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Résumé / Abstract

English version below

Ce rapport présente le travail et les résultats obtenus pendant mon projet de �n d'études
réalisé au Lab-STICC à l'ENSTA Bretagne, à Brest.

J'ai travaillé sur divers projets pendant les six mois de stage, aussi bien avec du travail
d'ingénieur que de chercheur. Ainsi, j'ai automatisé en cap un bateau semi-rigide avec Maël Le
Gallic, que nous avons par la suite nommé "Boatbot". J'ai également travaillé sur l'estimation
des courants avec un �ltre de Kalman, et montré les résultats satisfaisant des simulations. J'ai
aussi entamé des recherches sur la localisation bathymétrique par analyse d'intervalles, en vue de
localiser un sous-marin sans remonter à la surface mais en connaissant la carte bathymétrique à
l'avance. Finalement, j'ai participé à l'intelligence du voilier de l'ENSTA Bretagne, présenté au
concours de la WRSC, avec notamment un algorithme de contrôle précis utilisé dans des slaloms
serrés.

Mots clés : Boatbot, Estimation des courants, Filtre de Kalman, WRSC, contrôle.

This report presents the work and the results of my end-of-studies project, in the Lab-STICC,
in ENSTA Bretagne in Brest in France.

During six months, I worked on various projects, included engineering or research work. So,
Maël Le Gallic and I automatized a rigid-hulled in�atable boat, named "Boatbot". I also
worked on the estimation of the currents with a Kalman �lter, and showed good results in
simulations. I carried research on bathymetric localization, with interval analysis, in order to
localize a submarine without resurfacing but knowing the bathymetric map. Finally, I helped in
the development of the intelligence of the sailboat robot of the ENSTA Bretagne for the contest
WRSC. I spent time in a control algorithm for tight slalom.

Keywords : Boatbot, Currents estimation, Kalman �lter, WRSC, control.

1



Acknowledgements

Firstly, I would like to thank my supervisor, Luc Jaulin, who enables me to realize my end-of-
studies project. I would also like to thank all the team of Lab-STICC, answering my questions
and helping me to integrate the lab, especially Fabrice Le Bars, Benoît Zerr, Thomas Le
Mézo, Maël Le Gallic and Auguste Bourgois.

2



Contents

Acknowledgements 2

List of Figures 4

List of acronyms 5

Introduction 6

1 Boatbot, an automatic rigid-hulled in�atable boat 7

1.1 La Cordelière, the researched wreck . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Mechanical and electronic part . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Control and line following . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Estimation of the current with a Kalman �lter 13

2.1 Description of the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Kalman �lter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Simulation and results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5 Tight slalom control for sailboat robots . . . . . . . . . . . . . . . . . . . . . . . 17

3 Bathymetric localization of an AUV 19

3.1 Use of the bathymetric information of the place . . . . . . . . . . . . . . . . . . . 19
3.2 Use of a binary tree to store the bathymetric map . . . . . . . . . . . . . . . . . 20
3.3 Interval analysis and contractors . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4 Localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Conclusion 23

Bibliography 24

A Boatbot : examples of data from the SBP and the magnetometer 25

A.1 Example of data from the SBP (with detection of a wreck) . . . . . . . . . . . . 25
A.2 Example of data from the magnetometer (with detection of a wreck) . . . . . . . 27

B Python code of the simulation for estimating the currents 28

C The article : Tight slalom control for sailboat robots 30

3



List of Figures

1.1 Research zone for La Cordelière. . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2 Picture of Boatbot towing a canoe towing a magnetometer. . . . . . . . . . . . . 9
1.3 Example of vector �eld to follow the line (A→ B). . . . . . . . . . . . . . . . . . 11
1.4 Picture of André Malraux researching La Cordelière . . . . . . . . . . . . . . . . 11
1.5 Screenshot of the user interface for Boatbot, after having made some lines. . . . . 12

2.1 Screenshot of the simulation at the beginning. . . . . . . . . . . . . . . . . . . . . 15
2.2 Screenshot of the simulation once the current is well estimated. . . . . . . . . . . 16
2.3 Line following with its associated vector �eld. . . . . . . . . . . . . . . . . . . . . 17
2.4 Simulation of a sailboat performing a tight slalom. . . . . . . . . . . . . . . . . . 18

3.1 Bathymetric localization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Contraction of a box. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

A.1 Example of a detection with the magnetometer . . . . . . . . . . . . . . . . . . . 27
A.2 Map of targets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4



List of acronyms

AUV Autonomous Underwater Vehicle

DRASSM Département de Recherches Archéologiques Subaquatiques et Sous-Marines

IMU Inertial Measurement Unit

IRSC International Robotic Sailing Conference

RTK Real-Time Kinematic

SBP Sub Bottom Pro�ler

SLAM Simultaneous Localization And Mapping

ROS Robot Operating System

WRSC World Robot Sailing Championship

5



Introduction

Wrecks research is a complex task which requires many skills in a range of �elds : history,
hydrography, marine archeology, etc. However, it has already shown its importance in the
understanding of human activities around the seas [10]. Finding a speci�c wreck is very di�cult,
and even more for ancient wreck, since there is often a lack of information, and most of the time
it is not very accurate and novelize.

That is why the most often, a wreck research requires to lock down a whole area, which can
be very spread. This leads to many hours in the sea to scan every place to be sure not to miss the
wreck. So the choice of the sensor which will detect the wreck is very tricky. Indeed, the sensor
must give a positive detection when there is a wreck, and also do not give too many positive
detections because we can not send a diver in too many places. Furthermore, it is more desirable
to chose a sensor which scans a large surface in order to reduce the number of kilometers to
navigate, and save time and energy.

Finally, we understand that the wrecks research is intricate, and that it requires a long time
in the sea to lock down an area, in any case. And it is here that the interest of robotics becomes
logical. We can easily imagine a swarm of robots which explore a while spread area very quickly
and watched by only one human. Now a wreck research seems less long and di�cult.

My internship was divided in di�erent parts. I spent a lot of time in the conception of Boatbot,
an automatic rigid-bulled in�atable boat. Only the heading was regulated, but everything has
been developed by the Lab-STICC and there were a lot of work. The goal of this robot was to
understand what kind of missions must be done to research a wreck, in two dimensions to start.
Indeed, the marine place is not easy to lock down and follow lines accurately is quickly intricate,
especially when the sea is rough. It was developed in the context of the research of La Cordelière

[2].
One of the biggest issue on the seas are the currents [4]. Even with an engine, if the currents

are not too weak with respect to the boat speed, you can navigate like a crab just because of
currents. So, in order to have a correct control, a good idea is to estimate these currents. And
it can be done with a Kalman �lter [7] ; that is the second part of my job.

At the same time, the lab was assembling a team in order to partake in an autonomous
sailboat competition (WRSC1 [1]), so I joined the team. We worked on the writing of an article
about a control of sailboat robots in tight slalom.

Finally, as the �nal goal is to control underwater vehicles, I also worked on the localization
of an AUV2. Indeed, as GPS can not be used under the water, to have an accurate localization
without regularly resurface is a real issue today. The idea in this part is to use the bathymetry
of the area, and with a sonar, to localize the robot by using interval analysis [8] in order to �nd
possible places which �t with the measures.

1WRSC : World Robot Sailing Championship
2AUV : Autonomous Underwater Vehicle
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Chapter 1

Boatbot, an automatic rigid-hulled
in�atable boat

The Lab-STICC owns a rigid-hulled in�atable boat, or zodiac, where an electric motor was added
in order to turn the wheel automatically, and therefore to control the boat with a computer and
without touching the wheel anymore. Now, this zodiac is known under the name of "Boatbot",
since it has participated in the research of a wreck, La Cordelière, in the Rade de Brest, by taking
measures automatically.

1.1 La Cordelière, the researched wreck

La Cordelière is a french military ship from Brittany. It was armed with 200 cannons, and could
allow more than 1,000 crew members [6]. It defended Brittany against the English when they
came in the Rade de Brest in 1512. It sunk during a terrible battle while it was in a boarding
with the Regent, an English ship which sunk too at the same time.

Today, the research area is about 100km2 (see Figure 1.1), and underwater archeology cam-
paigns have been already carried out. The DRASSM1 is a main actor in these campaigns, and
leads the researches. As the ship sunk more than 5 centuries ago, the wreck is probably under
about 5 meters of sediments, according to the estimations.

1.2 Mechanical and electronic part

Boatbot is a play on words : it is a robot and a boat. It means that there are enough sensors
aboard to navigate alone, without any human help. The only actuator is the electrical engine
placed behind the wheel, which has been chosen because it is hidden in the console, so it does
not take space aboard (the boat is quite small), and because it can be de-clutched, so anyone can
take the control back in case of emergency. Actually, there is always someone aboard, because
it is mandatory, and furthermore the speed of the boat is not controlled automatically.

There are two sensors located on a pole : a GPS antenna with its RTK2 module and an IMU3.
There is also a splash-proof box aboard with the embedded computer inside, and some power

1DRASSM : a French service from the Ministry of Cultural A�airs for underwater archeology.
2RTK : Real-Time Kinematic, a satellite navigation technique used to enhance the precision of position data.
3IMU : Inertial Measurement Unit, an electronic device using a combination of accelerometers and gyroscopes,

and also magnetometers.
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Figure 1.1: Research zone for La Cordelière.

electronics. There is also a 4G key in order to have access to the internet (mainly to download
RTK corrections), and a motor controller which sends the correct signals to the electric motor.
The computer and the electric motor are both powered by the battery of the zodiac, which is
itself powered by the engine of the boat.

The last device is a computer for the user, with the interface to watch the state of the boat
and launch missions.

With the scope of wrecks research, some sensors can be added to the boat. For instance, we
added a mono-beam sonar, a magnetometer or also a SBP4. Each of these sensors needs the boat
to follow many lines faithfully, and that is why the heading is controlled automatically, since it
is too long and heavy for a human and he will probably make errors. Examples of data taken by
these sensors (SBP and magnetometer) are presented in Appendix A.

On the Figure 1.2, you can see Boatbot towing a canoe, and the canoe is towing a magne-
tometer. We used the canoe here to be sure the cable is safe and will not fall in the propeller of
the motor.

Concerning the software architecture, we chose to use the middleware ROS5 [5] to help us to
separate the di�erent nodes of our system. So each driver for the sensors or the actuator was
in a separated program, and even the intelligence was divided into di�erent nodes which can
therefore work at the same time. The communication between the nodes is managed by ROS
using topics and services.

4SBP : Sub Bottom Pro�ler, a sediments sounder.
5ROS : Robot Operating System.
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Figure 1.2: Picture of Boatbot towing a canoe towing a magnetometer.

1.3 Control and line following

The �rst step of the control of the boat is to succeed in following a given heading. A simple
proportional controller is well enough, for the most cases. It means, if we note e the error between
the real heading and the desired heading, and u the command, that we have :

u = kp · e = kp · (θd − θr) (1.1)

with θd the desired heading and θr the real heading, and where kp is a coe�cient used to tune
the smooth of the control.

Obviously, this control depends directly on the quality of the sensors, because the real heading
and the measured heading are di�erent, most of the time. In our case, with the sensors available
on the boat, there are two ways to get the heading. The �rst one is the IMU, which gives directly
where the boat heads. The second one is named the course over ground, and it is computed with
two successive GPS �xes. They are both interesting because the �rst one gives the information
at very high frequency, and works at any speed of the boat, whereas the second one is accurate
only if the speed of the boat is relatively important. The GPS gives information every seconds,
which is very slow so it complicates the control. However, it takes into account the currents,
which can not be neglected. Indeed, a boat can move like a crab when it navigates in a sea with
important currents.

After several tests, the decision of taking the information of heading from the IMU was taken.
Indeed, when the boat was turning, as the course over ground was available at very low frequency,
it was impossible to know exactly when the heading was the desired one. So there were always
unwanted overshoots in the curves.

Then, once the boat succeeded in following correctly a given head, it was already possible to
reach waypoints. However, the goal here is to follow a line, which is di�erent. The robot must
stay close to the line, it is more important than reach the �nal waypoint of the line. If we de�ne
a line by two waypoints A and B, just to reach A and then reach B will not give a nice route.
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This is why an algorithm is proposed here to realize proper line following.
So a vector �eld is designed in order to give the best heading the robot should have whatever

its position. The arctan function is used here because it gives a perpendicular direction to the
line when the robot is very far from the line, a parallel direction when the robot is already on
the line, and with a nice curve in the middle.

In order to �nd this algorithm, we need �rst to compute the angle of the line we want to
follow.

If we de�ne the line with two waypoints, A = (Ax, Ay) and B = (Bx, By), then we can
compute θ, the angle of the line :

θ =
arccos(Bx −Ax)√

(By −Ay)2 + (Bx −Ax)2
. (1.2)

The distance of the robot from the line is also important to know, let us note it d. We also
note P = (x, y) the position of the robot. Then we have :

d =
(By −Ay) · x− (Bx −Ax) · y +Bx ·Ay −By ·Ax√

(By −Ay)2 + (Bx −Ax)2
. (1.3)

We also need to know on which side of the line the robot is. We note s this information, with
s ∈ {−1, 1}. So :

s = sign((x−Ax) (By −Ay)− (y −Ay) (Bx −Ax)). (1.4)

Finally, we can compute φ, the angle the robot should have in order to follow the line :

φ = θ + arctan(
s · d
k

), (1.5)

where k is a coe�cient which de�nes the strength of the curve : it is the distance from the
line where the angle with the line is 45o.

An example of vector �eld is presented on Figure 1.3.

Despite the number of attempts before having a satisfying behavior, at the end the boat well
followed the lines. Therefore it could participate at La Cordelière research, by making lines in
the Rade de Brest with appropriate sensors, to help the André Malraux (see Figure 1.4) in the
places it can't go, because of the shallows.

An example of the user interface while Boatbot is following lines is presented on Figure 1.5.
We can see the track of the boat in comparison with the desired lines. So we notice that the robot
is always close to the lines, and has a straight direction. However, it is often lightly displaced
and not exactly on the line. This is mostly due to the currents, and that is why we will try to
estimate them in the next chapter in order to take them into account in the control.
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Figure 1.3: Example of vector �eld to follow the line (A→ B).

Figure 1.4: Picture of André Malraux researching La Cordelière. André Malraux is a boat of the
DRASSM.
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Figure 1.5: Screenshot of the user interface for Boatbot, after having made some lines. The lines
to follow are in blue, and the track of the boat is in orange, highlighted in yellow.
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Chapter 2

Estimation of the current with a
Kalman �lter

The current is a perturbation which is di�cult to evaluate and must be taken into account to
have a proper control. If we can estimate this perturbation, the control will be easier and better.
We can consider that the current is constant in a short period, and therefore think using an
integral term in the controller to compensate the static error. But this error is static only if the
boat always follow the same heading, and most of the time, that is not the case.

An interesting way to estimate this current, whatever the speed or the heading of the boat, is
to use a Kalman �lter. Indeed, the Kalman �lter is used to estimate unknown variables (here the
currents) by using several measures containing statistical noise (here the speed and the course
over ground and the heading)[7].

2.1 Description of the model

The boat is described by the following state equations :




ẋ1 = p1 cos(x3) + p2
ẋ2 = p1 sin(x3) + p3
ẋ3 = u

(2.1)

where (x1, x2) are the coordinates of the robot (its center), x3 its heading, p1 the speed of
the boat with respect to the water, and (p2, p3) the unknown currents.

Here we want to estimate the vector p = (p1, p2, p3)
T which is unknown. We consider that

the boat speed is constant, and that the currents change very slowly, so they are constant in our
scale. So, we have :

ṗ = 0 +α(t), (2.2)

and we measure the speed and the course over ground, which include the robot speed added
to the currents :

y =

(
p1 cos(x3) + p2
p1 sin(x3) + p3

)
+ β(t), (2.3)

where α and β are random independent Gaussian noises.
So, we can now get a reliable estimation p̂ of p using a Kalman �lter.
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2.2 Kalman �lter

Let us write the state equations with matrix, and discretized :
{
pk+1 = Akpk +αk

yk = Ckpk + βk
, (2.4)

with : Ak = I (the Identity), and Ck
2.3
=

(
cos(x3) 1 0
sin(x3) 0 1

)
.

So, now we can write the complete Kalman �lter and compute the estimation p̂ with the two
phases : correction and prediction [7].

Finally, we have :

p̂k+1|k = Akp̂k|k (predicted estimation)
Γk+1|k = Ak · Γk|k ·AT

k + Γαk
(predicted covariance)

p̂k|k = p̂k|k−1 +Kk · ỹk (corrected estimation)
Γk|k = (I −KkCk) · Γk|k−1 (corrected covariance)
ỹk = yk −Ckp̂k|k−1 (innovation)
Sk = Ck · Γk|k−1 ·CT

k + Γβk
(covariance of the innovation)

Kk = Γk|k−1CT
k S
−1
k (Kalman gain)

.

2.3 Control

Now, we want to implement a control of the the robot based on a classic feedback linearization.
Let us take as an output

y = x3 + arctan(x2). (2.5)

We want our controller to make the output y converges to 0, so the robot will perform a line
following (y is seen as the error).

By di�erentiating 2.5, we get :

ẏ = ẋ3 +
ẋ2

1 + x22
(2.6)

2.1
= u+

p1 sin(x3) + p3
1 + x22

. (2.7)

So, as the di�erential equation 2.7 is of order 1, we choose a �rst order equation for the error
y :

ẏ + y = 0. (2.8)

The command u should have this error equation satis�ed, hence :

u = −y − p1 sin(x3) + p3
1 + x22

(2.9)

2.5
= −x3 − arctan(x2)−

p1 sin(x3) + p3
1 + x22

. (2.10)

This control will make the robot attracted by the line x2 = 0. We can remark that there is
not any singularity.
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As we do not know the currents and the speed of the robot, we use the estimation given by
the Kalman �lter presented in Section 2.1 :

u = −x3 − arctan(x2)−
p̂1 sin(x3) + p̂3

1 + x22
. (2.11)

2.4 Simulation and results

The controller presented in Section 2.3 has been implemented into a simulation in two dimensions,
with Python. The code is available in Appendix B. The aim of this simulation is to prove that the
currents are well estimated by the Kalman �lter, and that the control works for a line following.

So the results are convincing : on Figure 2.1, we can see that the direction of the current is
already quite good, the lack of accuracy is mainly on the strength of this current. And quickly,
it is very well estimated, with high accuracy, since the Figure 2.2 shows the same simulation a
few seconds later. We also notice that the robot is on the line, and moves like a crab, since it
takes the currents into consideration.

Figure 2.1: Screenshot of the simulation at the beginning. The blue array represents the real
current whereas the green one is the estimated one. The gray ellipse represents the incertitude
of the estimation, it is a representation of the covariance matrix given by the Kalman �lter.

This simulation shows good results, and let think this method works well. However, it has
not been implemented and tested on a real robot yet, so we can not conclude for now. Indeed,
in the simulation, the model used is relatively simple, it is linear and Gaussian, and it is exactly
the same model for the simulation and in the Kalman �lter. Therefore, we stacked all the odds
in our favor to have the expected results, but even if the results are encouraging, we should wait
for real tests before drawing a reliable conclusion.
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Figure 2.2: Screenshot of the simulation once the current is well estimated.
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2.5 Tight slalom control for sailboat robots

The control presented in Section 2.3 is based on an associated vector �eld, as illustrated on
Figure 2.3. It works well for a line following, and it is precise. This approach can be generalized
to any vector �eld.

Figure 2.3: Line following with its associated vector �eld.

What is important in this approach is that we do not control the speed, we only regulate
the heading and show that it is su�cient for following a precise path accurately. The di�erence
between this kind of control and a classic linear controller is that we just want to be collinear to
the vector �eld instead of being equal. Here, the controller anticipates the fact that the required
trajectory have to take into account the curvature of the vector �eld.

This approach has been developed in order to control a sailboat, where the speed is generally
hard to control. This was in the context of the participation in WRSC1 and IRSC2. We wrote
an article to explain how does it work for the IRSC [9]. The article is joined to this report, in
Appendix C.

So we simulated a test-case where a tight slalom is performed by a sailboat robot (see Figure
2.4), showing that by anticipating the required trajectory, we succeed in following exactly a
vector �eld, and, in this example, succeed at a tight slalom without missing any gate.

1WRSC : World Robot Sailing Championship, a competition for non-motorized autonomous boats, up to 4m

long, using only wind as propulsion.
2IRSC : International Robotic Sailing Conference.

17



Wind

Figure 2.4: Simulation of a sailboat performing a tight slalom.
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Chapter 3

Bathymetric localization of an AUV

Even when we have a relatively precise idea of where is a researched wreck, and it is not easy to
have, a huge amount of work is still much to do. Indeed, the research zone is very often spread,
and most of the used sensors require to move slowly. It represents days of navigation on the sea,
and sometimes we are not sure to �nd the wreck. Moreover, if the researched boat sank a very
long time ago, it might be completely covered by sediments.

All of these elements raise two issues. The �rst one depends on the place the research takes
place, but if it is in a high frequented place (with a lot of maritime tra�c), as in the Rade de

Brest, it can be di�cult and disturbing to lock down the place during a long time. The second
one is about sensors. If the wreck is buried under several meters, the only sensor I know which
might detect the boat is a magnetometer. However, the magnetometer should be towed very
close to the seabed, in order to be the closest of the wreck as possible. But when the sensor is
towed from a boat, it is very di�cult to regulate its depth and to know where it is accurately.

In order to tackle these issues, a good solution is to use underwater vehicles, on condition
that it can well localize itself. Indeed, it is not a matter of having a boat connected to the vehicle
or of needing the vehicle to resurface regularly. It must be completely autonomous.

3.1 Use of the bathymetric information of the place

Today, the problem of localization is often quickly solved by using a GPS. It is cheap and e�ective.
However, GPS uses radio waves and so the signal is stopped by walls and water. But in such
places like inside buildings or in the water, we want to see robots work. And as a good control
depends on a good localization, the localization issue is still topical in the research �eld. For
now, under the water, the common solution consists in getting a GPS �x, diving, and using dead
reckoning to estimate the position. But after a while, the robot must resurface to have a new
GPS �x, otherwise the cumulated errors will be too important and the robot will be quickly lost.

The idea exposed here is about using the bathymetry, that is the measurement of the depths
of the seas, in order to �nd where the robot can be. At the beginning, the robot does not
know where it is, but it knows the bathymetric map of the surrounding area. It moves, while it
measures the depth regularly, with a sonar for instance, and it tries to �nd where are the possible
places in the map that correspond to its measurements, and by taking into account the eventual
measurement errors.

So we suppose we already have the bathymetric map of the interesting region. Actually, it is
something relatively easy to �nd today, the hardest is to have a good resolution. Otherwise, we
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can imagine an AUV doing bathymetric SLAM1, like in [3]. However, it supposes that the AUV
has at least a multi-beam echo sounder, which is a big and expensive sensor.

3.2 Use of a binary tree to store the bathymetric map

Now, the point is that we have a bathymetric map of the whole area to use. As the map is high
de�ned � we hope so � it represents a big �le with a huge amount of data. So the idea is to place
data in a tree so that we can load only a part of the map in each iteration, and earn a lot of time
and resources.

The tree is built so that each node of the tree contains the interval of depths included in the
region the node represents. It means that the root, which contains the whole map, will store the
interval that include every existing depths in the map. As the tree is binary, the root will have
two sons : the left part of the map, and the right one. So, for instance, if our robot measures a
depth of 12 meters, and the left son contains the interval [8, 15], and the right one the interval
[14, 22], then only the left part of the map will be loaded, because we know that we can not be
in the right one. And this process is continued in each interesting branch of the tree, so that at
the end the calculations are made only on some parts of the map.

An example of a localization after only one iteration is provided on Figure 3.1. We can see
on the left a representation of the bathymetric map, and on the right the result after simulating
one measure on this map. To be precise, the measure chosen here is 17 meters of depth, with 0.3
meter of estimated error.

Figure 3.1: Bathymetric localization.

1SLAM : Simultaneous Localization And Mapping.
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3.3 Interval analysis and contractors

So, in our context, we are working with intervals : the binary tree presented in Section 3.2 stores
depths in interval. The aim is to use these intervals and make some calculations on them to
facilitate the localization. Actually, the robot will know its position only by computing a box

which includes its real position. A box is an interval vector. Here, as the robot is localized in
two dimensions, the researched box is the Cartesian product of two intervals : [x] and [y].

In order to improve the localization, we will see that we can contract the boxes to reduce
their size [8]. A contractor is an operator associated with a constraint. This contractor is applied
on a box, which one will be reduced such that the contracted box is included in the initial box,
and the constraint is still satis�ed. A contraction is illustrated on Figure 3.2.

x

y
initial box

contracted box
paving S

solution set

Figure 3.2: Contraction of a box.

3.4 Localization

Finally, the algorithm for the localization is quite simple. The �rst step is explained in Section
3.2 : the robot measures the depth, and �nd a union of boxes in the map where it can be. Then,
the robot will move a little, and a new iteration begins. Here we have two new informations :
a new measure of depth, and a moving which can be computed like in dead reckoning, by using
IMU information and estimating the move. This last estimation is marred by the measurement
errors, but is used to transform the box we have at the last iteration into a new box, larger
because of the errors, which is an approximation of our new position. Then, this new box will
be contracted using the new measure of depth and the bathymetric map as constraint. Finally,
we reiterate this continuously, and the box will be smaller and smaller, therefore the localization
will be better.
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Obviously, this method works only if the seabed is not �at, and if the relief is irregular
enough.
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Conclusion

To conclude, my internship was very varied. I worked on a real system, Boatbot, and had an
overview of all the di�culties working on a real robot implies. Even for a simple control which
works very quickly in simulation, the step to the real robot is really big.

I used two approaches for estimating an unknown variable : a Kalman �lter for the currents,
and interval analysis for a bathymetric localization. Both of them are interesting, and enable
di�erent ways to tackle a problem.

Finally, I took part in the writing of an article and led some simulations in order to present
a new approach for controlling sailboat robots.

Now, there are several foreseeable areas of work. The algorithm for the estimation of the
currents with the Kalman �lter has not been implemented on a real robot yet. That would be
interesting, or at least to test it in simulation but with a realer model.

Concerning the bathymetric localization, there is still much work to do, and I will continue
to develop this approach in particular during a thesis.
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Appendix A

Boatbot : examples of data from the
SBP and the magnetometer

A.1 Example of data from the SBP (with detection of a
wreck)

The SBP, or sediments sounder, give two graphs, corresponding to two di�erent frequencies.
Indeed, the sensor receives a high frequencies signal, represented here on the bottom graph. It
gives information about the seabed, and do not go through the ground. So we see the depth
and whether a wreck sticks out. But what is particular with this sensor is the low frequency
signal, which is represented in the top graph. As it is low frequencies, it can go through the
di�erent sediment layers, and evidence something buried under some meters of sediments. In the
graph, we can see black points under the seabed, so it is certainly due to tough parts of a buried
wreck.
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A.2 Example of data from the magnetometer (with detec-
tion of a wreck)

Figure A.1: Example of a detection with the magnetometer. This is the amplitude of the magnetic
�eld according to the time. The green triangles corresponds to a detection by the algorithm.
Here, the big peak is caused by a known wreck.

Figure A.2: Map of targets. Once the positive detections of the magnetometer have been linked
with GPS �xes, a map like this one is exported to localize the targets where there were the
detections.
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Appendix B

Python code of the simulation for
estimating the currents

"""

This code displays a simulation of a robot being controlled to follow a line.

The currents modify the trajectory of the robot, so a Kalman filter is used to

estimate these currents, and therefore the estimation is used in the control.

"""

from roblib import * # Local library containing usefull functions for plotting

p1 = 1.0 # Speed of the robot

p2 = -0.2 # Speed of the currents with respect to x

p3 = 0.3 # Speed of the currents with respect to y

gamma = 100*eye(3, 3) # Initial covariance matrix of estimation of vector p

gamma_a = 0.000001 # Incertitude on alpha

gamma_b = 0.2 # Incertitude on beta

def f(x, u):

x = x.flatten()

theta = x[2]

xdot = np.array([[p1*cos(theta) + p2], [p1*sin(theta) + p3], [u]])

return xdot

def draw_target(xmin, xmax):

s = arange(xmin, xmax, 0.01)

w = array([s, 0*sin(s)])

plot2D(w, "red", 3)

return

def kalman_predict(xup,Gup,u,gamma_alpha,A):

gamma_1 = A @ Gup @ A.T + gamma_alpha

x1 = A @ xup + u

return(x1,gamma_1)
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def kalman_correc(x0,gamma_0,y,gamma_beta,C):

S = C @ gamma_0 @ C.T + gamma_beta

K = gamma_0 @ C.T @ inv(S)

ytilde = y - C @ x0

Gup = (eye(len(x0))-K @ C) @ gamma_0

xup = x0 + K @ ytilde

return(xup,Gup)

def kalman(x0,gamma_0,u,y,gamma_alpha,gamma_beta,A,C):

xup,Gup = kalman_correc(x0,gamma_0,y,gamma_beta,C)

x1,gamma_1=kalman_predict(xup,Gup,u,gamma_alpha,A)

return(x1,gamma_1)

def control_kalman(x, phat, u):

global gamma

x1, x2, x3 = x.flatten()

C = array([[cos(x3), 1, 0], [sin(x3), 0, 1]])

y = C @ array([[p1], [p2], [p3]]) + gamma_b*randn(2,1) # measure

phat, gamma = kalman(phat, gamma, 0*u, y, gamma_a*eye(3, 3),

gamma_b*eye(2, 2), eye(3,3), C)

u = -x3 - arctan(x2) - (phat[0][0]*sin(x3)+phat[2][0])/(1+(x2)**2)

return phat, u

# Initial state

x = array([[0], [-3], [1]])

u = 0

phat = array([[0], [0], [0]])

dt = 0.05

xmin, xmax, ymin, ymax = 0, 20, -5, 5

ax = init_figure(xmin, xmax, ymin, ymax)

# Boucle of simulation : the Euler scheme is used to simulate the behaviour of

# the robot.

for t in arange(0, 12, dt):

clear(ax)

draw_tank(x, 'darkblue', 0.3) # Draw a robot at the right position

draw_target(-xmin, xmax)

arrow(15.5, 2, p2, p3, head_width=0.2, color='blue') # Current

arrow(18, 2, phat[1][0], phat[2][0],

head_width=0.2, color='green') # Estimated current

draw_ellipse(array([[18+phat[1][0]],[2+phat[2][0]]]), gamma[1:, 1:], 0.9,

ax, 'gray') # Covariance matrix

phat, u = control_kalman(x, phat, u)

x = x+dt*f(x, u) # Euler

pause(1)
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The article : Tight slalom control
for sailboat robots
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Abstract

Existing controllers for sailboat robots are usually developed for speed
performances and for long straight lines. In this context, the accuracy
is not the main concern. In this paper, we consider the tight slalom
problem which requires accuracy. We propose a feedback-linearization
based method combined with a vector field approach to control the
sailboat. Some simulations show that the robot is able to perform the
slalom without missing any gate.

1 Introduction

We consider a mobile robot described by the state equations [5]
{

ẋ = f(x,u)
p = g(x)

(1)

with an input vector u = (u1, . . . , um), a state vector x = (x1, . . . , xn) and a pose vector p = (p1, . . . , pm+1) with
n ≥ m+ 1. The goal of this paper is to show we can follow a chosen vector field in the p space [8][12][13], using
a feedback-linearization based method. It means that we can control m + 1 state variables and not only m of
them, as given by the theory [4]. This is due to the fact that we perform a path following instead of a trajectory
tracking where the time is involved. In practice, the vector p corresponds to the position of the center of the
robot and may be of dimension 2 (if m = 1) or 3 (if m = 2). This is consistent with the fact that we need one
actuator to control the direction of a 2D vehicle such as a car or a boat and two actuators for a 3D vehicle such
as a plane.

The approach we propose is to find a controller so that the vector ṗ be collinear (instead of equal) to the
required field. This is illustrated in this paper in the case where the mobile robot is a sailboat [10][2][9]. The
input u is scalar (i.e., m = 1) and corresponds to the rudder. Moreover, we will show that this approach is
particularly adapted to sailboats where the speed is hardly controllable [11][14].

2 Method

In order to facilitate the understanding of our approach, we will deal with a Dubins car, which is much simpler
than a sailboat. The extension to other type of mobile robots is straightforward.

Copyright c© by the paper’s authors. Copying permitted for private and academic purposes.
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2.1 Line following for a Dubins car

To introduce our approach, we consider a robot (here a Dubins car) moving on a plane and described by the
following state equations: 




ẋ1 = cosx3
ẋ2 = sinx3
ẋ3 = u

(2)

where x3 is the heading of the robot and p = (x1, x2) are the coordinates of its center. The state vector is given
by x = (x1, x2, x3).

Let us choose as the control output the variable

y = x3 + atan(x2). (3)

and let us find a classical feedback linearization based controller [6] such that the output y (which can be
interpreted as an error) converges to 0. In such a case, we will have
x3 + atan(x2) = 0
and the robot will perform a line following. Differentiating (3) we have

ẏ = ẋ3 +
ẋ2

1 + x22
= u+

sinx3
1 + x22

. (4)

Since u occurs in (4), the relative degree of the system is 1. We may thus choose a first order equation for the
error y, such as

ẏ + y = 0, (5)

We then choose u to have this error equation satisfied. From (4) and (5), we get:

u = −y − sin x3

1+x2
2

= −x3 − atan(x2)− sin x3

1+x2
2

(6)

Note that we do not have any singularity. As illustrated by the simulation depicted on Figure 1, the associated
vector field makes the car attracted by the line x2 = 0.

Figure 1: Precise line following

Remark. For more robustness with respect to small uncertainties, a sliding mode effect could be added. It
suffices to take for required error

y = x3 + atan (x2 + α · sign (x2)) ,

where α is a small positive coefficient, e.g., α = 0.1. In such a case, the robot will go to the line in a finite
time (and not asymptotically, as previously). Moreover, it will remains exactly on the line even if some small
uncertainties occur.



2.2 Generalization

We want our robot to follow the field ψ(p), more precisely, we want that ψ(p) and ṗ point toward the same
direction. This condition can be translated into the form ϕ (ψ(p), ṗ) = 0, where ϕ is a collinearity function
which satisfies

ϕ (r, s) = 0⇔ ∃λ > 0, λr = s. (7)

Typically, this function corresponds to one angle (the heading) if m = 1 and two angles (heading, elevation) for
m = 2. Note that the function ϕ cannot be expressed with a determinant since r, s should not point toward
opposite directions. We define the output

y = ϕ (ψ(p), ṗ) = ϕ

(
ψ(g (x)),

∂g

∂x
(x) · f (x,u)

)
. (8)

Since y ∈ Rm, we can apply a feedback linearization method and we get y → 0. This means that the robot
will follows the required field. Note that we have no control on the speed, which is not our main concern in this
paper.

2D case. Consider for instance the case where m = 1. We have

ψ(p) =

(
ψ1 (p)
ψ2 (p)

)
. (9)

We take as an output y, the angle between the actual heading vector ṗ = ∂g
∂x (x) · f (x,u) and the desired heading

vector given by ψ(p). Denote by θ (x) the argument of the vector ṗ. We have

y
(8)
= = angle

(
ψ(g (x)), ∂g∂x (x) · f (x,u)

)

= angle

(
ψ(g (x)),

(
cos θ
sin θ

))

= sawtooth(θ−atan2(ψ2(g (x))︸ ︷︷ ︸
b

,ψ1(g (x))︸ ︷︷ ︸
a

))

(10)

The sawtooth function is given by:

sawtooth(θ̃) = 2atan
(

tan θ̃
2

)
= mod(θ̃ + π, 2π)− π (11)

As illustrated in Figure 2, the function corresponds to an error in heading. The interest in taking an error
θ̃ filtered by the sawtooth function is to avoid the problem of the 2kπ modulus: we would like a 2kπ to be
considered non-zero.

Figure 2: Sawtooth function used to avoid the jumps in the heading control

We have

ẏ = θ̇ − (− b

a2 + b2︸ ︷︷ ︸
∂atan2(b,a)

∂a

· ȧ+
a

a2 + b2︸ ︷︷ ︸
∂atan2(b,a)

∂b

· ḃ)

= u+ b·ȧ−a·ḃ
a2+b2 ,

(12)



if we assume that the input u corresponds to the desired angular velocity. We propose a feedback linearization
based control based on the required equation ẏ = −y. We have

u
(12)
= ẏ − (b·ȧ−a·ḃ)

a2+b2

= −y − (b·ȧ−a·ḃ)
a2+b2 (since ẏ = −y)

(10)
= − (sawtooth(θ − atan2(b, a))− (b·ȧ−a·ḃ)

a2+b2 .

(13)

We thus have the guarantee that after some time, the error angle y is 0 and that we follow exactly the vector
field.

2.3 Dubins car following the Van der Pol cycle

We would like our Dubins car to follow a path corresponding to the limit cycle of the Van der Pol equation:

ψ(p) =

(
p2

−
(
0.01 p21 − 1

)
p2 − p1

)
. (14)

Take g (x) = (x1, x2)
T

which means that we want to build the paths in the (x1, x2)-space. We have

ψ(g (x)) =

(
x2

−
(
0.01 x21 − 1

)
x2 − x1

)
(15)

and

∂g

∂x
(x) · f (x,u) =

(
1 0 0
0 1 0

)
·




cosx3
sinx3
u


 (16)

Thus

a = x2
b = −(0.01 x21 − 1)x2 − x1
θ = x3

(17)

and

ȧ = sinx3
ḃ = − (0.01 · 2x1ẋ1)x2 −

(
0.01 x21 − 1

)
ẋ2 − ẋ1

= −0.02 · x1x2 cosx3 −
(
0.01 x21 − 1

)
sinx3 − cosx3

(18)

From (13), we get that final controller is

u = −sawtooth
(
x3 − atan2

(
−
(
x2
1

100 − 1
)
x2 − x1, x2

))

+

((
x2
1

100−1

)
x2+x1

)
·sin x3+x2·

(
x1x2 cos x3

50 +

(
x2
1

100−1

)
sin x3+cos x3

)

x2
2+

((
x2
1

100−1

)
x2+x1

)2

(19)

The behavior of the control law is illustrated by Figure 3. The car is very close to the true limit cycle, which
is not the case if we consider a classical linear controller. Indeed, the controller anticipates the fact that the
required trajectory have to take into account the curvature of the vector field.

3 Application to the slalom problem

We consider the following model which corresponds to a simplified version of the sailboat model given in [7].
The state equations are



Figure 3: Dubins describing accurately the Van der Pol cycle





ẋ1 = v cos θ
ẋ2 = v sin θ

θ̇ = −ρ2v sin 2u1
v̇ = ρ3 ‖wap‖ sin (δs − ψap) sin δs − ρ1v2
σ = cosψap + cosu2

δs =

{
π + ψap if σ ≤ 0

−sign (sinψap) · u2 otherwise

wap =

(
−a sin (θ)− v
−a cos (θ)

)

ψap = angle wap

(20)

where ρ1 = 0.003, ρ2 = 0.2, ρ3 = 3. In this equation u1, u2 correspond to the tuning of the rudder and the sail,
respectively. We would like our robot to follow a path which makes a tight slalom through doors that have to
be passed. We assume that we have a Cartesian equation for our path. For instance, we consider that the path
is described by

e (p) = 10 sin
(p1

10

)
− p2 = 0 (21)

where e (p) corresponds to an error. This path corresponds to a path that should be possible for a normal
sailboat robot for crosswind conditions. We take a vector field which corresponds to a pole placement strategy.
For instance, we want the error satisfies ė = −0.1 e, so that it will converge to zero in about 10 sec. Thus

cos
(p1

10

)
ṗ1 − ṗ2

︸ ︷︷ ︸
ė(p)

= − 1

10

(
10 sin

(p1
10

)
− p2

)

︸ ︷︷ ︸
e(p)

(22)

We take ṗ1 = 1, to go to the right. As a consequence, we get the following field:

ψ(p) =

(
ṗ1
ṗ2

)
=

(
1

cos
(
p1
10

)
+ 1

10

(
10 sin

(
p1
10

)
− p2

)
)

(23)

which is attracted by the curve p2 = 10 sin
(
p1
10

)
.

We have

ψ(g (x)) =

(
1

cos
(
x1

10

)
+ 1

10

(
10 sin

(
x1

10

)
− x2

)
)

(24)



and
∂g

∂x
(x) · f (x,u) =

(
cosx3
sinx3

)
. (25)

Thus
a = 1
b = cos

(
x1

10

)
+ sin

(
x1

10

)
− 1

10x2
(26)

and
ȧ = 0

ḃ = −ẋ1 1
10 sin

(
x1

10

)
+ ẋ1

1
10 cos

(
x1

10

)
− 1

10 ẋ2
= 1

10 cosx3 ·
(
cos
(
x1

10

)
− sin

(
x1

10

))
− 1

10 sinx3.
(27)

From (13), we get that the desired angular velocity should be

ω̂ = − (sawtooth(θ − atan2(b, a))− (b·ȧ−a·ḃ)
a2+b2

. (28)

Now, since the true angular velocity is θ̇ = −ρ2v sin 2u1, we take

u1 = −1

2
arcsin

(
tanh

(
ω̂

ρ2v

))
. (29)

The saturation function tanh is needed since the rudder cannot respond to any required ω̂. Indeed, if our
controller ask to turn too fast for the boat, ω̂

ρ2v
will be more than 1, and the rudder can only do its best. The

behavior of our controller is illustrated by Figure 4, where the sailboat has to slalom tightly between doors. We
can see that the trajectory follows exactly the sine path (magenta).

The Python source codes associated to the simulation can be found at:

https://www.ensta-bretagne.fr/jaulin/slalompy.zip

w
in
d

Figure 4: The sailboat robot slaloms through the blue doors

4 Conclusion

In this paper, we have proposed a new controller for sailboat robots which allows to take into account the
curvature of the required field in order to anticipate as much as possible the required trajectory. To our knowledge,
this is not considered by existing controllers [1] which are devoted to straight lines [3]. It has been shown that
the required vector field could be followed exactly. This anticipation is crucial if we want to maneuver quickly
and precisely as needed when we want to avoid an obstacle. This has been illustrated on a simulated test-case
where a tight slalom is performed by a sailboat robot.
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