is based on cycles and, for that reason, is said to operate in discrete
times, where the continuous-time equations just presented are not valid anymore. It is
needed to derive the discrete-time equivalent equations, then. For a computer, solving n
1st order ODE is much easier then solving 1 ODE of order n, hence the power of state-
space representation. As a detailed development is made on [10], the following chapter
will present a slightly different approach, aiming to give the reader the basics only.

4.2.1 Calculation of Φk from F(t)

The solution of a scalar ODE of form ẋ(t) = ax(t) is well known from calculus courses,
stated as:

x(t) = x0e
−at (14)

Analogously, the solution of the matrix ODE ẋ(t) = Fx(t) is:

x(t) = x0e
−Ft (15)

One could get stuck when facing the exponential of a matrix, but it should not be a
problem if we take the power series approach to compute it, from where equation 16:

eat =
∞∑
n=0

an

n!
tn = 1 + at+

a2

2!
t2 + . . .+

an

n!
tn + . . . (16)

For matrices, the expansion is straightforward, noting only that 1 is replaced by the
identity matrix I. If the solution interval is sufficient small, a first order approximation
may be accurate enough, yielding to the following discrete-time equivalent model:

eF∆t =
∞∑
n=0

(F∆t)n

n!
= I + F∆t+

(F∆t)2

2!
+

(F∆t)3

3!
+ · · · ≈ I + F∆t , Φ (17)

In case F varies in time (F(t)), it is usually possible to linearize it around the oper-
ation point using Taylor series expansion and assume F(t) is constant during tiny time
intervals ∆t. Note that non-linear systems may be seen as linear time-variant systems
(as exemplified on equation 18) and, therefore, usually can also be considered constant
during small time intervals.(

x
ẋ

)
k+1

=

[
1 ∆t
0 1

](
x
ẋ

)
k

+

[
0

∆t

](
ẍ
)
k

(18a)

4. DETERMINISTIC PROCESSES 27

(
x
ẋ

)
k+1

=

[
1 ∆t
0 1 + ∆tẍkẋ

−1
k

](
x
ẋ

)
k

(18b)

ẋ = Fx (19)

With the discrete form being:

xk+1 = Φkxk (20)

4.3 Observability

A system is called (completely) observable if it is possible to infer each of its internal states
x from a finite time interval of its outputs y. By definition, a non-(completely-)observable
system cannot have all its internal states estimated. Therefore, before trying to estimate a
system’s internal states, it is important to verify if such a task is mathematically solvable.

From the system model, it is possible to compute the Observability Matrix M. The
number observable states is the rank of M. As a refresher, the rank of a matrix is the
number of dimensions of the space spanned by its columns (or rows). In other words, it
is the number of linearly-independent columns (or rows). Indeed, if a column (or row)
can be expressed as a linear combination of others, then this column (or row) belongs to
the already covered hyper-space and thus is not able to point towards a new dimension.

Still, another way to get the intuition about the meaning of the rank of a matrix in the
special case of a square matrix is to look at its eigenvalues and eigenvectors. Basically, if
a matrix has one eigenvalue equals to zero, it means there is a pair of eigenvectors (~u,~v)
whose cross-product ~u × ~v is also zero. Neglecting the trivial case in which ||~u|| = 0 or
||~v|| = 0, the cross-product is null if and only if ~u is parallel to ~v, given that ~u × ~v =
||~u||||~v|| sin(θ)~n, where θ is the angle between ~u and ~v and ~n is the director (unitary)
vector, normal to both ~u and ~v.

For rectangular matrices, one can benefit from approach just presented thanks to the
QR decomposition. Every matrix A can be decomposed into the multiplication of two
matrices Q and R in such a way that A = QR, where R is a upper triangular (square)
matrix with the same rank as A [14].

The following subsections present the observability matrix only and the reader is
invited to refer to [10] and [18] for details concerning the fundamentals behind them.

4.3.1 Continuous Linear Time-Invariant Case

The Continuous Linear Time-Invariant case is addressed in [18]. Consider the system
below: {

ẋ = Ax + Bu

y = Cx + Du
(21)

The Observability Matrix M for the system 21 is defined as follows.

M =


C

CA
...

CAn−1

 (22)

where n is the number of internal states of x

28 4. DETERMINISTIC PROCESSES

4.3.2 Discrete Linear Time-Variant Case

The Discrete Linear Time-Variant case is addressed in details in [10]. Consider the system
below: {

ẋk = Φkxk−1 + Γkuk

yk = Hkxk + Dkuk

(23)

The Observability Matrix M for the system 23 is defined as follows.

M =


Hk−N

Hk−N+1Φk−N
...

HkΦk−1 . . .Φk−N

 (24)

where N is a sufficiently big finite integer. For linear time-invariant systems, n (from the
previous chapter) and N are the same. However, for linear time-variant systems whose
observability depends on the internal states, N may be greater than n.

Furthermore, for a linear time-variant system, observability may be determined nu-
merically from collected data, challenge addressed on [21].

5. INERTIAL SENSORS 29

5 Inertial Sensors

5.1 Overview

Inertial sensors are sensors capable of measuring a physical quantity with respect to a
inertial reference frame, as the name suggests. They mainly consist of accelerometers and
gyroscopes. Making no differentiation between inertial sensors and inertial measurement
units (IMUs) can lead to misleading assumptions.

An IMU is a device that encapsulates multiple accelerometers and gyroscopes in or-
der to deliver the information of the entire inertial movement. More precisely, IMUs
commonly have three single-axis orthogonal gyroscopes aligned with three single-axis
accelerometers.

Accelerometers are sensors that measure the sum of forces applied to them, meaning
that in an ideal scenario their output will only be null during free fall periods. Similarly,
gyroscopes are sensors that measure the angular rates they suffer and therefore will only
have null output when their angular rates compensates the Earth’s one.

There are many different types of inertial sensors, widely varying in price, size, weight,
accuracy and precision. Here, only the ones used during experiments will be described,
keeping in mind that the main goal is understand the big picture of their working prin-
ciples so that we can develop models for their main sources of errors.

This chapter was conceived based on [1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 22, 23]. They have
some intersection areas, specially concerning inertial sensors’ error characteristics and
error models as well. Others are more dedicated in explaining various types of inertial
sensors or in comparing results obtained by different error models.

5.2 Coning and Sculling

Most of modern IMUs are not mounted on gimbaled leveled platforms, due to the dif-
ficulty, cost, size and weight to produce them. They are instead rigidly fastened to the
moving object, causing it to rotate with that object and thus making it necessary to
compensate for misaligned frames between two different output timestamps.

In order to get proper results, this computation needs to be done at high frequencies
typically around 1000Hz. To avoid overloading the device receiving the sensor measure-
ments, coning and sculling computations are frequently done in the IMU, which allows it
to output at about 100 ∼ 200Hz.

The output is, then, a delta angle over delta time, instead of an angular rate, meaning
that angular rate was internally integrated a few times before being output. However,
one should notice that the orientation is changing when the angular rate is not null, thus
leading the integration to be orientation-dependent. To sum it up, coning is the error
that arises by computing this integral without properly taking different orientations into
account.

Similarly, sculling is the error that arises by computing the acceleration average with-
out properly taking different orientations into account.

5.3 Error Characteristics

Sensors in general are subjected to different sources of measurement errors, comprising
bias, scale factor, cross-coupling and random noise. One of the characteristics that dis-

30 5. INERTIAL SENSORS

tinguishes a high grade sensor from a low grade one is the magnitude of such errors. Each
of them will be briefly discussed below in the extent of inertial sensors.

5.3.1 Bias

Bias is a measurement error said to be constant5 and independent of the environment in
which the sensor is or the motion experienced by it. In other words, in the particular
scenario in which a gyroscope is still, its bias in x, y and z are the averages of readings in
each one of these axis, respectively. Considering bias as the only source of measurement
imperfection, we would have6:

fmeasured = ftrue + bf (25a)

ωmeasured = ωtrue + bω (25b)

where f is the specific force and ω is the angular rate and b is the bias7.

5.3.2 Scale Factor and Cross-coupling

The error called scale factor is the one that linearly grows with the true motion values. For
gaining the intuition of how it is possible, one could think about the distance measurement
using a plastic tape measure: the longer the distance to be measured, the longer the tape
stretches.

Cross-coupling is the error that arises from non-mutual-orthogonality among the axis.
An acceleration along the forward axis of an accelerometer should only cause the forward-
axis measurements to change, but, if its two other axis are not perfectly orthogonal to
the forward one, then a small component of a forward acceleration will also be sensed by
the non-forward axis. This source of error can be considered constant and suitable for
calibration during production phase. Therefore, this work will assume a proper calibration
by the manufacturer and will neglect any remaining associated error.

As done for the bias, consider the scale factor as being the only source of error in a
measurement. Then, we obtain:

fx,measured = fx,true + λfxfx,true = (1 + λfx)fx,true
fy,measured = fy,true + λfy fy,true = (1 + λfy)fy,true
fz,measured = fz,true + λfz fz,true = (1 + λfz)fz,true

(26a)


ωx,measured = ωx,true + λωxωx,true = (1 + λωx)ωx,true

ωy,measured = ωy,true + λωyωy,true = (1 + λωy)ωy,true

ωz,measured = ωz,true + λωzωz,true = (1 + λωz)ωz,true

(26b)

where λf and λω are the scale factors (vectors) for the accelerometer and the gyro-
scope, respectively. Note that the operation (1 + λf)f (resp. (1 + λω)ω) is not defined,

5In reality, bias as well as other sources of error often depends, for instance, on the temperature,
which is not an issue, given that it can be calibrated by the sensor’s manufacturer.

6Subscripts and superscripts dropped for simplicity
7Remember that since f and ω are both 3D vectors, bf and bω are too.

5. INERTIAL SENSORS 31

since λf (resp. λω) is a vector. To simplify the notation, we define:

Λ~u , diag(λ)~u =

λx 0 0
0 λy 0
0 0 λz

 ~u =

λxuxλyuy
λzuz

 (27)

being ~u a generic 3D vector.

Note that the off-diagonal elements of the matrix

λx 0 0
0 λy 0
0 0 λz

 correspond to the

cross-coupling, the element aij (∀i 6= j) being proportional to the non-orthogonality
between axis i and j.

5.3.3 Random Noise

As explained in [6], besides bias, scale factor and cross-coupling, inertial sensors output
also have another kind of imperfection, called random noise, which is a random variable,
meaning its values are not predictable and, thus, not possible to be modeled with respect
to time. In this work the random noise will be represented by w (or by w for multidi-
mensional variables). Random variables can be characterized by several different models,
being the Gaussian distribution particularly useful and will be presented in 7. Further
details about its characteristics and parametrization can be found in the references pre-
sented in the beginning of this chapter.

5.3.4 Full Error Characteristic

Up to now, this sub-chapter presented separately each one of the imperfections present
in the inertial sensors output. Here, the full error characteristic will be presented. Note
that the subscripts true and measured are replaced by the qualifiers˜and ,̂ respectively.

f̃ = (I3 + Λf)f̂ + bf + wf (28a)

ω̃ = (I3 + Λω)ω̂ + bω + wω (28b)

5.4 Error Model

As presented throughout the chapter, an inertial sensor output is the combination of the
true value with other aspects, as bias, scale factor, cross-coupling and random noise, all
of them also evolving over time. This chapter will briefly present a model often used
to represent their dynamics. Several studies have been conducted during the last couple
of decades. [22] compares the performance achieved using different models, [3] and [1]
implement one of these models within the context of GPS/INS integration, while [23]
and [4] explore in details Power Spectral Density (PSD) and Allan-Variance (AV), two
important methods for modeling IMUs that will not be covered in this work, since Fugro
had already performed them.

The first order Gauss-Markov process is stated by the references as being a relatively
simple model that represents accurately the evolution of bias and scale factor, as follows:

ẋ = − 1

Tc
x + w (29)

32 5. INERTIAL SENSORS

where Tc is the correlation time of the process driven by the white noise w. Tc can be
obtained by Allan-Variance method and its value is usually big, meaning xk is approxi-
mately constant over small periods of time.

The discrete-time equivalence used in this work is:

xk =

(
1− ∆t

Tc

)
xk−1 + wk (30)

6. STRAPDOWN SYSTEM MECHANIZATION 33

6 Strapdown System Mechanization
While chapter 5 was dedicated to explain the errors involved in a inertial sensor output,
the present one is focused on the manipulation needed for position estimation. An IMU
measures two physical quantities: acceleration and angular rates. More precisely, it senses
the proper acceleration (also called specific force) f b at body frame b, meaning that a free
fall towards the center of earth results in a null output. Concerning the gyroscope, it
measures the angular rate of the body frame b with respect to the inertial frame i. This
quantity is denoted by ωb

ib. As consequence, a gyroscope is, in theory, able to measure
the Earth’s angular rate.

Figure 9 schematizes the computation needed to determine position based on gyro-
scopes and accelerometers. First, initial values for the orientation, velocity and position
must be given. Then, the attitude computer calculates the current orientation based on
the gyroscopes. Next, the gravity compensator uses the orientation to subtract the grav-
ity from the accelerometers readings, obtaining the acceleration in the navigation frame.
Next, the velocity computer uses this value along with the initial velocity to output the
current velocity, which, in turn, is used as input by the position computer, together with
the initial position to determine the current one.

 n

b
(t = t0)

v
n(t = t0)

r
n(t = t0)

 n

b
(t)

v
n(t)

r
n(t)

gyroscopes

body

mounted

body

mounted

accelerometers

attitude

computer

position

computer

velocity

computer

gravity

compensator

f
b

a
n

!b

ib

Figure 9: Block diagram illustrating the steps to estimate position in a strapdown system.

All equations are well detailed in the literature [3, 6, 7, 8, 9, 10, 11, 24]. Therefore, the
equations will simply be stated and a brief explanation will be given concerning notations
and simplifications adopted.

From [6], equation 31 is extracted.

Ċn
b = Cn

b Ωb
nb = Cn

b Ωb
ib − (Ωn

ie + Ωn
en)Cn

b (31a)

v̇n
eb = Cn

b f b
ib + gn

b − (Ωn
en + 2Ωn

ie)vn
eb (31b)

ṙn
eb = vn

eb (31c)

34 6. STRAPDOWN SYSTEM MECHANIZATION

Ωn
ie = ωie

 0 sin(L) 0
− sin(L) 0 − cos(L)

0 cos(L) 0

 , where ωie = 7.292115× 10−5rad/s (32a)

gn
b ,

(
0 0 g(L)

)T
(32b)

g(L) = 9.7803253359

(
1 + 0.00193185265241 sin(L)2√
1− 0.00669437999013 sin(L)2

)
ms−2 (32c)

A brief explanation follows:

• Ωb
ib is the true angular rate matrix, i.e. the angular rate matrix extracted from the

gyroscope output after correction for bias and scale factor.

• ωie is the angular velocity between the i-frame and the e-frame z-axis.

• f b
ib is the true specific force, i.e. the specific force output by the accelerometer and
corrected for bias and scale factor.

The simplifications below are adopted, yielding to equation 33:

• Given that e-frame is considered static with respect to n-frame, Ωn
en is 03×3

• Given that the device is going to be used by walking human beings, the velocity
vn

eb is assumed to be low (below 2m/s), and 2Ωn
ievn

eb is neglected

Ċn
b = Cn

b Ωb
ib −Ωn

ieCn
b (33a)

v̇n
eb = Cn

b f b
ib + gn

b (33b)

ṙn
eb = vn

eb (33c)

From equation 33 it is possible to reexplain the diagram on figure 9. Equation 33a
is the attitude computer; equation 33b is both the gravity compensator and the velocity
computer; equation 33c is the position computer.

7. STOCHASTIC PROCESSES 35

7 Stochastic Processes

Last chapter was dedicated to present deterministic processes and different forms of
representing them. The models presented were considered to be perfectly accurate. In
other words, for the cart example, the input force f(t) was supposed to be accurately
known during all times. However, in a real-world application, some physical quantities
are obtained through sensors, which are intrinsically noisy, meaning their output is not
really true. This characteristic needs to be taken into account when estimating a system’s
states. This chapter will only serve as a bridge between the previous and the next one.
Details on stochastic processes can be found in [10, 19, 25].

7.1 Gaussian Distributions

As presented in section 5, sensors (especially the ones used in this work) are inherently
noisy. Due to different reasons, their output is usually off the true value. Once both scale
factor and bias are removed, there is still the a factor left leading to uncertainties in the
measurement. This value is random and was presented in 5.3.3.

Noise is often modeled as a Gaussian distribution for convenience and accuracy, given
that such distribution is fully described by two values: a mean µ and a variance σ2, being
represented as x ∼ N(µ, σ2). In this context, accuracy was used in italic font because
it is usually not possible to prove that a random variable perfectly behaves according to
a Gaussian distribution, but at least it is usually a reasonable assumption, since as it
is expected to happen in the real world, a Gaussian distribution states that the farther
from the actual value an output is, the less likely it is to occur.

Its density function is described by:

px(X) =
1√
2πσ

exp

(
−(X − µ)2

2σ2

)
(34)

7.2 Random Noise Unfolding

After random noise and Gaussian distributions have been briefly introduced, it is needed
to include it in a deterministic process, taking into account the consequences of it into
the states.

Imagine the simple scenario of a frictionless cart restricted to an unidimensional move-
ment along a x−axis and equipped with a perfectly aligned accelerometer able to measure
the cart’s acceleration with respect to a fixed object without bias or scale-factor issues.
One wants to estimate the cart’s position based only on the accelerometer. The problem
might be modeled as follows 8:(

x
ẋ

)
k+1

=

[
1 ∆t
0 1 + ∆tẍkẋ

−1
k

](
x
ẋ

)
k

(35)

xk+1 = Φkxk (36)

8Note that ∆tẍkẋ
−1
k ẋk has no singularities.

36 7. STOCHASTIC PROCESSES

And, taking into account the noise output by the sensor, we obtain:(
x
ẋ

)
k+1

=

[
1 ∆t
0 1 + ∆tẍk/ẋk

](
x
ẋ

)
k

+

[
0

∆t

](
w
)
k

(37)

That can be rewritten as:

xk+1 = Φkxk + Gkwk (38)

Of course a given uncertainty in the acceleration unfolds bigger uncertainty in velocity
and an even bigger uncertainty in position. Here the convenience evoked in last section
arises again: Gaussian distributions make easy to compute the uncertainty propagation.
The equations will be presented along with the Kalman filter in chapter 8.

7.3 Synthesis of Notations Equivalences

Even though this work has a list of symbols, the present chapter appeared to be useful
to make sure no confusion is caused by the notation adopted for dynamic systems in this
work, which might differ from some reference books, notably from [18]. The reader should
be able to spot the notation with which he/she is most familiar and, by inspection, find
its equivalents adopted in this thesis.

7.3.1 General Notation

Professionals with background in signal processing or designing control systems are prob-
ably more comfortable with the following notation:

System type Continuous model Discrete model
Linear time-invariant ẋ(t) = Ax(t) + Bu(t) xk+1 = Axk + Buk

y(t) = Cx(t) + Du(t) yk = Cxk + Duk

Linear time-variant ẋ(t) = A(t)x(t) + B(t)u(t) xk+1 = Akxk + Bkuk

y(t) = C(t)x(t) + D(t)u(t) yk = Ckxk + Dkuk

Non-linear time-invariant ẋ(t) = a(x(t),u(t)) xk+1 = a(xk,uk)
y(t) = c(x(t),u(t)) yk = c(xk,uk)

Non-linear time-variant ẋ(t) = a(t,x(t),u(t)) xk+1 = ak(xk,uk)
y(t) = c(t,x(t),u(t)) yk = ck(xk,uk)

Note that even though both continuous-time and discrete-time equations are repre-
sented using the same letters, A(t) 6= Ak, as presented on chapter 4.2. This fact is also
clearer in the notation adopted by this thesis.

Often time notation is dropped, leading to:

System type Continuous model Discrete model
Linear ẋ = Ax + Bu xk+1 = Axk + Bu

y = Cx + Du y = Cx + Du
Non-linear ẋ = a(x,u) xk+1 = a(xk,u)

y = c(x,u) y = c(x,u)

Once again it is important to note that in such a simplified notation, there is no
difference between the representation of a time-invariant system, compared to a time-
variant one. At first glance, this notation may appear to be misleading, but one should
be able to clearly identify the type of the system from the context.

7. STOCHASTIC PROCESSES 37

7.3.2 This Thesis’ Notation

The notation used throughout this work is mainly inspired on [6, 10]. They both follow
the same notation as other reference books within the Kalman filter9 domain, as [26].

For simplicity, only the time-dropped notation will be presented.

System type Continuous model Discrete model
Linear ẋ = Fx + Gw xk+1 = Φxk + Gw

z = Hx + ν z = Hx + ν
Non-linear ẋ = f(x,u) + g(w) xk+1 = f(xk,u) + g(w)

z = h(x,u) + ν z = h(x,u) + ν

Please note that Ax + Bu (resp. Axk + Buk) has been encapsulated by Fx (resp.
Φxk). Also, Gw is a new term, responsible for describing the system noise, as it is
described on 7.

9The Kalman filter is presented on 8

38 8. THE KALMAN FILTER

8 The Kalman Filter
There are several books written about the Kalman Filter presenting the whole theory
along with demonstrations, like [19]. Therefore, it is not worth redeveloping all from
scratch. This chapter will rather just explain the filter from a practical point of view.
Readers feeling the explanation throughout this chapter is not enough are kindly invited
to refer to [25, 27].

8.1 An overview

As discussed in previous chapters, all sensors are noisy. Also, mathematical models for
describing real phenomena are never perfectly accurate. The Kalman Filter was created
for taking into account uncertainties related to both measurements and models. The filter
is a recursive Bayesian filter for multivariate normal distributions and, by construction,
is optimal when some assumptions are true [19].

The filter’s goal is to compute the most likely output, based on the confidence we have
on both model and measurements. For the Kalman Filter to work optimally, the three
following hypothesis must be satisfied:

• The noise is white (a zero-mean uncorrelated Gaussian distribution);

• The process is a Markov’s chain;

• The system is linear and time invariant.

A Markov chain may be roughly described as a memoryless stochastic process, which
means the next step state vector depend only on the present one (and not on previous
ones), which is usually true for a system properly represented using state-space represen-
tation.

The system’s linearity and time invariance allows us to use the linear algebra described
on Kalman’s equations.

In case the studied system does not match these conditions, variations of the filter
may still work satisfactorily. In particular, for systems that are locally linear and time
invariant under zero-mean uncorrelated noise, the Extended Kalman Filter (EKF) is
claimed to work fine [1, 6, 8].

8.2 The Standard Kalman Filter algorithm

The most likely output is the output that minimizes the quadratic weighted error between
measurements and predicted states, as stated by equation 39. Note that x̂ represents an
estimation on x, ỹ represent the approximated error between the measurement and the
state, the subscript k represents the instant k and Ga|b is the Bayes’ rule notation.

x̂k|k−1 = Fkx̂k−1|k−1 + Bkuk (39a)

Pk|k−1 = FkPk−1|k−1F
T
k + Q (39b)

ỹk = zk −Hkx̂k|k−1 (39c)

Sk = HkPk|k−1H
T
k + R (39d)

Kk = Pk|k−1H
T
k S−1

k (39e)

8. THE KALMAN FILTER 39

x̂k|k = x̂k|k−1 + Kkỹk (39f)

Pk|k = (I −KkHk)Pk|k−1 (39g)

Before diving in the next section with a simple example, it is important to understand the
concept of this bunch of letters. Figure 10 is a graphic representation of the equation 39.
The lower block (containing A, C and x) is the real system (the process) with the states
to be estimated. It is a black box that outputs ȳ given the current states x and the input
u. The upper block is a mathematical model supposed to represent accurately enough the
real process, so that the estimated states x̂ are equal (or almost) to the hidden internal
true states x. If both model and process were exactly the same (and had been initialized
with the same values), they would output the same results. Of course, no mathematical
model represents the reality perfectly, so the model tends to diverge from the process over
time. To overcome it, the model’s output is compared to the process’ output, resulting in
what is called innovation (or "error", loosely speaking). This error is weighted by a gain
K and added to the a priori (to the innovation) estimated states x̂k|k−1, turning into the
a posteriori (again, to the innovation) estimated states x̂k|k being fed to the model.

A C
x

u

ȳ

K

F H
x̂

+

−

ŷ

+
+

Figure 10: Block diagram of the Kalman filter state equations.

A control engineer should now be able to realize that in a problem of state estimation,
the output is the vector of estimated states x̂, rather than the system output y itself. In
addition, the set point is the process’ output, the "measured quantity" is the predicted
output ŷ and the "error" is the difference between them. Basically, a closed-loop control
may be more easily seen on figure 11.

A C
x

u

ȳ
K

F H
x̂

+

−

ŷ

+
+

K

ŷ

Figure 11: Rearrenged block diagram of the Kalman, making clearer the existence of a
closed-loop.

To sum it up, the steps are:

40 8. THE KALMAN FILTER

1. Predict the estimated states x̂ at instant k, using the estimated states at the pre-
vious instant k − 1 and the mathematical model. The result is the a priori state
estimate denoted by x̂k|k−1

2. Compute the innovation ỹk at the instant k by comparing the output ŷk (also at
the instant k) given by the model with the output ȳk (again, at the same instant
k) given by the real process.

3. Update the estimated states x̂ at instant k, given the innovation ỹk through the
equation 39f.

Now, one might wonder how the gain K10 is computed. The Kalman filter’s esti-
mates are, in fact, Gaussian distributions, in which the estimated states form a multi-
dimensional mean vector and have an associated covariance matrix P that loosely speak-
ing expresses the confidence for each of the states. The algorithm also uses covariance
matrix Q that expresses the confidence we have at the mathematical model of prediction
and another covariance matrix R that express the confidence we have at the output given
by the process. As the example in the next section shows, the Kalman gain K is a sort
of ratio between these three covariance matrices.

Finally, given that the internal states x are never really known, sometimes a notation
that drops the hat accent (ˆ) is preferred for simplicity.

8.3 A Simple Example

At first glance, it is not trivial to infer the role of each equation. Labbe [25] did a great
job writing an interactive book with plenty of examples and intuitive thoughts about the
Kalman filter, that served as inspiration for the following example. Imagine a scenario in
which an almost-static one-dimensional system is estimated. That is one of the simplest
possible cases, since Fk = 1 (since x̂k = x̂k−1), Hk = 1 (meaning the state is directly
measured) and B = 0 (meaning the is no inputs acting on the system). Remark that
scalars are nothing but 1 × 1 matrices. As consequence, a matrix inversion turns into a
division, while a transposition is the scalar itself. That said, equations become:

x̂k|k−1 = x̂k−1|k−1 (40a)

Pk|k−1 = Pk−1|k−1 + Q (40b)

ỹk = zk − x̂k|k−1 (40c)

Sk = Pk|k−1 + R (40d)

Kk = Pk|k−1Sk
−1 (40e)

x̂k|k = x̂k|k−1 + Kkỹk (40f)

Pk|k = (1−Kk)Pk|k−1 (40g)

The equations above could be true for tracking the position xk of an object (let’s say
an offshore platform) that measures directly its position (zk = xk|k−1, for ỹ = 0) and is
supposed static, given that xk|k−1 = xk−1|k−1.
40a is the predicted state estimation
10Remark that the lowercase k is used for denoting instants, while the uppercase K (or K, its matrix

version) is the Kalman gain.

8. THE KALMAN FILTER 41

40b is the predicted state covariance
40c is the innovation (i.e. the difference between measurement and prediction)
40d is the innovation covariance
40e is the optimal Kalman gain
40f is the updated state covariance
40g is the updated state covariance
To better understanding, let’s rewrite 40e, as:

Kk =
Pk−1|k−1 + Q

Pk−1|k−1 + Q + R
(41)

Analyzing equation 41, it is possible to verify that 0 < Kk < 1. It is near to 0 (resp
1) if R � Q (resp R � Q). Imagine, now, the platform is on furious waters and it
is equipped with a high precision sensor. Therefore, Q would be large (or big) and R
would be narrow (or small). So, K ≈ 1, means the updated position x̂k|k ≈ x̂k|k−1 + ỹk.
Its retained from 41 that modifying Q and R plays significantly on the filter’s behavior,
leading to fast convergence or catastrophic divergence.

8.4 The Extended Kalman Filter algorithm

The Extended Kalman Filter equations simply are the Standard Kalman Filter ones
linearized around the operation point x̂k, thanks to the Jacobian matrices 42b and 42e.
Modifying Q and R over time is not only possible, as it is necessary for systems with
variable integration time-step, given that the bigger the time-step is, the more uncertainty
is added to the process.

x̂k|k−1 = f(x̂k−1|k−1,uk−1) (42a)

Fk−1 =
∂f

∂x

∣∣∣
x̂k−1|k−1,uk−1

(42b)

Pk|k−1 = Fk−1Pk−1|k−1F
T
k−1 + Qk−1 (42c)

ỹk = zk − h(x̂k|k−1) (42d)

Hk =
∂h

∂x

∣∣∣
x̂k|k−1

(42e)

Sk = HkPk|k−1H
T
k + Rk (42f)

Kk = Pk|k−1H
T
k S−1

k (42g)

x̂k|k = x̂k|k−1 + Kkỹk (42h)

Pk|k = (I −KkHk)Pk|k−1 (42i)

The notation above, coming from the Bayes’ rule, is quite verbose and will not be
adopted in this work. Instead, the following equation will be used:

x̂k = f(xk−1,uk−1) (43a)

Fk−1 =
∂f

∂x

∣∣∣
xk−1,uk−1

(43b)

P̄k = Fk−1Pk−1F
T
k−1 + Qk−1 (43c)

ỹk = zk − h(x̂k) (43d)

42 8. THE KALMAN FILTER

Hk =
∂h

∂x

∣∣∣
x̂k

(43e)

Sk = HkP̄kH
T
k + Rk (43f)

Kk = P̄kH
T
k S−1

k (43g)

xk = x̂k + Kkỹk (43h)

Pk = (I −KkHk)P̄k (43i)

9. NUMERICAL ISSUES 43

9 Numerical Issues

Due to numerical intrinsic truncation process in floating point computations, several
rounding errors issues often raise. This chapter aims to present the strategies used to get
around the main issues that deteriorated the numerical solution and led the simulation
to diverge in some cases.

9.1 Covariance Matrix Symmetry

The covariance matrices P and S on the Kalman Filter Algorithm are, each of them,
symmetric by definition. On the literature [8], some algorithms are proposed to get
around the asymmetry caused by floating point finite precision. The alternatives present
a trade-off between computational cost and accuracy to the analytical solution, in such a
way that there is no consensus among experienced designers about which of them would
be the most suitable algorithm regardless the application.

For simplicity, this thesis adopts:

A = 0.5(Ã + ÃT), (44)

where Ã is a possibly asymmetrical covariance matrix and A is its corrected form.

9.2 Matrix Positiveness

Covariance matrices should be, by definition, positive semi-definite. That is, none of its
eigenvalues should be strictly negative. Again, due to floating point precision, covariance
matrices computations may result in non-positive semi-definite matrices. Tests were con-
ducted and some of the eigenvalues were indeed slightly negative in some steps, typically
reaching values up to −10−10. It was chosen, then, to neglect this issue in the present
work.

9.3 Quaternion Normalization

In this work, quaternions are used to represent rotations and therefore must have their
norm equal to one. Details about operations involving quaternions are presented in [16]
and the most usual computations are presented in [13].

The works of [24, 7, 8] present different approaches, leading to three slightly different
numerical procedures with similar results.

Within this subsection, q̃ will be used to denote the quaternion that possibly is not
normalized, while q will stand for its corrected version, i.e. normalized.

We recall that in the quaternion context, 1 ,
(

1 0 0 0
)T

is defined as being the
identity quaternion.

The prior presents that the normalized quaternion is the computed one divided by its
norm:

q =
q̃

||q̃||
(45)

An alternative procedure takes advantage of the property that the multiplication of a
rotation quaternion by its conjugate should result in an identity quaternion (q · q∗ = 1)

44 9. NUMERICAL ISSUES

to define an error quaternion ∆q as being the difference to the identity to proceed the
normalization. The equations from [7] are re-written below:

∆q = 1− q̃ · q̃∗ (46a)

q =
q̃√

q̃ · q̃∗
(46b)

q = (q̃ · q̃∗)−0.5 · q̃ (46c)

q ≈ (q̃ + 0.5∆q) · q̃ (46d)

Finally, [8] states the following procedure:

q̃ = q + δq (47a)

q · q∗ = 1 (47b)

q̃ · q̃∗ = q · q∗ + q · δq∗ + δq · q∗ + δq · δq∗ ≈ q · q∗ + q · δq∗ + δq · q∗ (47c)

δq = εq · q (47d)

q̃ · q̃∗ = q · q∗ + εq · q · q∗ = (1 + 2εq) · q · q∗ = 1 + 2εq (47e)

εq = 0.5(q̃ · q̃∗ − 1) (47f)

q = (1− εq) · q̃ (47g)

Tests were conducted in order to compare the normalized quaternion computed using
each of these three methods and only difference at execution time level was observed,
being the prior method the fastest and, therefore, the one adopted here.

9.4 Quaternion Ambiguity

As evoked in [16], a single orientation can be represented with quaternions using both q
and −q. This fact only becomes an issue when in the presence of orientation aiding in a
Kalman filter environment, since it leads to a huge residual in the orientation components,
what degrades the filter’s performance.

Imagine the two following scenarios in which the prediction matches the observation,
except from the ambiguity in the second one, i.e. in equation 48a the observed orienta-
tion is numerically the same as the predicted one, while in 48b although the observed
orientation is the same as the predicted one, it was represented by its symmetric, causing
the residual y to be considerably bigger than what it should be, leading to an undesired
correction to the a posteriori state estimate.

y = z− h(x) =


0.6
0

0.8
0

−


0.6
0

0.8
0

 =


0
0
0
0

 (48a)

y = z− h(x) =


−0.6

0
−0.8

0

−


0.6
0

0.8
0

 =


1.2
0

1.6
0

 (48b)

9. NUMERICAL ISSUES 45

Ensuring smoothness11 in the observed orientation representation over time is enough
to keep the residuals also smooth. Recalling a quaternion is, up to an extent, a generaliza-
tion of a complex number, one might try to ensure smoothness by simply keeping positive
the quaternion’s real component. However, given that the predictions are smooth, the
estimated real component can assume both positive and negative values. For this reason,
the following algorithm is adopted:

straight_difference← qi−1 − qi

straight_sum← Σstraight_difference
symmetric_difference← −qi−1 − qi

symmetric_sum← Σsymmetric_difference
if straight_sum > symmetric_sum then

qi ← −qi

else
qi ← qi

end
Algorithm 1: Ensures smoothness of observed orientation representation over time

11In this context, smooth quaternion data is a stream that does not swap with between the two possible
attitude representations. In other words, if the stream was continuous (rather than discrete), it would
mean that each of its components would be differentiable.

46 10. APPLICATION

10 Application

This chapter gathers the pieces of information presented over the thesis that allow the
tests and results on chapter 11. The discrete-time equivalences were computed using the
method explained in chapter 4.2.1. New symbols are used and their meaning can be
found on appendix A. Furthermore, part of the subscripts were dropped for improving
readability.

10.1 The Prediction Model

As presented on chapter 8, the position estimation is made by merging the output of
a mathematical model with observations made by aiding sources. Chapter 6 presented
the mechanization equations, while chapter 5 modeled the inertial sensors that measure
both 3D linear acceleration and 3D angular rates necessary to solve for position. Chapter
10.1.1 presents the simplified kinematic model in which the sensors errors are not taken
into account and chapter 10.1.2 addresses the sensors.

10.1.1 The Simplified Kinematic Model

The states are defined on equation 49 and unfolded on equation 50. It comprises the 3D
position, 3D velocity and orientation, expressed by a unitary quaternion as explained on
chapter 3.

x̂ =
(
r̂n v̂n ψ̂n

b

)
(49)

x̂ =
(
xn yn zn ẋn ẏn żn q0

n
b q1

n
b q2

n
b q3

n
b

)T
(50)

In this context, u is not the usual control input that allows the process to be driven to
a desired state, but rather a control input that (at least in theory) allows the estimated
states to be driven to the desired values. It follows from the discussion dedicated to
control engineers on chapter 8.2. After all, it is just an input to the system and it
makes no difference calling it as control input or simply input. It consists of the IMU
measurements and is presented on equation 51.

ũ =
(
f̃ b ω̃b

ib

)T
=
(
f̃xb f̃yb f̃zb ω̃x

b
ib ω̃y

b
ib ω̃z

b
ib

)T
(51)

The continuous-time equations are rewritten (equation 52) from equation 33 for con-
venience.  ṙn

v̇n

ψ̇n
b

 = f(t) =


vn

gn +Cn
b f b

0.5
(
Q
(
q(ωb

ib)
)

+Q
(
q(ωn

ie)
))
ψn

b

 (52)

F(t) =


0 1 0 0

0 0 1
∂(Cn

b fb)
∂ψn

b

0 0 0 0

0 0 0
∂

(
0.5

(
Q(q(ωb

ib))+Q(q(ωn
ie))

)
ψn

b

)
∂ψn

b

 (53)

10. APPLICATION 47

10.1.2 The Full Kinematic Model

The full kinematic model is the assembly of the so-called simplified with the model that
describes the sensors’ bias and scale factors only, as equation 54 expresses.

¯̂x
(
x̂ λa ba λω bω

)T
(54)

The augmented prediction function faug is defined for convenience as stated on equa-
tion 55.

faug(¯̂x,u) = f(x̂,u) + f̄(x̂,u) (55)

f̄(x̂,u) =



0
Cn

b Λa +Cn
b bab

0
0.5Q

(
q(Λω

)
)ψ + 0.5Q

(
q(bω)

)
ψ

λa
ba
λω
bω


(56)

10.2 Camera Aiding

10.2.1 Camera to IMU Calibration

As described on chapter 2 and depicted on figures 6 and 23, the camera and IMU are
mounted together on an aluminum profile and the origins of their frames are not coin-
cident. The translational offset is determined using a Vernier caliper, but, due to the
difficult to determine the exact origin of the IMU and the impossibility of reaching the
origin of the camera, the expected accuracy is at the order of millimeters.

For determining the attitude offset between both frames, Fugro has created a Leven-
berg–Marquardt algorithm implementation for it. The camera orientation over time is
extracted from QuickVision, allowing rotation matrices Ck

k−1 between every pair of two
consecutive epochs to be computed. For an ideal gyroscope, the same rotation matrices
can by computed by integration. The algorithm inputs camera and IMU data and esti-
mates not only the attitude offset, but also the gyroscope bias and scale factor, as well
as the time drift between the camera and the IMU clocks.

10.2.2 Observation Equations

Even after calibration, a small error in the orientation offset between camera and IMU
might remain. As explained on chapter 8, the error of the aiding can be noisy, as long as
it is zero-mean. As this condition cannot be satisfied, the camera aid is restricted to the
position vector.

z =
(
x̃n ỹn z̃n

)T
(57)

y = z− h(x̂) =
(
r̃n

)
−
(
r̂n

)
(58)

48 10. APPLICATION

H =
∂h

∂x̂
=
[
I3 03×3 03×4

]
(59)

10.3 Zero Velocity Update (ZUPT)

Zero Velocity Update is a kind of virtual aiding that one can implement to enforce an
existing constraint. Cars in general are supposed not to move laterally or up and down.
[1] takes advantage of this behavior by creating a virtual sensor that outputs measures
of zero velocity for both lateral and vertical components.

Other works focus entirely on ZUPT: its detection, benefits, applications and limita-
tions. Both [28] and [5] develop algorithms for detecting zero-velocity periods, so that
ZUPT can be used. The topic is also addressed on [6] and [11] for explaining alignment
and early usage of ZUPT. Algorithms to detect stationary periods that allow ZUPT to
be performed may vary according to the application, available sensors and performance
requirements.

For the system studied in the present work, in which the IMU is held by a human that
is walking, it is reasonable to state that the vertical component of the mobile phone’s
velocity is - in average - zero and, from experiments, can hardly reach 7km/h (about
2m/s). Vertical stationary periods are assumed at all times and vertical ZUPT is, then,
always performed.

zzupt =
(

0
)

(60)

yzupt = zzupt − hzupt(x̂) =
(

0
)
−
(
v̂z

n

)
(61)

Hzupt =
∂hzupt
∂x̂

=
[
01×5 I1 01×4

]
(62)

10.4 Integration Architecture

For the Kalman Filter to work properly, it is crucial to use the adequate data in every
single step. Figure 12 depicts a simplified scenario of data arrival time.

time

s1

c1

s2 s3

c3

s4 s5

c4

s6 s7 s12 s13 s14 s15 s16s8

c5

s9 s10

c6

s11

c0

k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 k11 k12 k13 k14 k15 k16k17k18 k19k20k21k0

s0

camera
IMU

Camera sample

Legend

IMU sample

IMU sample with ZUPT

Figure 12: Filter steps in time according to sensor data arrival.

As explained in chapter 5.2, sj is IMU sample that is not the ωb
ib,j (i.e. the angular

velocity at time j), but ψbj
bj−1

/(tj − tj−1) (i.e. the rotation from the instant j − 1 to j
divided by the period between IMU samples). The straightforward consequence is that

10. APPLICATION 49

sj is only valid between sj−1 and sj. For that reason, a camera sample is not used until
another IMU sample arrives.

Lets use figure 12 to exemplify, starting from s1. By c1 arrival, the algorithm raises a
flag for camera aiding availability, stores its values and time-stamp. With the arrival of
s2, the algorithm obtains values valid from s1 to s2, what comprises c1. Updating to s2

is then made in three steps:

1 - Prediction of the states at c1 using the ones from s1 and the IMU readings at s2

2 - Update the states at c1 using the camera measurements (which are also at c1)

3 - Prediction of the states at s2 using the ones from c1 and the IMU readings at s2

After frequencycamera/frequencyIMU seconds without new camera samples injected
into the algorithm (i.e. after a camera sample not arriving when it was supposed to),
the algorithm enters in ZUPT mode, represented by bullet points in figure 12. In other
words, a camera observation sample was supposed to arrive between s7 and s8, given
that the IMU frequency is double the camera one for this example. ZUPT procedure is
described below:

1 - Prediction of the states at sj using the ones from sj−1 and the IMU readings at sj

2 - Update the states at sj using the zero velocity assumption at sj

10.5 Data Rejection

Due to lightening conditions, camera eventually may output one aberrant observation, off
from the reality by more than three times the standard deviation12. Henceforth it will be
called outlier and it corresponds to spikes when plotting observations over time. As this
kind of disturbance is not a zero-mean Gaussian noise as the Kalman filter assumes, it
drastically degrades the filter’s performance. Of course there are no means to guarantee
perfect data acquisition so it would allow to filter such anomalies out. Nevertheless, it
is possible to develop an algorithm that will decide whether a given observation will be
considered an outlier or not based on its neighbors.

The procedure of approving or rejecting an observation is described in the algorithm
2, in which th is a fixed threshold, the subscript k is a fixed number defining how many
previous observations will be taken into account and s is the sum of the position’s com-
ponents observed by the camera.

si = rx,i + ry,i + rz,i
if si < median(si, si−1, . . . , si−k) + th and si > median(si, si−1, . . . , si−k)− th
then

observation is used for the Kalman filter
else

observation is rejected
end

Algorithm 2: Filter that determines which measurements will be considered as out-
liers, based on k previous measurements and a constant threshold th.

12Recall that for a Gaussian distribution, three times the standard deviation around the mean covers
99% of points belonging to the distribution

50 10. APPLICATION

Figure 13 illustrates the result of applying data rejection algorithm to camera obser-
vations for an indoor static dataset.

(a) x-component of camera measured position before (blue dashed line) and after (orange solid
line) applying the median filter.

(b) x-component of camera measured position after applying the median filter.

Figure 13: Result of data rejection algorithm application in an indoor static dataset.

A static dataset was chosen to have its results presented so that every major spike
can be easily spotted by the reader as an outlier. Figure 13a displays the x-component
of the camera position before the algorithm was applied, while figure 13b presents the
remaining samples after the filter. It is important to remark that even for this indoor
static dataset under roughly the same light conditions over the whole dataset, the spikes
overcome 1.7m. In addition, from figure 13b, a subcentimetric precision is observed.

10.6 Material

For the first and the second datasets (chapters 11.2 and 11.3 respectively), the equipment
consisted of:

• One camera AlliedVision Manta G504-B [29]

10. APPLICATION 51

• One MEMS IMU Silicon Sensing DMU-11 [30] [31]

• One computer

• 20 size A2 patterns

The material involved on the third dataset is detailed in the beginning of its section.
Contrarily to the DMU-11, this particular camera is able to time-stamp its output

with respect to the time it was turned on. The IMU time-stamping needs, then, to be
done by the computer. However, a computer is not designed to be good at time-stamping.
Instead, it is designed to make the user have the impression that multiple functions are
performed simultaneously. To do so, it spends a portion of time to a task and then
swaps to another one. As consequence, IMU samples are times-stamped with a variable
delay. To get around this issue, the following procedure is adopted using a sample counter
output by the IMU:

1. Time-stamp the first logged sample

2. Time-stamp the last logged sample

3. Determine the frequency of output by dividing the value of the counter of the last
logged sample by the difference between the time-stamps of the first and the last
logged samples

4. Re-time-stamp the intermediate samples based on the counter value and the com-
puted frequency

In the worst scenario, by the moment the first sample arrives to the computer, it is
not busy and time-stamp it correctly, and by the moment the last sample arrives, the
computer is busy and time-stamps the sample after 6ms. However, the camera to IMU
calibration explained on chapter 10.2.1 also corrects for this time drift.

The software was developed using the distribution Anaconda of Python 3.6.4. Numpy,
Scipy and Pyquaternion libraries were used and all computations were performed using
double-precision floating-point format.

52 11. TESTS AND RESULTS

11 Tests and Results

11.1 Calibration Using Robot ABB IRB-120

As explained in chapter 5, sensors output are off the true value by cross-coupling, scale
factor and bias. The main objective of this calibration is to determine such parameters.
For it, we take advantage of the fact that, during static periods, only the specific force
is sensed by the accelerometer. Hence, the magnitude of the measurements output by
the 3D accelerometer should be constant regardless the pose, what can be achieved after
estimating the parameters to their corrected values.

Imagine the following simple scenario in which only the bias plays. One places a 1D
accelerometer vertically and outputs 9.85ms−2. Then, the same accelerometer is turned
upside down and outputs −9.75ms−2. It would be possible to infer a bias of 0.05ms−2.
However, a noisy measurement would impair such conclusion, given that it would be no
longer possible, for a single measurement, to distinguish between noise and bias. For
a zero-mean noise, averaging the output removes noise and allows determining the bias
under the additional circumstance of an unbiased dataset13. For instance, if data from
the example were collected 10 minutes with the sensor upside up and only 1 minute with
it upside down, the resulting average magnitude would be 9.84ms−2, which would be
0.04ms−2 off from an unbiased dataset collected the same amount of time both upside up
and upside down.

For a 3D accelerometer also presenting scale factor and cross-coupling (apart from
noise and bias), a similar stochastic approach and an unbiased dataset are also needed.
For a 3D case, the unbiased dataset no longer consists of an static upside-down-upside-up
setup, but of equally distributed poses around a sphere.

Figure 14: Some of the static poses performed using robot IRB-120.

13Do not confuse biased dataset with biased sensor. A biased sensor outputs biased data, while a
biased dataset is a dataset that leads to biased results. In other words, an unbiased dataset may contain
biased data as long as unbiased results can be achieved.

11. TESTS AND RESULTS 53

The robot IRB-120, manufactured by ABB, was used for collect a few datasets with
fixed amount of time static intervals in several different poses, equally distributed around
the sphere created by turning its axis number 5 and 6, as defined on the robot’s man-
ual [32]. The robot was programmed to this task, increasing repeatability. Figure 14
illustrates some of the poses reached by the robot.

Datasets were collected under different temperature conditions, with different turn-
on bias and with two different units of the IMU model DMU-11. For a given unit, the
results obtained were the same regardless other varying conditions. Figure 15 shows
the accelerations’ magnitudes obtained from one of the datasets. Note that the spikes
correspond to the moments at which the pose was not static, i.e. the periods during
which the robot was moving from a pose to another.

(a) Magnitude of specific force output by the accelerometers before bias, scale factor and cross-
coupling estimation.

(b) Previous plot zoomed in vertically, from where it is possible to verify orientation dependency
in the output magnitude, characteristic typically presented in sensors with different bias and scale
factors among axis.

Figure 15: Magnitude of the specific force output by the accelerometers in a calibration
dataset collected using the robot.

54 11. TESTS AND RESULTS

11.2 The First Dataset - Static Indoor

11.2.1 Vertical and Heading Determination

Chapter 6 presents the importance of compensating gravity in n-frame from the specific
force sensed by the accelerometers in b-frame. A challenge related to it is determining
where vertical points to. A plumb-bob method is presented on [8] and is used for this
particular dataset. A elastic string is hooked to the ceiling and a block of metal is attached
to the other end and immersed in a bowl containing water, without touching its surface.
The water in the bowl damps the string, allowing a static vertical scenario to be achieved
relatively fast.

From a calibration dataset, the user indicates two locations of the string for a dozen
of images taken from different poses. After it, an optimizer determines what is vertical
and this axis is adopted for the pattern frame p, as described on chapter 2. The heading
is indirectly determined from another previously calibrated pattern within 2° of accuracy.

11.2.2 Results

Knowing that the DMU-11 does not perform coning and sculling calculations, a static
setup was created for this first dataset, by fixing the camera-IMU assembly to an un-
touched table. The goal is to get coning and sculling related errors out of the equations by
ensuring the angular velocity is constant (zero in this case) between two outputs. Then,
15 minutes of data was acquired, the calibration procedures mentioned before were ap-
plied, camera data was despiked and the filter received as input all the camera data,
except from the data comprised between 550s and 850s. Basically, a virtual gap (i.e.
a fake aiding outage) was created in the camera data, so that it would be possible to
compare the filter’s performance with camera data.

Figure 16a shows roll and pitch angles computed by both camera and EKF, while
figure 16b depicts the difference between them.

The errors achieved for roll and pitch are under 0.5° and they seem to be a Brown-
ian motion arising from integrating random noised gyroscopes’ outputs, since bias would
produce clearer trends, like a ramp. The orientation was, then, injected into the mech-
anization equations 14 to allow velocity and position estimations. During this process,
the average magnitude of the corrected accelerometers were scaled to the magnitude of
the gravity computed from the theoretical model, so that a proper mechanization would
result in no acceleration. Furthermore, vertical ZUPT was applied. Figure 16b presents
the drift in position for both x and y components in meters.

From figure 16b, it is possible to make three important conclusions:

1. The tiniest error in attitude yields to massive errors in position: after 20 seconds
of outage, an error of 1.2m in the x−component was reached.

2. An attitude error that oscillates around zero can lead to a correct position estima-
tion: during this particular aiding outage period, the y−component error is zero
around 680s and 780s.

3. MEMS IMU random noises make unfeasible their use for dead reckoning, even
during outage periods of about 10s.

14recall diagram on figure 9

11. TESTS AND RESULTS 55

(a) Roll (upper lines) and pitch (lower lines) computed by both camera (continuous lines) and
EKF (discontinuous lines) in degrees over time.

(b) Error in estimated roll (blue dashed line) and pitch (orange solid line) in degrees over time.

(c) Error in estimated position x−component (blue dashed line) and y−component (orange solid
line) in meters over time.

Figure 16: Results obtained for orientation and position estimation during a 300-seconds
period without feeding aiding from t = 550s to t = 850s.

56 11. TESTS AND RESULTS

These conclusions are consistent with results obtained by [33]. Even so, other tests
were conducted in order to:

1. Collect and analyze data from a training plant.

2. Investigate the possibility of using as IMU to bridge between two camera samples.

11.3 The Second Dataset - RDM Training Plant

11.3.1 Overview

RDM training plant is a site mainly dedicated to be used to prepare employees for going
to the field in safety. It contains elements from a real chemical plant, as pipes with valves
and flanges without any chemical products running through it and, thus, was chosen for
collecting datasets. Figure 17 gives an overview of the plant, while figure 18 depicts the
area at where the results will be presented.

Figure 17: Refinery training plant overview.

The datasets were collected using a camera Allied Vision G504-B [29] mounted on
an IMU Silicon Sensing DMU-11 [30], both connected to a computer for logging, as well
as to a portable energy supply. The assembly resembles the one previously depicted on
picture 14 and was hand-held, as it is going to be once it is operational in the refinery.
In addition, the results here presented are from a dataset in which a human acted as
if he/she was looking for a specific flange. In other words, the human walked with a
typical human-like velocity and moved the camera as the refinery’s employee is expected
to move.

11.3.2 Vertical and Heading Determination

As it can be seen from both figures 17 and 18, the plant consists of an outdoor area and,
thus, the plumb-bob method described on chapter 11.2.1 could not be used. Instead, the

11. TESTS AND RESULTS 57

Figure 18: Refinery training plant flanges closeup.

vertical and heading provided by the SITE-SPOT model were used. From chapter 11.2.2
it is known that the least inaccuracy in tilt orientation is not enough for fast drifts in
position estimates. Nevertheless, the results let us conclude that level in SITE-SPOT is
accurate within 0.05°.

11.3.3 Results

Figure 19 presents the result the employee would see in the smartphone’s screen for a
frame15 in which a pattern was detected and served as aiding to position estimation. This
figure is obtained after reprojecting the asset’s labels into the camera image using the
pose estimated by the filter. From the image, it is possible to infer that the camera’s
auto-exposure software did not manage to reduce the exposure time enough to avoid flare.
It is believed that the camera’s iris was too open for an outdoor environment and that
it might have degraded the performance of pattern detection of QuickVision algorithm,
which is a reasonable explanation for the pattern not have been detected on image 21e.

Figure 20 presents the error in x and y components of the estimated positions over a
5-seconds period (for 156.7s < t < 162.5s) during which no patterns were either in view
or detected. Figure 19 is also the last camera image from which a pattern was detected
before the sequence of figures presented on 21, that displays the results the user would
see at the smartphone’s screen over this aiding outage period cropped around the flange
013 for the convenience of the reader.

From the images, it can be seen that after 4s of outage, it is no longer possible to
determine with certainty flange’s 013 location.

15Please note that in this context, frame is equivalent to photo, rather than to coordinate frame.

58 11. TESTS AND RESULTS

Figure 19: Last pose containing camera aiding (t = 156.6s).

Figure 20: Error in position x−component (blue dashed line) and y−component (orange
solid line) estimation in meters over time for the second dataset.

11. TESTS AND RESULTS 59

(a) After 1s without aiding (t = 157.6s). (b) After 2s without aiding (t = 158.6s).

(c) After 3s without aiding (t = 159.6s). (d) After 4s without aiding (t = 160.6s).

(e) After 5s without aiding (t = 161.6s). (f) Aiding reestablished (t = 162.6s).

Figure 21: Sequence of estimated poses during a 5-seconds period without camera aiding
followed by aiding reestablishment.

60 11. TESTS AND RESULTS

11.4 The Third Dataset - Outdoor

11.4.1 Overview and Setup

This dataset was taken to investigate the repeatability of the previous results under an
ideal controlled environment. In other words, additional equipment and sensors were used
in order to improve accuracy in time-stamping and vertical and heading determination.
The equipment used for this dataset consists of:

• Camera Allied Vision G504-B, as before
• MEMS IMU Silicon Sensing DMU-11, as before
• FOG IMU iXblue Rovins, allowing to determine heading and level in another way

compared to previous datasets
• GNSS Antenna Fugro AD-492, allowing to receive Pulse-per-second (PPS) signal

from satellites for better time-stamping accuracy
• GNSS-Receiver Platform Fugro StarPack, allowing to interpret PPS signal from the

antenna
• Synchronization Platform Fugro StarPort, allowing to synchronously time-stamp

data from sensors
• Computer equipped with StarFix 2016, allowing to log data from StarPort
• Trolley with soft wheels, allowing to move the equipment
Figure 22 shows the assembly of the equipment, while figure 23 zooms in around the

camera area. Note that vertical is determined by the FOG IMU and that the antenna is
on top to improve GNSS signal. Also, camera, Rovins and DMU-11 are mounted to the
same rigid body. Mounting this equipment on a trolley may not produce the same kind
of movement a human would perform in the real scenario, but it was the only way found
to include Rovins, GNSS-Antenna, StarPack and StarPort in the setup.

Pursuing perfect data, 4 crates were disposed in a square shape, with a container in
its center. A size A2 pattern was placed against each of the vertical faces. This setup
allows strong links between patterns, since patterns at opposite locations can be both
seen in a single camera image. Figure 24 illustrates the arrangement. In addition, it is
worth remarking that the FOG was turned on one hour before data was collected in order
to initialize itself.

In one hand, from the datasets presented before, it was observed that drifts bigger
than 0.25m in either x or y components of the estimated positions can result in misleading
augmented reality reprojections on the user’s smartphone. In the other hand, pattern
detection is an expensive computational task and may not be executed at a high rate.
This dataset investigate the filter’s performance under a low aiding frequency of 0.3Hz,
compared to 15Hz from the previous ones. Note that camera images were logged at
1.8Hz and the filter was fed with only one every six frames. In this way, the ground
truth is known every 0.555s, instead of every 3.33s.

11.4.2 Results

The collected dataset consists of an initial 500 seconds static period followed by 480
seconds of two and a quarter circular turns around the crates, as depicted on figure 25.

The results are presented in figure 26. Figure 26a displays the error between the
ground truth (i.e. the camera) and the filter estimates, while figure 26b depicts the
elapsed time between a camera sample and the previous one fed to the filter. From the
image, it is clear that the camera time step is variable, what is expected since it depends

11. TESTS AND RESULTS 61

Figure 22: Equipment used for the third dataset. On top, the antenna. At bottom-left,
the Rovins. Between the computer and the Rovins, the Camera mounted to the DMU-11.
Under the computer, the StarPort and StarPack.

Figure 23: Equipment used for the third dataset, zoomed in around the camera area.

on the exposure time, that varies according to light conditions.
Analyzing figure 26 as a whole, it is possible to infer that, even though the estimated

y-component was trying to fly away, the accuracy requirement for position was respected
from t = 680s to t = 731.6s, thanks to camera aiding. However, the camera sample
expected to aid around t = 735s did not exist and the errors of the estimates exceeded
0.25m. Several different factors could explain the absence of a sample:

• The User Datagram Protocol (UDP) used for the communication between the sen-
sors and the computer does not ensure data transmission.

62 11. TESTS AND RESULTS

Figure 24: Arrangement of patterns for third dataset, allowing a circular path of about
8 meters of diameter.

Figure 25: Trajectory traversed during third dataset.

• Overexposure might have occurred, as happened with the previous dataset.

• The sample might have been considered an outlier by the data rejection algorithm.

• The QuickVision algorithm might have failed to identify patterns from the image.

Still from figure 26, it is possible to notice that the error after the outage period is
bigger than the error before the outage. From chapter 8 it is recalled that the filter
needs time to converge, especially in the case the covariance matrices Q and R are not
optimally tuned or the system is non-linear.

11. TESTS AND RESULTS 63

(a) Error in estimated position x-component (blue dashed line) and y-component (orange solid
line) in meters over time.

(b) Time step between two consecutive camera observations.
Figure 26: Results obtained for the dataset using a FOG to determine vertical and
heading.

64 12. CONCLUSIONS AND RECOMMENDATIONS

12 Conclusions and Recommendations

12.1 Conclusions

The main objective of this dissertation is to investigate the performance of position
estimation by merging data from a camera and a MEMS IMU with an Extended Kalman
Filter algorithm. Visual aiding consists of the IMU’s position in pattern frame p and is
provided by QuickVision software for every image a previously loaded pattern is detected.

The background knowledge required to accomplish this task is developed throughout
the early chapters, as well as the simplifying assumptions adopted on this work.

Chapter 10 summarizes the theory previously presented and details other aspects of
the implementation, as ZUPT aiding, the integration architecture and the material used
for the datasets. Then, three different tests are presented in chapter 11, from which the
following conclusions are inferred:

• Biases and scale factors cannot be distinguished for static data Therefore, the esti-
mation vector is only fully observable for dynamic datasets.

• From a static dataset, in which the simplifying assumptions meet the non-simplified
mathematical model, roll and pitch were observed to random walk around the
ground truth due to random noise integration, reaching errors up to 0.5° for roll
and pitch after a 300-seconds period of visual aiding outage.

• Such errors in the orientation estimation caused the position estimation to drift
1.2m within the first 20s of outage for the same static data, which is not sufficient
for the augmented reality application.

• Implementing vertical ZUPT allowed to stabilize the position vertical component,
regardless discrepancies between the gravity model and the specific force output by
the IMU. Minor improvements were also observed in the remaining components.

• From the dataset collected at a training plant where the position of some assets were
known, it was possible to compute the augmented reality overlay by reprojecting
assets into the camera images. Drifts around 30cm for one of the components can
lead to an asset misdetection.

• Position estimation stays within the requirement boundaries even if only one visual
aiding sample is available every 3 seconds. However, after a 6-seconds gap the
position estimation might be jittered for about half a minute and not reliable within
the desired accuracy.

12.2 Recommendations for Further Research

• For a real-time application running in a mobile phone, time-stamping might be an
issue to be investigated. Initially, this work supposed there was no relative time drift
between the camera and DMU-11, which proved to be a naive assumption after the
calibration presented in chapter 11.1 was performed. In addition, an investigation
on time-stamping accomplished by the mobile operating system adopted may be
necessary, given that Windows clock can reach up to 3ms of error compared to
GNSS-time, and that an IMU typically outputs every 5ms.

12. CONCLUSIONS AND RECOMMENDATIONS 65

• Coning and sculling computations need to be carefully investigated. The MEMS
IMU used in this work is of a higher grade than IMUs found on mobile phones and
even so it does not compute coning and sculling internally. From a static dataset,
it seems that coning is not the single source of error during orientation estimation,
though.

• This thesis made a couple of simplifications reportedly said to degrade the filter’s
performance, under the assumption that the velocities are always low (especially
compared to cars and airplanes), like that Coriolis and transport rate were negligi-
ble. Also, during development phase, the ODEs’ first and second orders numerical
approximations were briefly compared and the difference in results was insignificant,
appearing to be hidden by other major sources of error.

• During the development of the present work, determination of the local gravity
vector appeared to be one of the major sources of error in position estimation. [34]
affirms to be able to observe it in the presence of a known calibration target.

• Performance limitation under non-linearities of Extended Kalman Filter (EKF) over
Unscent Kalman Filter (UKF) is not a consensus among authors. While [6] and
[10] cover EKF only, [1] covers both of them and states the latter achieves better
results. Yet another approach is developed by integrating Extended Kalman Filter
with neural networks [35].

• Allan Variance and Power Spectral Density provide statistics at sensor level only
(rather than at process level). In addition, these techniques are not suitable for low
grade IMUs [1]. Hence, these methods may lead to non-optimal covariance matrices
and fine tuning might be performed. An automated algorithm is proposed by [36].

• Given all MEMS IMU limitations explained throughout the thesis, the orientation
estimation achieved from them proved not to be enough for position estimation. An
alternative to be studied is creating a camera-based aiding relying on image feature
detection and tracking.

• Even though QuickVision software is able to determine the full pose of the camera
(position and attitude), the smallest inaccuracy in the camera-IMU mounting angles
calibration can create a systematic error in the orientation from the visual aiding.
Therefore, only the position serves as aiding, rather then the full pose. Augmenting
the estimation vector with the mounting angles between the camera and the IMU
could be implemented to investigate the impact on position estimation.

Bibliography

[1] Eun-Hwan Shin. Estimation techniques for low-cost inertial navigation. UCGE
report, 20219, 2005.

[2] Eun-Hwan Shin. Accuarcy improvement of low cost INS/GPS for land applications.
University of Calgary, 2001.

[3] Niklas Hjortsmarker. Experimental system for validating GPS/INS integration algo-
rithms. 2005.

[4] Warren Flenniken. Modeling inertial measurement units and anlyzing the effect of
their errors in navigation applications. PhD thesis, 2005.

[5] Khairi Abdulrahim, Terry Moore, Christopher Hide, and Chris Hill. Understand-
ing the performance of zero velocity updates in mems-based pedestrian navigation.
International Journal of Advancements in Technology, 5(2):53–60, 2014.

[6] P.D. Groves. Principles of GNSS, Inertial, and Multisensor Integrated Navigation
Systems. GNSS technology and applications series. Artech House, 2008.

[7] D. Titterton, J.L. Weston, J. Weston, Institution of Electrical Engineers, Ameri-
can Institute of Aeronautics, and Astronautics. Strapdown Inertial Navigation Tech-
nology. Electromagnetics and Radar Series. Institution of Engineering and Technol-
ogy, 2004.

[8] P.G. Savage. Strapdown Analytics. Number v. 1 in Strapdown analytics. Strapdown
Associates, 2000.

[9] J.A. Farrell. The Global Positioning System & Inertial Navigation. McGraw-Hill
Education, 1999.

[10] Jay Farrell. Aided navigation: GPS with high rate sensors. McGraw-Hill New York,
2008.

[11] C. Jekeli. Inertial navigation systems with geodetic applications. Walter de Gruyter,
2000.

[12] Manon Kok, Jeroen D Hol, and Thomas B Schön. Using inertial sensors for position
and orientation estimation. arXiv preprint arXiv:1704.06053, 2017.

[13] James Diebel. Representing attitude: Euler angles, unit quaternions, and rotation
vectors. Matrix, 58(15-16), 2006.

[14] G. Strang. Linear Algebra and Its Applications. Harcourt, Brace, Jovanovich, Pub-
lishers, 1988.

66

BIBLIOGRAPHY 67

[15] J.W. Brown and R.V. Churchill. Complex variables and applications. Number v. 1
in Churchill-Brown series. McGraw-Hill, 1996.

[16] Jack B Kuipers et al. Quaternions and rotation sequences, volume 66. Princeton
university press Princeton, 1999.

[17] Joan Sola. Quaternion kinematics for the error-state kalman filter. 2017.

[18] K. Ogata. Modern Control Engineering. Instrumentation and controls series. Prentice
Hall, 2010.

[19] Sebastian Thrun. Probabilistic robotics. Communications of the ACM, 45(3), 2002.

[20] Afonso Celso del Nero Gomes. Sinais e sistemas - notas de aula.

[21] Chris Paige. Properties of numerical algorithms related to computing controllability.
IEEE Transactions on Automatic Control, 26(1):130–138, 1981.

[22] Alex G Quinchia, Gianluca Falco, Emanuela Falletti, Fabio Dovis, and Carles Ferrer.
A comparison between different error modeling of mems applied to gps/ins integrated
systems. Sensors, 13(8):9549–9588, 2013.

[23] Haiying Hou. Modeling inertial sensors errors using Allan variance. University of
Calgary, Department of Geomatics Engineering, 2004.

[24] B.L. Stevens, F.L. Lewis, and E.N. Johnson. Aircraft Control and Simulation: Dy-
namics, Controls Design, and Autonomous Systems. Wiley, 2015.

[25] RR Labbe. Kalman and bayesian filters in python, 2014.

[26] M.S. Grewal and A.P. Andrews. Kalman filtering: theory and practice using MAT-
LAB. [Wiley InterScience Online Books, Electronic and Electrical Engineering Col-
lection]. Wiley, 2001.

[27] Joan Sola. Simulataneous localization and mapping with the extended kalman filter.
Avery quick guide with MATLAB code, 2013.

[28] Dorota A Grejner-Brzezinska, Yudan Yi, and Charles K Toth. Bridging gps gaps in
urban canyons: The benefits of zupts. Navigation, 48(4):216–226, 2001.

[29] Manta G-504B Technical Datasheet.

[30] DMU11 Technical Datasheet.

[31] DMU11 Evaluation Kit User Manual.

[32] Product Manual IRB 120.

[33] Oliver J Woodman. An introduction to inertial navigation. Technical report, Uni-
versity of Cambridge, Computer Laboratory, 2007.

[34] J Kelly. On the observability and self-calibration of visual-inertial navigation sys-
tems. University of Southern California, Los Angeles, USA, Tech. Rep. CRES-08-
005, 2008.

68 BIBLIOGRAPHY

[35] Christopher L Goodall. Improving usability of low-cost ins/gps navigation systems
using intelligent techniques. Thesis, 2009.

[36] Wojciech Straszewski, Magdalena Drozdz, and Hendrik Wouters. Automated tuning
of kalman filter: Kalman filter tuning in the windows azure cloud environment. In
Inertial Sensors and Systems (INERTIAL), 2018 IEEE International Symposium
on, pages 1–4. IEEE, 2018.

Appendices

69

Appendix A

Other Notations

~q = q =
(
a b c d

)T
=
(
−a −b −c −d

)T
(A.1)

C = C(q) =

a2 + b2 − c2 − d2 2bc− 2ad 2bd+ 2ac
2bc+ 2ad a2 − b2 + c2 − d2 2cd− 2ab
2bd− 2ac 2cd+ 2ab a2 − b2 − c2 + d2

 (A.2)

qED = qDE
∗ =

(
a b c d

)T
, where qED

∗ = qDE =
(
a −b −c −d

)T
(A.3)

Q = Q(q) =


a −b −c −d
b a d −c
c −d a b
d c −b a

 (A.4) Q̄ = Q̄(q) =


a −b −c −d
b a −d c
c d a −b
d −c b a

 (A.5)

qa · qb = Q(qa)qb = Q̄(qb)qa (A.6)

dC

dq
=
[
dC
da

dC
db

dC
dc

dC
dd

]
(A.7)

dC

da
= 2

 a −d c
d a −b
−c b a

 (A.8)
dC

db
= 2

b c d
c −b −a
d a −b

 (A.9)

dC

dc
= 2

−c b a
b c d
−a d −c

 (A.10)
dC

dd
= 2

−d −a b
a −d c
b c d

 (A.11)

70

71

d

dq

(
C~ux,y,z

)
=
dC

dq


~ux,y,z 03×1 03×1 03×1

03×1 ~ux,y,z 03×1 03×1

03×1 03×1 ~ux,y,z 03×1

03×1 03×1 03×1 ~ux,y,z

 (A.12)

d

dqa

(
Q(qa)qb

)
= Q̄(qb) (A.13)

q
(
~ux,y,z

)
,
(

0 ux uy uz

)T
(A.14)

	List of Figures
	Abstract
	Résumé
	Acknowledgment
	Notation
	Introduction
	Background and Objectives
	Dissertation Outline
	Navigation
	Position Fixing
	Dead Reckoning

	SITE-SPOT
	QuickVision

	Reference Frames
	Attitude Representation
	Introduction
	Euler Angles
	Direction Cosine Matrix
	Overview
	Derivative of a Rotation

	Axis-Angle
	Quaternions
	The Choice of Attitude Representation

	Deterministic Processes
	Continuous-Time Systems Models
	Ordinary Differential Equations
	Transfer Functions
	State Space

	Discrete-Time Systems Equivalent Models
	Calculation of bold0mu mumu farrell2008aidedk from F(t)

	Observability
	Continuous Linear Time-Invariant Case
	Discrete Linear Time-Variant Case

	Inertial Sensors
	Overview
	Coning and Sculling
	Error Characteristics
	Bias
	Scale Factor and Cross-coupling
	Random Noise
	Full Error Characteristic

	Error Model

	Strapdown System Mechanization
	Stochastic Processes
	Gaussian Distributions
	Random Noise Unfolding
	Synthesis of Notations Equivalences
	General Notation
	This Thesis' Notation

	The Kalman Filter
	An overview
	The Standard Kalman Filter algorithm
	A Simple Example
	The Extended Kalman Filter algorithm

	Numerical Issues
	Covariance Matrix Symmetry
	Matrix Positiveness
	Quaternion Normalization
	Quaternion Ambiguity

	Application
	The Prediction Model
	The Simplified Kinematic Model
	The Full Kinematic Model

	Camera Aiding
	Camera to IMU Calibration
	Observation Equations

	Zero Velocity Update (ZUPT)
	Integration Architecture
	Data Rejection
	Material

	Tests and Results
	Calibration Using Robot ABB IRB-120
	The First Dataset - Static Indoor
	Vertical and Heading Determination
	Results

	The Second Dataset - RDM Training Plant
	Overview
	Vertical and Heading Determination
	Results

	The Third Dataset - Outdoor
	Overview and Setup
	Results

	Conclusions and Recommendations
	Conclusions
	Recommendations for Further Research

	Bibliography
	Appendices
	Other Notations

