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Abstract (ENGLISH) 

 
This report presents the work conducted during my internship at LIRMM in collaboration 

with Honda Research, in preparation for a future PhD. The objective was to investigate 
reinforcement learning approaches for dexterous object manipulation with a humanoid robot 
hand. After introducing the context, motivations, and challenges of this task, the report reviews 
the state of the art in both manipulation and continual learning, and details the chosen simulation 
framework, agents, and training setup. Experimental results are discussed, along with identified 
limitations, leading to the exploration of continual learning strategies and a novel approach. The 
report concludes with current findings and perspectives for future work. 
 

Abstract (FRENCH) 

 
Ce rapport présente le travail réalisé durant mon stage au LIRMM en collaboration avec 

Honda Research, en préparation d’une future thèse de doctorat. L’objectif était d’étudier des 
approches d’apprentissage par renforcement pour la manipulation d’objets avec une main 
robotique humanoïde. Après avoir introduit le contexte, les motivations et les défis liés à cette 
tâche, le rapport passe en revue l’état de l’art en matière de manipulation et d’apprentissage 
continu, puis décrit le cadre de simulation choisi, les agents utilisés et la configuration des 
entraînements. Les résultats expérimentaux sont présentés, ainsi que les limitations identifiées, 
menant à l’exploration de stratégies d’apprentissage continu et à la proposition d’une nouvelle 
approche. Le rapport se conclut par les enseignements tirés et les perspectives pour de futurs 
travaux. 
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1 Introduction 
1.1 Internship context & Goals 

This internship was carried out at the “Laboratoire d’Informatique, de Robotique et de 
Microélectronique de Montpellier” (LIRMM) [1] in collaboration with Honda Research Japan [2], 
as part of the preparation for a future PhD project under the supervision of M. Abderrahmane 
Kheddar. LIRMM is a joint research unit of the University of Montpellier [3] and CNRS [4], 
specializing in computer science, robotics, and microelectronics, with a strong track record in 
both academic and industrial collaborations. M. Abderrahmane Kheddar is a CNRS research 
director of the Interactive Digital Humans (IDH) team [5], internationally recognized for his work 
in humanoid robotics, haptics, and human-robot interaction. 

The internship focused on developing AI-based learning systems enabling a humanoid robot to 
skillfully manipulate multiple objects within its hand.  
In particular, the internship aims to: 

• Model and simulate object manipulation using advanced simulation environments for 
realistic contact-rich scenarios. 

• Apply reinforcement learning (RL) [6] to train the robot to uses external forces and its 
own body for manipulation in diverse contexts. 

• Integrate multimodal sensory feedback (vision, force/torque sensing, proprioception) 
to improve learning robustness and adaptability. 

• Optimize learning strategies to improve sample efficiency and training time. 
• Experiment on real hardware if simulation results are promising. 

The internship was organized into three 2-months main phases, as shown in Figure 1. The first 
phase focused on configuring the simulation environment, defining tasks, and conducting a state-
of-the-art review. The second phase centered on developing reinforcement learning-based 
architectures for skill acquisition, including performance tuning and training to identify the most 
effective configurations. The final phase involved deploying the system on real hardware and 
refining the algorithms based on experimental results. In the future, this work may also connect 
with ongoing research at LIRMM on tactile sensing for humanoid manipulation, potentially 
forming the basis for the PhD continuation. 
 

 
Figure 1: Internship workflow (6 Months). 

 
1.2 Background and Motivations 

The challenge of enabling a humanoid robot hand to learn dexterous object manipulation is a 
problem of high relevance for service robotics, teleoperation, and assistive technologies, but also 
one of the most difficult due to the complexity of contact-rich interactions, high-dimensional 
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action spaces, and the need for generalization to unseen objects [7], [8], [9]. Artificial 
intelligence, particularly reinforcement learning and deep neural networks, offers promising 
avenues for enabling autonomous acquisition of such skills [10], [11]. However, adapting these 
methods to a humanoid robot capable of using self-body contacts and external forces to 
manipulate remains an open and demanding research problem. 

In the case of Honda, this research aligns with the company’s long-term vision of developing 
versatile humanoid robots for both industrial and service applications. Mastering dexterous 
manipulation could make factories more flexible, reducing the need for costly reconfiguration 
when changing production tasks, and ultimately supporting a shift toward more responsive, on-
demand manufacturing systems. The first challenge given by Honda was manipulating multiple 
screws with a single hand while bringing one screw to a desired state (specific position and 
orientation). This task, illustrated in Figure 2, requires highly dexterous manipulation, not only 
through precise finger contacts but also by leveraging external forces (human-like interactions 
with the environment) to guide or separate screws before grasping, as the fingers alone may not 
have the fine control needed to directly achieve the target state. 

 
Figure 2: Example of a human hand performing in-hand screws manipulation. 

 
1.3 Report Outline 

This report presents the work conducted during the internship, focusing on Reinforcement 
Learning (RL) approaches for dexterous object manipulation with a humanoid robot hand. In the 
first part, the report reviews the state of the art in manipulation, covering both model-based and 
learning-based approaches, and identifies the remaining challenges. It then details the chosen 
simulation environment, agent architectures, and training procedures, highlighting key results 
and observed limitations, which motivate the transition toward continual learning. The second 
part addresses continual learning strategies, starting with a review of existing approaches, 
including evolving architectures and fixed architectures strategies. It then introduces a novel 
learning architecture, presenting the theoretical basis, weight representation methods, and 
experimental outcomes. Finally, the report discusses current conclusions, remaining limitations, 
and ongoing investigations into automatic continual learning methods using hypernetworks, 
outlining perspectives for future research. 
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2 Reinforcement Learning Experiments 
2.1 State of the Art in Object Manipulation 

Dexterous object manipulation has been a long-standing challenge in robotics research, requiring 
precise control of contact forces, dynamic coordination of multiple joints, and the ability to 
generalize to novel objects and tasks [7], [8], [9]. Two broad approaches dominate the literature: 

model-based and learning-based methods [10]. 

2.1.1 Model-Based Approaches 

Model-based manipulation relies on accurate kinematic and dynamic models of the robot and the 
manipulated objects. Classical control techniques such as inverse kinematics/dynamics, model 
predictive control (MPC), and impedance/admittance control have been successfully applied to 
industrial arms and some anthropomorphic hands. Notable examples include: 

1) Universal Robots' UR Series: These articulated robotic arms utilize inverse kinematics and 
impedance control to perform precise assembly tasks in unstructured environments. [12] 

2) Baxter Robot: Baxter employs model-based control strategies, including MPC, to adapt to 
dynamic environments and perform complex manipulation tasks. [13] 

3) KUKA's LBR iiwa: This lightweight robotic arm integrates impedance control with real-time 
force sensing to interact with humans and handle delicate objects. [14] 

These methods benefit from predictable, explainable behavior and can achieve high precision 
when the model is accurate. However, they often require detailed object geometry, exact 
mass/inertia parameters, and reliable contact models, conditions that are rarely met in 
unstructured or dynamic environments. Moreover, modeling whole-body humanoid manipulation 
with multiple contacts (including self-body contacts) quickly becomes intractable due to high 
dimensionality and discontinuities in contact dynamics. 

2.1.2 Learning-Based Approaches 

Learning-based methods, especially those using reinforcement learning (RL) and deep neural 
networks, bypass the need for an explicit analytical model by directly learning policies from data 
or simulation. Model-free RL approaches (e.g., PPO [15], SAC [16], TD3 [17]) have shown 
promising results in complex in-hand manipulation tasks, as demonstrated by systems like 
OpenAI’s Dactyl [18] and NVIDIA’s Isaac Lab-based dexterous control [19]. Model-based RL 

blends learned dynamics models with planning (e.g., PETS [20], Dreamer [21]), improving sample 
efficiency at the cost of added modeling complexity. Additionally, imitation learning and 
demonstration-augmented RL have been used to bootstrap training with expert trajectories [22], 
[23], [24]. Despite their flexibility, these methods face challenges in sim-to-real transfer, training 
stability, and scaling to whole-body control involving arms, torso, and legs. 
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2.1.3 Remaining Challenges 

Current research identifies several persistent challenges [7], [10], [11]: 

• Contact modeling: Accurately representing multi-contact interactions, including 
self-body contacts, remains difficult both in simulation and reality. 

• High-dimensional control: Humanoids with dexterous hands have dozens of 
actuated degrees of freedom, making exploration and policy learning slow and 
unstable. 

• Generalization: Policies trained for specific objects or tasks often fail to transfer to 
new ones without retraining. 

• Sample efficiency: Model-free RL typically requires millions of interactions, which is 
impractical for real-world deployment. 

• Sim-to-real gap: Differences between simulated physics and real-world dynamics 
lead to degraded performance when deploying on hardware. 

Addressing these limitations motivates the experimental work presented in this report, where 
simulation-based RL training is used as a foundation for investigating continual learning strategies 
to improve adaptability and long-term skill retention. 

2.2 Selected Simulation Environment and Agents 

In RL (Reinforcement Learning), an agent learns to act in an environment by trial and error, 
receiving rewards that guide it toward desirable behaviors. Over time, the agent improves its 
policy1 such that the hand can perform increasingly complex manipulation tasks. The 
experimental setup for this work was designed to support scalable and reproducible training of 
dexterous manipulation policies for a humanoid robot hand. This section presents the simulation 
framework, environment configuration, and the reinforcement learning agents selected for the 
study. 

2.2.1 Framework and Environment Setup 

All simulations were conducted using the NVIDIA Isaac Lab framework based on Isaac Sim 
simulator [25], chosen for its ability to handle contact-rich, high-degree-of-freedom systems with 
GPU-accelerated physics. While the use of a whole-body humanoid robot has been considered 
to learn our dexterous manipulation using self-body contacts, we first limited our training 
environment to a multi-fingered hand. The model used is the  Allegro Hand V4 [26] for which a 
model is provided by one of the Isaac Lab environment example, Figure 3.a shows the Allegro 
Hand V4 and Figure 3.b shows the corresponding model in Isaac Lab. We chose this hand to be 
as close as possible to the one Honda is currently developing. Then, as shown Figure 3.c, we 
extended it with a 3-DoF wrist to enable complex in-hand manipulation using external forces such 
as gravity and inertia. Also, the hand has 3D tactile sensors on each fingertip. 

 
1 A policy in reinforcement learning is a function that determines the agent’s actions given its current 
observations of the environment. 



8 
                                             End of Course Project (PFE) at LIRMM                O. Noel 

 
Figure 3: Allegro Hand V4 visuals. 

The default environment provided by NVIDIA is designed to train a robotic hand to move a cube to 
a desired orientation and position. As an initial step, we evaluated its performance to establish a 
baseline, given that this environment has already been demonstrated to be learnable. Building 
upon it, we adapted the setup to our use case, which requires manipulation of multiple objects 
within the hand. Figure 4 illustrates our parallelized environment within Isaac Sim, implemented 
using the Isaac Lab framework. Figure 5 presents a side-by-side comparison of the 
characteristics of the original Isaac Lab environment and our extended version. The table for our 
extension highlights the final configuration that produced the most promising results. Throughout 
the internship, we performed numerous training runs to identify appropriate reward functions, 
observation spaces, and action representations that ensured stable and efficient learning for our 
use case. To make the differences from the default environment more visible, we applied a color 
scheme in the table of our extension: green indicates newly introduced terms, red marks removed 
terms, and blue denotes modified terms. 
 

 
Figure 4: Allegro Hand V4 parallelized environment in Isaac Sim. 
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Figure 5: Isaac Lab NVIDIA’s example environment VS ours. 

 
As detailed in Figure 5, training a reinforcement learning (RL) agent on an environment requires 
defining three key components: the observations, which serve as inputs to the policy; the rewards, 
which guide the agent toward the desired behavior; and the actions, which represent how the 
policy’s outputs interact with the environment.  

Observations: We followed NVIDIA’s default setup by including joint positions and velocities, and 
then extended it by adding joint efforts and fingertip forces. This augmentation enables the agent 
to gather information about multiple objects held in the hand without explicitly providing their 
pose or orientation. The only object represented in the observations is the target object to be 
manipulated. This design both facilitates learning and yields a realistic model capable of handling 
an unrestricted number of additional objects within the same hand. Furthermore, to improve 
realism, we removed object velocity from the observations, since in real-world scenarios it is 
typically a noisy measurement, whereas object position and orientation can be estimated with 
sufficient accuracy through visual feedback. Moreover, the goal specification was reformulated 
from an absolute goal pose to a goal pose difference, such that the agent learns to drive an object 
in the desired direction rather than memorizing specific target positions. This formulation 
promotes generalizable directional control, enabling the policy to adapt to varying object 
placements and initial conditions while maintaining efficient and stable learning. 

Rewards: The most critical aspect of training is reward shaping. We experimented with several 
configurations, introducing new terms and adjusting weights, but the configuration that yielded 
the best results, shown in Figure 5, remains largely similar to NVIDIA’s default. The main change 
concerns position tracking: previously, the reward was formulated as a penalty (the farther the 
object is from the target position, the higher the penalty), whereas we switched to a positive 
reward formulation (the closer the object is to the target, the higher the reward). Interestingly, this 
change led to faster and more stable learning.  

Figure 6 compares the corresponding learning curves: although the absolute reward values are 
not directly comparable, the difference in learning speed is evident. With the penalty formulation 
(left), training progresses much more slowly, whereas with the positive reward formulation (right), 
the agent learns significantly faster. One possible explanation is that positive rewards provide a 
clearer and more consistent learning signal, as the agent receives immediate reinforcement for 
moving toward the goal rather than being primarily penalized for errors. This can reduce negative 
gradient effects and encourage exploration in directions that improve performance, resulting in 
more efficient policy optimization. 
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Figure 6: Comparison of learning curves with penalty-based (Left) vs. reward-based (Right) 
position tracking. 

Actions: Actions were changed from position control to effort/torque control, allowing the agent 
to exploit contact dynamics and interact more naturally with multiple objects in the hand. This 
formulation enables more dexterous and human-like manipulation, as the policy can leverage 
forces to adjust grips, separate objects, and guide them toward the desired configuration, rather 
than relying solely on precise joint positions.  

Finally, as shown in Figure 4, to accelerate learning and leverage NVIDIA’s GPU-accelerated 
platform Isaac Sim, we trained multiple environment instances in parallel.  

2.2.2 Agent Architectures 

Configuring the environment is only one part of the process; equally important is selecting an 
appropriate training strategy. Among the reinforcement learning algorithms commonly applied to 
continuous control, Proximal Policy Optimization (PPO) [15] and Soft Actor-Critic (SAC) [16] are 
particularly prominent, as they combine robustness with strong performance in high-dimensional 
tasks. 

Proximal Policy Optimization (PPO) is an on-policy2 actor–critic3 method that improves the policy 
while preventing large, destabilizing updates. It achieves this by maximizing a clipped surrogate 
objective, described below: 

𝐿(𝜃) = 𝐸̂𝑡[min⁡( 𝑟𝑡(𝜃)𝐴̂𝑡 ,  𝑐𝑙𝑖𝑝(𝑟𝑡(𝜃), 1 − 𝜖, 1 + 𝜖)𝐴̂𝑡)] 

𝑟𝑡(𝜃) = ⁡
𝜋𝜃(𝑎𝑡|𝑠𝑡)

𝜋𝜃𝑜𝑙𝑑(𝑎𝑡|𝑠𝑡)
 

Where: 

• 𝐸̂𝑡 is the empirical expectation over several data, 
• 𝜃 are the parameters of the policy network being optimized, 
• 𝑟𝑡(𝜃) is the probability ratio comparing how likely the new policy is to take action 𝑎𝑡 in 

state 𝑠𝑡 relative to the old policy, 
• 𝐴̂𝑡 is the estimated advantage function (detailed below), 

 
2 Learns from data collected by the same policy it is improving. 
3 Combines a policy network (actor) that selects actions with a value network (critic) that evaluates them. 
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• 𝜖 is a hyperparameter that defines the clipping range, limiting the size of policy 
updates to stabilize training. 

A key distinction from typical reinforcement learning loss functions is the use of the advantage 
estimate 𝐴̂𝑡, This term represents the difference between the discounted return, detailed in 
Appendix 1, obtained from the agent’s behavior under the policy (the actor), and the baseline 
value estimate provided by a second neural network (the critic) which also learns from the 
collected data. So 𝐴̂𝑡 measures how much better an action 𝑎𝑡 was, compared to the expected 
reward. It serves as a weight that amplifies or downplays the importance of each sampled action 
when updating the policy, thereby guiding learning toward behaviors that perform better than 
expected. 

Then, the use of 𝑚𝑖𝑛(. ) and 𝑐𝑙𝑖𝑝(. ) functions constrains how much the probability ratio between 
the new and old policies can deviate. This regularization stabilizes training by preventing overly 
aggressive updates, thereby reducing the risk of catastrophic performance drops. Such stability 
is especially important in contact-rich tasks, where even small changes in the policy can lead to 
drastically different dynamics.  

PPO is widely appreciated for its robustness, relatively simple hyperparameter tuning, and its 
ability to produce smooth and physically plausible behaviors in complex control settings such as 
humanoid locomotion. The full theoretical details are beyond the scope of this report; interested 
readers can refer to the original paper [15] or the explanatory video [27]. 

Soft Actor-Critic (SAC) is an off-policy4 algorithm based on the maximum entropy reinforcement 
learning framework [16]. In addition to maximizing task reward, SAC encourages policies with 
higher entropy5, promoting exploration and preventing premature convergence to suboptimal 
deterministic strategies. SAC’s off-policy nature allows it to reuse past experiences efficiently, 
making it more sample-efficient than PPO. However, its performance can be sensitive to 
hyperparameter tuning, and it may require careful reward shaping in complex manipulation tasks. 

In this work, PPO was selected as the primary training algorithm due to its stability in large action 
spaces, relatively straightforward hyperparameter tuning, and widespread adoption in robotic 
control research. SAC was considered as an alternative, but after some experiments, PPO’s 
predictable convergence behavior made it a better fit for iterative experimentation and later 
integration with continual learning methods. 

As with the environment, several PPO architectures and hyperparameter settings were explored. 
Once a stable configuration was identified (shown in Table 1) we kept it fixed and instead 
concentrated on refining the environment through modifications to rewards, observations, and 
actions.  

The policy architecture was selected through empirical trials, balancing the need for sufficient 
capacity to learn the task with the requirement to avoid excessive network size and training time. 
To this end, we employ two separate Multilayer Perceptrons (MLPs) [28] to implement the policy 

 
4 Learns about one policy while using data from another. 
5 Entropy is a measure of randomness or uncertainty. 
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(actor) and the value function (critic). A general overview of how are structured MLPs can be found 
in Appendix 2. 

Name Value Description 

Architecture 
(actor & critic) 

MLP [512, 256, 128] 
Activation: ELU 

Optimizer: Adam 

The configuration of the neural networks (number of 
layers and neurons) that encode the policy and value 

functions. 

Batch size 16 384 The number of experience samples used simultaneously 
to compute a gradient update. 

Nb steps 24 
The number of environment interactions collected 

before performing policy updates. 

Nb epochs 5 
The number of times each batch of experience collected 

is reused to optimize the policy and value networks. 

Log STD 1.0 
The logarithm of the policy’s action distribution standard 

deviation, controlling exploration magnitude in 
continuous action spaces. 

Learning rate 5e-4 
The scalar step size applied to parameter updates during 

optimization, controlling the speed and stability of 
learning. 

Table 1: PPO architecture and hyperparameters chosen. 

Both networks share the same hidden-layer configuration of three layers with 512, 256, and 128 
neurons, respectively (see Table 1). Given that our environment provides 102 observations and 
requires 19 actions (see Figure 5), the input and output layers of the policy network are 
dimensioned accordingly. In an MLP, every neuron is fully connected to all neurons in the adjacent 
layers (see Appendix 2). Training the policy therefore corresponds to adjusting the weights and 
biases of these connections so that, for a given set of observations, the network outputs the 
desired actions. This configuration results in 218 496 trainable weights and 915 biases, for a total 
of 219 411 parameters in the policy network. Similarly, the value network (critic) shares the same 
input and hidden layers architecture, but has a single output neuron, corresponding to the 
estimated state value used in the advantage calculation. Then this network comprises 216 211 
trainable weights and 897 biases, totaling 217 108 parameters. 

In total, the agent must learn 436 519 parameters across both networks. The procedure for 
training these networks using PPO from the Stable Baselines3 library [29] is described in the 
following section. 

2.3 Training Procedures and Key Results 

2.3.1 Learning strategy 

MLP training can be significantly accelerated using Graphics Processing Units (GPUs) [30], as they 
are optimized for performing the large number of parallel matrix multiplications and vector 
operations required in neural network computations. This parallelism allows faster forward and 
backward passes during training compared to traditional CPUs. To leverage this advantage, we 
conducted our trainings on two separate computers equipped with dedicated GPU cards. The 
specifications of these machines are summarized in Table 2. 
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Table 2: System specifications of the training platforms. 

For both computers, the trainings were performed inside a Docker6 container on Ubuntu 22.04 
ensuring that the working environment remains identical regardless of the machine used to run it. 
This guarantees reproducibility across experiments and simplifies the transfer of the setup to 
multiple computers. With this approach, we could reliably scale our experiments, training up to 
5000 parallel environments on the first computer and up to 8 000 on the second. The training 
process is illustrated in Figure 7.  

 

Figure 7: Schematic illustration for the training process of a MLP policy with PPO. 

Step 1: The first step consists of collecting a batch of data, represented as transitions (𝑠𝑡, 𝑎𝑡  , 𝑟𝑡  , 
𝑠𝑡+1 ) , corresponding respectively to the observations at time 𝑡, the action chosen by the policy 
based on those observations, the reward received from that action, and the resulting next 
observations at time 𝑡 + 1. The agent collects data for a specified number of steps (see ‘Nb steps’ 
in Table 1), and the total number of transitions collected per step equals the number of parallel 
environments. For instance, on the second computer, using 24 steps with 8 000 parallel 
environments, the agent collects 24 × 8⁡000 = 192⁡000 transitions before starting a training 
update, corresponding to step 2 in Figure 7. 

Step 2: During training, the agent does not update the policy using the entire collected batch at 
once. Instead, the collected data is divided into minibatches of a fixed size (a hyperparameter, see 
‘Batch size’ in Table 1). The policy is updated sequentially on each minibatch, and this process is 
repeated for multiple epochs (see ‘Nb epochs’ in Table 1), meaning the same collected batch is 
used several times to improve learning stability and sample efficiency. In our case, we use 5 
epochs. This approach ensures that updates remain on-policy while allowing multiple gradient 

 
6 Docker is a platform that packages software and its dependencies into isolated, reproducible 
environments. 
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steps over the same set of collected transitions. For each minibatch, the value network provides 
the state-value estimates used to calculate the advantages 𝐴̂𝑡 and the Clipped Surrogate Loss 
𝐿(𝜃) defined in Section 2.2.2 is computed. The gradients of this loss with respect to the policy 
parameters 𝜃 are then calculated using backpropagation7. These gradients are used by an 
adaptive optimizer (e.g., Adam [31] in our case, see ‘Architecture’ in Table 1) to perform gradient 
ascent on 𝜃, updating the policy parameters with a specified learning rate 𝜂 (see ‘Learning rate’ in 
Table 1). The learning rate controls the size of each update step: a large rate can destabilize 
training, while a too small rate slows convergence.  As explained in Section 2.2.2, maximizing the 
Clipped Surrogate Loss 𝐿(𝜃) guides the agent toward behaviors that yield higher rewards, while 
following the gradient ascent on 𝐿(𝜃) encourages the policy to prefer actions leading to these 
rewards. This highlights why reward shaping is critical in RL, as it provides the primary feedback 
for the agent to improve its behavior. 

Then, For the value network (critic), the process is slightly different. The critic is trained using 
supervised learning8 to predict the expected return of a state. Its target values come from the data 
collected during training. By learning to estimate these values accurately, the critic provides a 
stable baseline that reduces variance in policy updates, improving overall learning stability. It is 
optimized in parallel with the policy, using the same minibatch and optimizer configuration. 

Once the networks are updated, the agent collects a new batch of transitions using the updated 
policy (Step 1 in Figure 7), and the cycle repeats until cumulative rewards are maximized. 

2.3.2 Results & Comments 

Training with this strategy typically required between 1 and 2 days to achieve the first signs of 
successful behaviors, while longer runs, up to 10 days, were sometimes preferred to obtain more 
consistent and meaningful results. Table 3 presents the learning curves from some of our best 
training runs. The accompanying snapshots illustrate the state of the environment when agents 
either successfully reached their goals or failed by remaining blocked in suboptimal positions. In 
these images, the orientation target is represented by the floating cube above the hand. Some 
training sessions were carried out in multiple stages by reusing the trained weights from previous 
runs. In such cases, several learning curves are displayed for the same training session, each 
numbered to indicate the corresponding training stage. To facilitate comparison, modifications to 
the training setup relative to the previous stage are highlighted in purple. 

Training 1: The first training used NVIDIA’s default Allegro Hand model and configuration (see 
Figure 5) to establish a baseline for acceptable learning times and performance with cube 
orientation. The training was performed in three stages, simply because the initial limits were 
insufficient, as rewards kept improving after each stage. The snapshots show that the hand 
successfully learned to grasp and rotate the cube into the target orientation. 

 
7 Backpropagation: Standard algorithm for computing the gradients of a neural network’s loss function 
with respect to its weights.  
8 Supervised Learning: Supervised learning refers to training a model using labeled input-output pairs, 
where the model learns to predict the output from the input. In contrast, reinforcement learning does not 
provide explicit labels; instead, an agent learns by interacting with an environment and receiving scalar 
reward signals that indicate the quality of its actions.  
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Table 3: RL training results and environment outcomes. 
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Training 2: We then extended the default NVIDIA model with a wrist to investigate whether the 
agent could exploit gravity and inertia during manipulation, as humans often do in multi-object 
tasks. The 3-DoF wrist was limited to ±90° rotations on all axes. Learning was straightforward, but 
the agent did not use gravity as expected; instead, it relied on grasping the cube and rotating it 
with the wrist. While this strategy achieved reward improvements, it was unsatisfactory for our 
use case: it would not generalize to multi-object tasks and is constrained by the wrist’s limited 
range of motion. Therefore, we stopped this training and adjusted the configuration. 

Training 3: In this setup, we applied our own configuration (defined in Figure 5) and reduced the 
wrist rotation limit to ±45°, making the motion more realistic for integration into a humanoid 
forearm. This resulted in the desired behavior: instead of tightly gripping and rotating with the 
wrist, the agent learned to use gravity and inertia to roll the cube into the target orientation, then 
stabilized it with its fingers. 

Training 4: After success with one cube, we extended the task to two cubes. As explained in 
Section 2.2.1, the agent only received feedback about one target cube, while the other cube’s 
state had to be inferred through torque and fingertip sensors. This training produced very 
promising results: the agent first rolled the cubes to position the target cube in its palm, then used 
its fingers to orient it while simultaneously preventing the other cube from falling. 

Training 5: We then investigated manipulation with three cubes, though their size made success 
unlikely even for a human. The reward curve quickly plateaued, and the snapshots show that the 
agent learned to grasp all three cubes to avoid early termination due to falling objects. However, 
rotating one cube into the desired orientation was too difficult, since all fingers were occupied 
with grasping. The agent attempted to use the wrist to compensate, but as in Training 2, this 
strategy was too limited to succeed. 

Training 6: Finally, we extended the goal to include both position and orientation, since the 
ultimate task requires delivering an object in the correct pose (e.g., for screw positioning). Training 
is ongoing, but initial results are promising. The snapshots show that the hand maintains the cube 
in the target position, which is randomized on a plane above the hand level. The most effective 
strategy observed so far involves rolling the cube with gravity and inertia to align its orientation, 
then lifting and stabilizing it to meet the positional goal. 

During our experiments, several observations and limitations became apparent: 

• Finger behaviors: Fingers often adopted random poses and struggled with precise 
manipulations, highlighting the difficulty of learning fine-grained control using the 
current setup. Imitation learning could encourage the policy to adopt more natural 
and consistent behaviors, but this approach introduces additional challenges, such 
as generating suitable datasets and mapping human motions to the agent’s action 
space. 

• MLP architecture constraints: The selected Multilayer Perceptron (MLP) is fixed once 
trained, which imposes structural limitations. Modifying the observation or action 
spaces, adding new objects, or increasing the network’s complexity (e.g., adding 
layers or neurons) requires careful redesign and retraining, often with extensive 
hyperparameter tuning. These constraints make it difficult to scale the policy to more 
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complex tasks or adjust it for future customization, independently of the policy’s 
ability to retain previously learned skills. 

Another central challenge observed is catastrophic forgetting: when attempting to reuse a policy 
trained on a single cube to accelerate learning with two or three cubes, the agent often exhibited 
incorrect behaviors and lost previously learned skills. This highlights the classic trade-off between 
plasticity (learning new tasks) and stability (retaining old knowledge). In the context of object 
manipulation, this is particularly critical: policies trained on one object type (e.g., cubes) 
frequently fail when confronted with different shapes or physical properties (e.g., screws). 

One potential approach to mitigate this issue is to employ a very large network and train it 
simultaneously on all tasks. However, this quickly leads to slow learning, longer execution times, 
and scalability problems, especially given the virtually infinite possibilities in object manipulation 
scenarios. Another strategy is to combine learning-based methods for high-level decision-making 
with model-based controllers for low-level execution [32]. While powerful, such analytical 
approaches can be complex to implement, sensitive to model inaccuracies, and computationally 
expensive, particularly in contact-rich environments. 

Alternatively, continual learning and meta-learning techniques aim to develop policies that can 
adapt over time and transfer skills between tasks without retraining from scratch. In our specific 
context, given that Honda operates in controlled factory environments with known object models, 
a model-based approach may be the most practical solution. Nevertheless, this internship 
explored continual learning strategies as a pathway toward more adaptive and versatile 
manipulation skills, with the goal of eventually enabling policies that can generalize across tasks 
while reusing prior knowledge and avoid catastrophic forgetting. 

3. Continual Learning Approaches 
3.1 Overview of Continual Learning 

Continual learning (CL) refers to the ability of an artificial agent to acquire new skills or adapt to 
new tasks over time without catastrophically forgetting previously learned knowledge. This 
challenge, known as catastrophic forgetting, occurs when standard gradient-based training 
overwrites parameters that were critical for earlier tasks. In robotic manipulation, the ability to 
retain and integrate past experiences is crucial for enabling robots to expand their skillset, adapt 
to new objects or environments, and operate effectively over extended periods without having to 
be retrained from scratch. 

Broadly, continual learning strategies fall into two main paradigms: those that expand their 
architecture as new tasks arrive, and those that maintain a fixed architecture while protecting or 
modulating existing parameters [33]. 

3.1.1 Growing/Evolving Architectures 

Growing or evolving architectures address continual learning by progressively increasing the 
model’s capacity as new tasks are introduced. This can be achieved by adding neurons, layers, or 
even entire subnetworks dedicated to the new skills. A notable example is Progressive Neural 
Networks (Rusu et al., 2016) [34], in which each new task is assigned its own network “column” 
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connected laterally to previous ones to enable transfer of useful features without overwriting 
them. Figure 8 illustrates the architectural scheme from the original paper.  

 

Figure 8 (From original Paper [34]): Depiction of a three-column progressive network. The 
first two columns on the left (dashed arrows) were trained on task 1 and 2 respectively. A 
third column is added for the final task having access to all previously learned features. 

Some approaches expand the network only when a drop in performance signals insufficient 
capacity, thereby balancing learning flexibility with computational cost. For instance, the 
Dynamically Expandable Network (DEN) [35] model selectively retrains and expands its 
architecture only when necessary, avoiding unnecessary complexity and computational 
overhead. Similarly, the Self-Evolved Dynamic Expansion Model (SEDEM) [36] evaluates the 
diversity among subnetworks to control model growth, ensuring efficient continual learning 
without excessive resource consumption. These strategies enable models to adapt to new tasks 
while maintaining performance on previously learned tasks, addressing the challenges of 
catastrophic forgetting and limited model capacity. However, they come at the expense of 
unbounded memory growth and often require explicit knowledge of which task is being performed 
at inference time, which can limit their applicability in autonomous, open-ended settings [33]. 

3.1.2 Fixed Architectures 

Fixed-architecture approaches tackle the problem from a different angle by keeping the network 
size constant while introducing mechanisms to prevent interference between tasks. One family 
of methods uses regularization to discourage changes to parameters deemed important for 
previous tasks, as in Elastic Weight Consolidation (EWC) [37], where importance is estimated 
using the Fisher information matrix9. Another related method is Synaptic Intelligence (SI) [38], 
which tracks the importance of each parameter online during training and penalizes updates to 
weights critical for previous tasks, offering a more flexible and computationally efficient 
alternative to EWC. 

Another family relies on parameter isolation, where different subsets of neurons or weights are 
dedicated to different tasks to prevent interference. Binary or sparse masks are often applied to 

 
9 Fisher information matrix: A measure of the sensitivity of a model’s output to changes in its parameters, 
often used to estimate the importance of each parameter for preserving previously learned knowledge in 
continual learning. 
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selectively activate the relevant parameters for each task, effectively “switching on” only the 
portions of the network needed. Examples include PackNet (Mallya et al., 2018) [39], which 
iteratively prunes and reassigns network weights for new tasks, and Piggyback (Mallya et al., 2018) 
[40], which learns task-specific binary masks over a fixed backbone network. These approaches 
allow the network to retain previously learned behaviors without interference, while reusing 
shared parameters when possible. 

A more recent direction involves dynamic modulation, in which an auxiliary model, often called a 
hypernetwork, generates task-specific weights or modifications for the main network on demand. 
Instead of directly storing separate parameters for each task, the hypernetwork outputs either full 
or partial weight sets conditioned on a task embedding. This allows the main network to adapt its 
behavior dynamically without overwriting its shared parameters, effectively mitigating 
catastrophic forgetting while keeping memory usage bounded. Such methods have been explored 
in works like Ha et al. (2016) [41], who introduced hypernetworks as a general mechanism to 
generate the weights of a target network from a smaller network, demonstrating flexibility across 
different tasks and architectures, and von Oswald et al. (2020) [42], who applied hypernetworks 
for continual learning by producing task-specific weights to mitigate catastrophic forgetting. 
Figure 9 illustrates the working principle of a hypernetwork: the task embedding is fed into the 
hypernetwork, which outputs task-specific weights that modulate the main network for that task. 

 

Figure 9: Conceptual scheme of a hypernetwork. 

3.1.3 Open Challenges 

Despite these advances, continual learning in robotics still faces several unresolved issues [33], 
[43]. Real-world deployments rarely provide explicit signals about when a task changes, meaning 
that agents must autonomously detect and adapt to new situations without supervision. The 
stability–plasticity dilemma also persists: a robot must remain flexible enough to rapidly acquire 
new skills while preserving those already mastered. As noted through our experiments, reusing a 
policy trained for manipulating a single cube often led to catastrophic forgetting when extended 
to more complex tasks (e.g., two or three cubes), illustrating the difficulty of scaling to richer 
scenarios. Methods discussed earlier, such as Progressive Neural Networks or Hypernetworks, 
offer partial solutions but face limitations: they may grow unboundedly, rely on clearly defined 
task boundaries, or struggle with the high-dimensional continuous control required for dexterous 



20 
                                             End of Course Project (PFE) at LIRMM                O. Noel 

manipulation. Efficiently transferring knowledge between tasks without interference thus remains 
an open challenge. 

3.2 Proposed Learning Architecture 

To tackle the limitations identified in Section 3.1, we began developing a centralized architecture 
designed to integrate multiple models while enabling smooth knowledge sharing. Unlike the fixed 
MLP used in our baseline, this framework is not bound to a single observation or action space, nor 
to a frozen topology. Instead, it stores different policies within a unified representation where 
parameters are expressed as continuous functions. This additional functional dimension allows 
policies to interpolate and exchange parameters across models regardless of their size or 
complexity, whether small, lightweight networks or larger, deeper architectures, providing a 
mechanism for both specialization and transfer. By extending the representation space in this 
way, the architecture aims to mitigate catastrophic forgetting while preserving the flexibility to 
incorporate future tasks without retraining from scratch.  

To formalize our approach, let us first recall some definitions about Neural Networks: 

• 𝑙 ∈ ⁡ℕ: index of a layer, where 𝑙 = 0 is the input layer and 𝐿 is the output layer. 
• 𝑛𝑙 ∈ ⁡ℕ: number of neurons of layer 𝑙; 𝑛0 being the number of inputs or observations. 
• 𝑋 ∈ ℝ𝑛0: input vector containing the observations. 
• 𝑌 ∈ ℝ𝑛𝐿: output vector containing the actions in the case of RL. 
• 𝑊(𝑙) ∈ ℝ𝑛𝑙×𝑛𝑙−1: weights matrix between layer 𝑙. 
• 𝑏(𝑙) ∈ ℝ𝑛𝑙: bias vector of layer 𝑙. 
• 𝑎(. ): activation function (e.g., ReLU, tanh). 
• ℎ(𝑙) ∈ ℝ𝑛𝑙: hidden state vector at layer 𝑙. 
• 𝜃(𝑙): parameters 𝑊(𝑙) and 𝑏(𝑙) at a layer 𝑙. 

3.2.1 Theoretical Foundations and Intuition 

The main limitation of classic MLP networks in a continual learning setting is that they rely on a 
fixed architecture with static parameters. At the neuron level, the computation can be written as 
(see Figure 10.a for a visual representation): 

h(𝑊, 𝑏) = 𝑎(𝑊𝑋 + 𝑏) = 𝑎 (∑𝑤𝑖𝑥𝑖

n

0

+ 𝑏) 

With 𝑛 = dim⁡(𝑋), 𝑊 ∈ ℝn, 𝑏 ∈ ℝ and h(𝑊, 𝑏) ∈ ℝ here as we are considering only one neuron. 

At the network level, the forward pass through an 𝐿-layer feedforward neural network is given by 
(see Figure 10.b for a visual representation): 

ℎ(𝑙)(𝜃(𝑙), ℎ(𝑙−1)) = 𝑎(𝑊(𝑙)ℎ(𝑙−1) + 𝑏(𝑙)),   𝑙 = 1,… , 𝐿 

With ℎ(0) = 𝑋⁡the inputs and 𝑌 = ℎ(𝐿) the outputs. 
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Figure 10: Visual representation of a classic Neural Network forward pass. 

Here, the parameters 𝜃(𝑙) are fixed once the training phase is completed. This rigidity limits the 
model’s ability to adapt to new tasks without retraining and makes it prone to catastrophic 
forgetting when sequentially exposed to multiple tasks. 

Our first intuition to extend this capability is to represent the parameters not as static values but 
as functions. Instead of assigning a constant weights or bias to each neuron, we let these 
parameters vary smoothly with respect to an auxiliary variable 𝑧, which may encode task identity, 
context, or interpolation along a policy space. At the neuron level, the new formulation becomes: 

h(𝐹𝑤, 𝑍𝑤 , 𝑓𝑏 , 𝑧𝑏) = 𝑎((𝐹𝑤 ⊛𝑍𝑤)𝑋 + 𝑓𝑏(𝑧𝑏)) = 𝑎 (∑𝑓𝑤𝑖(𝑧𝑤𝑖)𝑥𝑖

n

0

+ 𝑓𝑏(𝑧𝑏)) 

Where: 

• ⊛ is defined as the element-wise application operator so that:  
If we have 𝐹 = (𝑓1(. ), 𝑓2(. ),… , 𝑓𝑛(. )) a vector (or matrix) of functions and 𝑋 =

(𝑥1, 𝑥2, … , 𝑥𝑛) a vector (or matrix) of values of the same shape as 𝐹, such that each 
𝑓𝑖(𝑥𝑖) is well-defined. Then: 𝐹 ⊛ 𝑋 = (𝑓1(𝑥1), 𝑓2(𝑥2),… , 𝑓𝑛(𝑥𝑛)). 

• 𝑛 = dim⁡(𝑋): the number of observations. 
• 𝐹𝑤 ∈ ℝn : the vector of functions 𝑓𝑤𝑖 for weights. 
• 𝑍𝑤 ∈ ℝn : the vector of auxiliary variables 𝑧𝑤𝑖 for 𝐹𝑤. 
• 𝑓𝑏: the function for the bias of the neuron. 
• 𝑧𝑏 ⁡ ∈ ℝ: the auxiliary variable for 𝑓𝑏. 

and at the network level: 

ℎ(𝑙) = 𝑎 ((𝐹𝑤
(𝑙) ⊛𝑍𝑤

(𝑙)) ℎ(𝑙−1) + (𝐹𝑏
(𝑙) ⊛𝑍𝑏

(𝑙))) ,   𝑙 = 1,… , 𝐿 

𝑋 = ℎ0;  𝑌 = ℎ𝐿 

With : 

• 𝐹𝑤
(𝑙) ∈ ℝ𝑛𝑙×𝑛𝑙−1  : the matrix of functions 𝑓𝑤𝑖 for the weights at layer 𝑙. 

• 𝑍𝑤
(𝑙) ∈ ℝ𝑛𝑙×𝑛𝑙−1  : the matrix of auxiliary variables for 𝐹𝑤

(𝑙). 

• 𝐹𝑏
(𝑙) ∈ ℝ𝑛𝑙: the vector of functions 𝑓𝑏𝑖 for the bias at layer 𝑙. 

• 𝑍𝑏
(𝑙) ∈ ℝ𝑛𝑙: the vector of auxiliary variables for 𝐹𝑏

(𝑙). 
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Figure 11 illustrates this extended formulation. 

Figure 11: Visual representation of our extended Neural Network forward pass. 

This reformulation effectively introduces a third dimension into the neural network: instead of 
mapping only from inputs to outputs, the model also operates over an additional functional space 
using auxiliary variables 𝑧 for each parameter. In this extended space, policies can adapt, 
interpolate, and transfer knowledge across tasks without discarding previously acquired 
information.  

• If⁡𝑧 encodes a task index, the same network can express multiple task-specific policies 
without retraining. 

• If 𝑧 interpolates between tasks, the model can smoothly transition between different 
policies. 

• If 𝑧 encodes context, the network dynamically adapts its behavior to changing 
environments. 

In this way, the network gains flexibility for continual learning, knowledge transfer across tasks, 
and resilience to catastrophic forgetting. 

3.2.2 Parameters Representation as Functions 

We chose to represent the parameters (weights 𝑤𝑖 and biases 𝑏𝑖 in the case of a classical neural 
network) as continuous functions to allow smooth navigation along the additional functional 
dimension introduced in Section 3.2.1. Instead of storing parameters as fixed scalar values, the 
system now stores centers (encoded by the auxiliary variable 𝑧) associated with specific 
magnitudes (the parameter values to be preserved). A function 𝑓(. ) is then required to 
continuously interpolate between these stored points.  

Several families of function approximators can be considered for this purpose. The most 
straightforward choice are parametric functions, such as low-degree polynomials [44] or splines 
[45], which offer simple closed-form behavior but often lack flexibility and generalization capacity 
when a large variety of parameter transitions must be represented. Another option is to use 
piecewise functions [46] which provides direct control over stored points but tends to introduce 
discontinuities or overshooting when extrapolating outside the sampled regions. 
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A more advanced family includes kernel-based methods, where the contribution of each stored 
point is weighted by a kernel function depending on its distance to the query point. This provides 
locality and smoothness, while also allowing the representation to adapt as new centers are 
added. Within this family, Radial Basis Functions (RBFs) [47] are particularly attractive because 
they can approximate arbitrary smooth functions given a sufficient number of centers, and their 
behavior can be tuned directly via the choice of kernel shape and bandwidth. 

Other approaches, such as Fourier series [48] expansions or neural implicit functions [49] (small 
MLPs that themselves learn to approximate the parameter mapping), could also be considered. 
However, these either require global adjustments that affect the entire functional space (as in 
Fourier or polynomial expansions) or introduce an additional optimization layer that complicates 
training (as in neural implicit functions). 

For our use case, we required a representation that is: 

1) Local, to ensure that adding new points minimally perturbs existing knowledge. 
2) Continuous and smooth, to enable stable interpolation between parameters. 
3) Efficient, since the system must be queried at every forward pass of the network. 

These constraints naturally motivated us to start with kernel-based formulations, and in particular 
RBF. Which representation for a function 𝑓(𝑧) can be written as: 

𝑓(𝑧) =∑𝛼𝑗𝑘(‖𝑧 − 𝑐𝑗‖)

𝑀

𝑗=1

 

Where 𝑀 is the number of centers, 𝑐𝑗 are the centers, 𝛼𝑗 are the magnitude values, and 𝑘(. ) is the 
kernel function. We tested several kernels, such as the Gaussian and the Multiquadric, but 
ultimately retained the Gaussian kernel because of its smooth decay, its ability to represent 
parameter transitions without abrupt changes, and its natural tendency to vanish in regions far 
from any stored center. This latter property is particularly desirable in our setting: we want areas 
of the functional space that have not been sampled or learned yet to default gracefully to zero, 
rather than introducing oscillations or extrapolated values. The Gaussian kernel is defined as: 

𝑘(𝑟) = exp(−
𝑟2

2𝜎2
) 

Where 𝜎 controls the width of the kernel. 

While RBFs provided encouraging results, they also introduced several limitations for our use 
case. The first drawback was the appearance of artifacts when neighboring centers were too close 
or when parameter values between centers differed significantly. In such cases, undesired 
oscillations could occur (see Figure 12.a). Adjusting kernel widths to mitigate these effects often 
resulted in a trade-off, making it difficult to preserve a simple Gaussian-like behavior without 
undesirable influence on unexplored areas between two centers.  

A second drawback concerns computational efficiency. Classical RBF implementations require 
evaluating contributions from all centers when computing 𝑓(𝑧). As the number of stored points 
grows, this quickly becomes impractical. Moreover, most existing libraries provide little control 
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over restricting evaluations to the most relevant centers, which is essential for scalability in a 
continual learning setting. 

To overcome these limitations, we implemented a custom distance-aware linear interpolation 
method with Gaussian decay that borrows intuition from lookup-based interpolation [50], while 
retaining the smoothness of kernel methods. Specifically, instead of considering all stored 
centers, our method relies only on the two closest centers to the query point 𝑧. First, their 
parameter values are interpolated linearly, as in a standard lookup-based scheme. Then, this 
interpolation is modulated by a Gaussian decay factor that smooths the transition and reduces 
sharp discontinuities. The resulting formulation is: 

𝑓(𝑧) = (𝛼𝑗1(1 − 𝜆) + 𝛼𝑗2𝜆) ⋅ exp(−
𝑑(𝑧)2

2𝜎2
) 

With: 

• 𝑗1, 𝑗2 : the indices of the two nearest centers to 𝑧. 
• 𝑑(𝑧) = min⁡(|𝑧 − 𝑐𝑗1|, |𝑧 − 𝑐𝑗2|) : the minimum distance from 𝑧 to either center. 

• 𝜆 = ⁡
‖𝑧−𝑐𝑗1‖

‖𝑐𝑗2−𝑐𝑗1‖
 : the normalized linear interpolation factor. 

This lightweight scheme retains the efficiency and interpretability of linear interpolation, but the 
Gaussian decay smoothly attenuates the influence of distant points, both in interpolation and 
extrapolation regimes. It combines the simplicity of lookup-based piecewise linear methods with 
the smoothness control characteristic of kernel-based approaches, where the decay factor 
directly regulates the transition sharpness. As illustrated in Figure 12.b, our method avoids the 
unwanted oscillations observed with standard RBF interpolation, while producing smooth and 
accurate transitions between neighboring centers. 

 
Figure 12: Comparison of parameter interpolation methods: Standard RBF vs. Gaussian-

Decay Linear Interpolation. 

In practice, this ensures that adding a new center affects only its local neighborhood and does 
not unintentionally alter far-away values, a crucial property when the function is used to represent 
neural network parameters across tasks. Moreover, in estimation experiments with up to 1 000 
points, standard RBF interpolation slowed from 1 000 Hz to 200 Hz, whereas our scheme 
maintained stable performance around 1 300 Hz. 
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3.2.3 Implementation 

Two main learning strategies were investigated during the internship. The first aimed to learn the 
parameter functions directly online, replacing the classic methods and optimizers used for fixed 
weights. This approach is illustrated in Figure 13. However, despite the custom Gaussian decay 
being efficient even with thousands of points, this method slowed down training and could not 
match the speed of GPU-accelerated fixed-weight training. The second strategy leverages the 
efficiency of tensor-based learning for fast training, and then wraps the learned results into 
functional representations for knowledge sharing or other continual learning strategies. In this 
way, our architecture can be seen as a wrapper around standard training. This approach is 
illustrated in Figure 14. 

 
Figure 13: Learning Strategy: Direct Functional Learning. 

 
Figure 14: Learning strategy: Wrapper approach. 

Using the wrapper-based method offers several advantages. Any existing pre-trained network can 
be wrapped to benefit from the additional functional dimension introduced by our architecture. 
The wrapper allows parameters to be manipulated online, stored, or extracted at any stage, 
providing flexibility to enhance continual learning strategies. It remains highly adaptable, as the 
wrapper creates a unified space in which different models can interact, share knowledge, or be 
compressed. For instance, higher-level strategies such as hypernetworks can learn how and when 
to leverage the wrapped representations. Furthermore, both offline and online optimization can 
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be applied on the wrapper, enabling centralized management of multiple learned models and 
facilitating efficient knowledge transfer across tasks. 

3.4 Experimental Results & conclusions 

3.4.1 Theory validation 

The first validation aimed to verify that our wrapper can correctly store multiple models and allow 
reliable extraction for runtime use. In this experiment, we created three models with different 
architectures: a medium-sized model with three hidden layers of 64 neurons each ([64, 64, 64]), 
a smaller model with [12, 12], and a larger model with [128, 64, 86, 24]. These models were stored 
in the wrapper using the simple strategy illustrated in Figure 15, where each model’s parameters 
are represented as squares for simplicity, and overlapping areas indicate parameters sharing the 
same continuous dimension in the wrapper. 

 
Figure 15: Illustration of a possible Wrapper storage strategy for multiple models. 

After storing the models, we extracted each one to verify that the recovered parameters matched 
the original agents. The medium model was associated with the encoding auxiliary variable 𝑧 =
0.0, the small one with 𝑧 = 1.0, and the largest with 𝑧 = 3.0. As shown in Figure 16.a, the wrapper 
weight function 𝑓𝑤0 contains three continuously connected weights. For the medium model, 
some functions contain only two connected weights (Figure 16.b), since the smaller model 
cannot share all its parameters with the medium model. Similarly, for the largest model, certain 
functions store only a single weight (Figure 16.c) for the same reason. 

 
Figure 16: Visualization of weight functions in the Wrapper after storing models of different 

architectures. 
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Although the models are embedded according to the default strategy in Figure 15, custom storage 
or extraction behaviors can be defined. The key requirement is that the user or the employed 
strategy (e.g., a hypernetwork) retrieves the stored parameters correctly. 

These results successfully validate the wrapper’s ability to merge models with different 
architectures while introducing a third functional dimension for knowledge sharing and flexibility 
of the strategy employed. 

3.4.2 Knowledge sharing 

The second experiment aimed to evaluate how our wrapper can facilitate knowledge transfer 
across tasks. Specifically, we tested whether a model could leverage previously learned 
knowledge as a starting point for training on a new, related task. 

We considered a simple case of the CartPole environment from Gymnasium [51] using a PPO 
agent from the Stable Baselines3 library [29] with a minimal MLP architecture: one hidden layer 
with a single neuron. (For details on the environment, observations, rewards, and termination 
conditions, see the Gymnasium documentation [52]). The mass of the pole was varied across four 
experiments: 0.1⁡𝐾𝑔 (default), 0.8⁡𝐾𝑔, 1.2⁡𝐾𝑔, and 2.0⁡𝐾𝑔.  

Several agent were trained with the auxiliary variable 𝑧 encoding the pole mass (𝑧 = 0.1 for 0.1⁡𝐾𝑔,  
𝑧 = 0.8 for 0.8⁡𝐾𝑔, etc.). Figure 17 shows that we could correctly learn and store distinct agents 
for each mass that maximize rewards with values largely above 195 which is the threshold to 
consider the agent successful.  

 
Figure 17: Learning and playing multiple agents for different Pole masses using the Wrapper 

(reward threshold = 195). 

Initially, each model had to learn from scratch. But using our wrapper flexibity, we then trained the 
agents sequentially: after each training, the resulting model was wrapped, so the next training 
could benefit from previously learned weights. Figure 18 and Table 4 show that this approach 
accelerates learning for all masses except 2.0 kg. For this mass, which differs significantly from 
the others, starting from default parameters initialization proved more effective than transferring 
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prior knowledge. These results highlight that successful continual learning requires a higher-level 
strategy to decide when and how to leverage previous knowledge, e.g., a hypernetwork that 
selectively uses prior experiences for each task, and our wrapper facilitates the implementation 
of such strategies. 

 
Figure 18: Sequential training with Wrapper-based knowledge transfer across Pole masses. 

 
Table 4: Impact of sequential training with Wrapper-based knowledge transfer on learning 

speed across different Pole masses. 

3.4.3 Model compression 

The last experiment consisted of investigating if we can compress model knowledge using our 
wrapper rather than using classical networks. An agent with the minimal architecture of one 
hidden layer and one neuron was first trained on the default mass (0.1⁡𝐾𝑔), and its performance 
was then evaluated on the unseen masses for 100 episodes for each case. Figure 19 shows the 
training results and performance across different masses.  
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Figure 19: Performance of a PPO agent trained on a single Pole mass and tested on different 

masses. 

As expected, such a simple model architecture trained on a specific mass fails to generalize to 
other masses, with performance degrading as the mass difference increases. This issue can be 
addressed using our wrapper with manual task embeddings, as described in Section  3.4.2. Since 
each minimal model has 16 parameters, storing four separate models would require at most 
16 × 4 = 64 parameters in the wrapper, assuming no weight sharing between models.  

We then trained an agent while progressively increasing its architecture until it achieved sufficient 
rewards across all four mass values. In this setting, during the training the mass was randomized 
at the end of each episode among the four possible values. The results are shown in Figure 20. 

 
Figure 20: Classical Network training across varying Pole masses. 

The observed rewards are comparable to those obtained with our wrapper using task embeddings 
for mass across all cases except 2 kg. For this mass, the rewards exceed the acceptable 
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threshold, but the performance quality is still lower than when using our wrapper. The minimal 
architecture found for the classical network consisted of two hidden layers with two neurons 
each, totaling 103 parameters, about 60% more than the combined parameters of the task-
specific models in our wrapper. For larger networks, this difference can become even more 
pronounced, potentially leading to substantial increases in both training and inference time.  

These results demonstrate that our wrapper can successfully compress knowledge across 
multiple tasks while maintaining, or even improving, the quality of learned policies. By storing 
separate task-specific models within a unified representation, we can achieve comparable or 
better performance than training classical networks individually, while reducing the total number 
of parameters. 

These results are encouraging but should be interpreted with care. In the classical network, the 
agent directly observes the mass and must learn how to incorporate this information into its 
policy. By contrast, in the wrapper case, the mass is explicitly provided as a task embedding, 
which likely accelerates the learning of each individual model. In real-world scenarios, such task 
embeddings are often non-trivial or even unavailable. 

Finally, while our approach does not solve all continual learning challenges, it already 
demonstrates promising results even with simple strategies. The wrapper provides a solid 
foundation for future improvements by enabling models of different architectures to coexist 
within a unified representation, supporting both specialization and transfer. Its flexibility allows 
parameters to be stored, extracted, and manipulated across tasks, which opens the door to 
efficient reuse of knowledge, faster adaptation, and reduced memory overhead compared to 
retraining independent networks. At the same time, challenges such as managing the growth of 
stored representations, determining when and how to share parameters between tasks, and 
ensuring scalability to more complex environments remain open. Addressing these issues will 
likely require higher-level mechanisms, such as hypernetworks or meta-learning strategies, to 
guide the use of shared knowledge. Nonetheless, the results presented here position the wrapper 
as a promising foundation for building more advanced continual learning frameworks that 
balance adaptability, efficiency, and long-term knowledge retention.  
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4 Conclusions & Future work 

This work explored the challenges of applying reinforcement learning to dexterous object 
manipulation using the Allegro hand. By leveraging scalable training infrastructures (Docker-
based environments across multiple GPUs) we were able to train policies with thousands of 
parallel environments, achieving meaningful results within only a few days. The experiments 
demonstrated the potential of RL for learning non-trivial behaviors but also highlighted significant 
limitations of our baseline MLP policies, including poor generalization, rigid architecture 
constraints, and susceptibility to catastrophic forgetting when extending tasks beyond their 
original scope. 

A review of the state of the art in continual learning confirmed that these issues are not specific 
to our setup but represent core challenges in the field: balancing plasticity and stability, efficiently 
transferring knowledge across tasks, and scaling methods to high-dimensional control domains. 
Existing solutions, such as growing architectures, regularization-based methods, parameter 
isolation, and hypernetworks, each provide partial answers but still struggle in realistic robotic 
scenarios where task boundaries are blurred and the variety of possible tasks is effectively 
unbounded. 

To move beyond these constraints, we introduced the foundations of a centralized architecture 
capable of storing diverse models and facilitating seamless knowledge sharing by representing 
networks parameters as continuous functions. This design aims to combine adaptability with 
retention, paving the way toward policies that can incrementally accumulate skills instead of 
relearning them from scratch. While preliminary, this direction suggests a promising pathway for 
addressing lifelong learning in robotics. 

Ultimately, building robots that can continuously learn and adapt in dynamic environments will 
require bridging the gap between current algorithmic advances and the complex realities of 
contact-rich manipulation. The contributions of this work provide both practical insights from 
large-scale RL experiments and a conceptual framework for architectures that may better support 
continual learning in the future. 

Future work will follow two complementary directions. On the one hand, we will continue 
exploring classical reinforcement learning approaches combined with model-based controllers, 
targeting functional solutions for specific use cases such as screw manipulation in the Honda 
factory context. On the other hand, we will further investigate novel continual learning 
architectures to enable scalable, adaptive, and reusable skill acquisition across tasks. 

This internship provided me with the opportunity to deepen my expertise in reinforcement 
learning, large-scale training infrastructures, and the challenges of continual learning. Building 
upon this work, I will continue the research as a PhD student starting in November, with the goal 
of advancing towards robotic systems that can learn continuously and adapt effectively to real-
world industrial environments. 
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6. Appendix 
Appendix 1: Discounted Rewards 

In reinforcement learning, the discounted return from a timestep 𝑡 is defined as: 

𝑅𝑡 =⁡∑ 𝛾𝑘𝑟𝑡+𝑘

∞

𝑘=0

 

Where: 

•  𝑟𝑡+𝑘 is the reward received 𝑘 steps after time 𝑡, 
• 𝛾 ∈ [0,1] is the discount factor, which reduces the contribution of future rewards 

compared to immediate ones. 

The discount factor 𝛾 serves two purposes: 

1. It encodes a preference for short-term rewards over distant ones (when 𝛾 < 1). 
2. It ensures the infinite sum of rewards remains finite, stabilizing learning. 

In practice, for finite episodes of length 𝑇, the return is computed as: 

𝑅𝑡 =⁡∑ 𝛾𝑘𝑟𝑡+𝑘

𝑇−𝑡

𝑘=0

 

Appendix 2: Multilayer Perceptron (MLP) 

A Multilayer Perceptron (MLP) is a type of feedforward artificial neural network commonly used 
to approximate complex functions in reinforcement learning and other machine learning tasks. It 
consists of an input layer, one or more hidden layers, and an output layer, with neurons in each 
layer fully connected to neurons in the adjacent layers. 
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Mathematically, the forward pass of an MLP can be described as: 

ℎ(1) = 𝑎(𝑊(1)𝑥 + 𝑏(1)) 

ℎ(𝑙) = 𝑎(𝑊(𝑙)ℎ(𝑙−1) + 𝑏(𝑙)), 𝑙 = 2,… , 𝐿 − 1 

𝑦 = 𝑎(𝑊(𝐿)ℎ(𝐿−1) + 𝑏(𝐿)) 

Where: 

• 𝑥 is the input vector, 
• ℎ(𝑙) is the activation vector of layer 𝑙, 

• 𝑊(𝑙), 𝑏(𝑙) are the weight matrix and bias vector for layer 𝑙, 
• 𝑎(. ) is the activation function (commonly ReLU or tanh) for hidden layers, 
• 𝐿 is the total number of layers including the output layer. 

The training of an MLP consists in adjusting the weights 𝑊(𝑙) and biases 𝑏(𝑙) to minimize a loss 
function that measures the discrepancy between the network’s predictions 𝑦 and the desired 
outputs. In reinforcement learning, the outputs typically parameterize a policy distribution or a 
value function. 

MLPs are flexible function approximators and can represent highly nonlinear mappings, making 
them suitable for approximating policies and value functions in complex environments. 
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