
State estimation by interval analysis

and probabilistic approaches: box

particle �ltering and localisation

applications

Author:

M. Evandro Bernardes

Option: SPID Robotics

Promo: 2017

Supervisor:

Dr. Joaquim Blesa Izquierdo

Institut de Robòtica i Informàtica Industrial, CSIC-UPC

Parc Tecnològic de Barcelona. C/ Llorens i Artigas 4-6,

08028, Barcelona, Spain

August 29, 2017

Abstract � In this project, a box particle �ltering algorithm is proposed and imple-

mented. The algorithm combines two types of noise in measurements: stochastic noise

a�ecting the measurements and bounded noise. The method is explained and compared

extensively with the conventional particle �ltering algorithm, both in a theoretical and in

a practical way. Multiple di�erent simulations are performed to further analyse the di�er-

ences in performance between the conventional particle �lter and the box particle �lter,

including a simple SLAM application.

Keywords: State estimation. Interval analysis. Particle �lter, box particle �lter,

SLAM.

Résumé � Dans ce project, un algorithme de �ltre particulaire par intervalles est pro-

posé et implémenté. Cet algorithme prend en compte deux types di�érents de bruit: le

bruit stochastique a�ectant les mesures et le bruit borné. La méthode est expliquée et

comparée avec le �ltre particulaire conventionnel. Plusieurs simulations di�érentes ont été

réalisées pour mieux analyser les di�érences de performance entre le �ltre conventionnel et

l'implémentation du �ltre par intervalles, ainsi qu'une simple application SLAM.

Mots-clé : Estimation d'état. Analyse par intervalles. Filtre particulaire, �ltre par-

ticulaire par intervalles, SLAM.

Acknowledgements

I would like to thank Dr. Joaquim Izquierdo Blesa, who supervised my work during the

whole project, giving me important advice whenever I needed, guiding me through under-

standing the necessary theory and helping me writing the memoir.

Thanks to Dr. Luc Jaulin, whose course on interval analysis has been crucial to the

development of the project, besides having helped me �nding the project at IRI.

Special thanks to ENSTA Bretagne and to the Institut de Robòtica i Informàtica In-

dustrial, for providing me Matlab access and all the necessary environment for me to work

on this project, and to the Consortium Ensicaen, for providing me a scholarship through

Erasmus+ without which my stay in Barcelona would not have been possible.

I would also like to express my gratitude to all my friends who supported me during

the project, specially to Joaquina Bustamante for her constructive remarks when reading

the earlier versions of the manuscript.

3

Contents

1 Introduction 1

2 Project objectives 3

3 Theoretical concepts 5

3.1 Problem de�nition . 5

3.2 Bayesian �ltering . 6

3.3 Interval analysis . 8

3.3.1 Set operations . 8

3.3.2 Extended operations . 9

3.3.3 Boxes (interval vectors) . 9

3.3.4 Inclusion functions . 10

3.4 Box Particle �lter . 10

4 Implementation 13

4.1 Box particle �lter . 13

4.2 Details . 17

4.2.1 Implementation of intervals . 17

4.2.2 Landmarks . 18

4.3 Obtained data and state estimation . 19

5 Simulations and performance comparisons 23

5.1 Simulations . 23

5.1.1 Scenario 1 . 23

5

6 Contents

5.1.2 Scenario 2 . 35

5.2 Time performance . 40

5.3 Number of boxes/particles . 42

5.4 Simultaneous Localization and Mapping 48

5.4.1 Implementation . 48

5.4.2 Results . 49

6 Conclusion 51

A Implementation of Interval sine and cosine functions 53

A.1 Cosine function . 53

A.2 Sine function . 54

List of Figures

3.1 Dead reckoning example. a) In blue, the real path of the robot and in

red, the estimated path. b) The error in the distance between the real and

estimated paths. 6

3.2 Intersection operation. 9

3.3 Union operation. 9

4.1 Box particle �lter example. Initial step. 14

4.2 Box particle �lter example. Measurement update step. 15

4.3 Box particle �lter example. State update step. 16

4.4 Box particle �lter example. Resampling step. 17

4.5 Example of the measured probability distribution. 20

4.6 Example of the measured probability distribution (continuation). 21

5.1 First scenario used for the simulations, showing the path and landmark

positions. 24

5.2 First test. Comparison between the real path and the computation of all

the estimated path using only the knowledge of the system equations. . . . 25

5.3 First test. Comparison between the real path and the estimation provided

by the conventional particle �lter. 26

5.4 First test. Comparison between the real path and the estimation provided

by the �xed array box particle �lter. 27

5.5 First test. Comparison between the real path and the estimation provided

by the variable array box particle �lter. 28

5.6 First test. Comparison between the real path and the estimation provided

by the variable array box particle �lter. 29

5.7 Second test, conventional particle �ltering. 30

7

8 List of Figures

5.8 Second test, �xed array box particle �ltering. 31

5.9 Second test, variable array box particle �ltering. 32

5.10 Second test, error plot. 33

5.11 Second test, mean error plot. 34

5.12 Second scenario. 35

5.13 Third test, �xed array box particle �ltering. 36

5.14 Third test, variable array box particle �ltering. 37

5.15 Third test, error plot. 38

5.16 Third test, mean error plot. 39

5.17 Time spent by the computer (in seconds) in each estimator during simula-

tions 1 and 2. 40

5.18 Comparison for di�erent number of number of boxes. Simulations with 2,

4, 8, 16, 32 and 64 boxes. 43

5.19 Comparison for di�erent number of number of boxes. Simulations with 128,

256, 512, 1024, 2048 and 4096 boxes. 44

5.20 Error plot for the simulations with 2, 32 and 4096 boxes. 45

5.21 Error mean for all simulations. 46

5.22 Time spent calculating all simulations, in seconds. 47

5.23 SLAM simulation 1. Real map, estimated map and robot's trajectory. . . . 49

5.24 SLAM simulation 2. Real map, estimated map and robot's trajectory. The

robot performs a 360 degrees rotation at each corner, in order to see the

entire room. 50

Chapter 1

Introduction

Knowing how to correctly estimate the state of a given system is necessary to solve many

problems, such as stabilization and control of dynamical systems, localization of an au-

tonomous vehicle, fault diagnosis and obstacle avoidance. The current state can usually be

used to calculate the next state when there is some knowledge of how the system works.

For example, if an input signal is given to the system, it might be possible to predict how

the system will evolve. In reality, the inputs, the system's response to the input and any

other kind of real data, are prone to random errors, and relying only on the current step

to predict the following one creates a series of estimations whose error might grow in time.

In fact, the error at each step is the integration of the errors in all previous steps. To

compensate for this, it is common to rely on sensors which can provide data that can,

directly or indirectly, be used to calculate the system's current state more precisely (for

example, the distance to a known landmark can be used to calculate the robot's position).

These sensors are not exact either, therefore a method of combining all available data to

produce the best possible estimation must be used. Bayesian inference methods such as

Kalman �ltering and particle �ltering can be used to have a more reliable estimation of

the state, if the probability distribution functions of the errors involved are known.

In this project, a robust implementation of the box particle �ltering method described

in Blesa et al. [2015] is created and compared with the conventional particle �ltering.

First, in Chapter 2, the context of the project, place of development and objectives

are precised. Second, in Chapter 3, the theoretical concepts necessary to understand

the project are explained. Then, in Chapter 4, it is explained how the actual code was

implemented on Matlab, and how all measured data are stored. Consequently, in Chapter

5, the results of various simulations using the box and conventional versions of the particle

�lter are shown in order to compare their performance and peculiarities. Finally, in Chapter

6, a quick conclusion on the results obtained during this project is presented.

1

Chapter 2

Project objectives

The project has been carried out at IRI (Institut de Robòtica i Informàtica Industrial) in

Barcelona. The IRI is a Research Center of the Spanish Council for Scienti�c Research

(CSIC) and the Technical University of Catalonia (UPC). According to the Institute's

website, it has three main objectives: to promote fundamental research in Robotics and

Applied Informatics, to cooperate with the community in industrial technological projects,

and to o�er scienti�c education through graduate courses.

The project is mainly based on the article Blesa et al. [2015] and has been done under

the supervision of Joaquim Blesa Izquierdo. The project has started on 14 April 2017 and

it is expected to end on 29 September 2017. Its main objectives are:

� Study Bayesian estimation and commonly used �lter algorithms (the Kalman �lter,

the Extended Kalman �lter and the particle �lter);

� Study theoretical models of mobile robots;

� Study interval analysis;

� Implement the box particle �lter as described in Blesa et al. [2015];

� Run simulations with a theoretical mobile robot model and test the algorithm's

performance compared to other commonly used estimators;

� Implement a SLAM (Simultaneous Localization And Mapping) simulation using the

box particle �ltering algorithm as estimation engine.

3

Chapter 3

Theoretical concepts

3.1 Problem de�nition

The problem of the localisation of a mobile robot can be described by the following system

of dynamic equations [Jaulin, 2011]:

�
x(k + 1) = fk(x(k);u(k);v(k)) (3.1a)

y(k) = h(x(k)) + e(k) (3.1b)

for k = 1; 2; :::; Nk, being x the state of the robot, u(k) 2 Rnu the system input, y(k) 2

R
ny the measured output, e(k) 2 Rnu a stochastic additive error speci�ed by its known

probability distribution function, v(k) 2 Rnx the process noise.

Since both the state and input at step k are known, the evolution can be predicted using

Equation 3.1a. This trivialises calculating the new state at step k+1 in a noiseless system.

Nevertheless, when the random errors present in the system are taken into account, the

subsequent state estimations get increasingly poorer. In fact, computing the state at a

given step k for any system using only the inputs u(k), the initial state and the function

f is known as path integration. This kind of estimation is unstable and might produce

curves which are close to the real path for small values of k (at the beginning) but presents

big error values for higher values of k. Considering a discrete system, if estate(k) is the

estimation's error resulting from step k� 1 to k, the total error at a given step is going to

be a sum of all those errors. An example of this type of estimation can be seen on Figure

3.1, showing how the error evolves.

To compensate this, sensors which can (directly or indirectly) give information about

the current state are used in real applications, using Equation 3.1b. Taking the same

example of the mobile robot, it is common to use distance sensors that can calculate the

distance of the robot to one or more �xed and well-known locations called �landmarks�.

5

6 Chapter 3. Theoretical concepts

a) b)

Figure 3.1: Dead reckoning example. a) In blue, the real path of the robot and in red, the

estimated path. b) The error in the distance between the real and estimated paths.

Using only the distance to the landmarks to calculate where the robot is at a given time

is the classical problem of trilateration.

The main objective of the estimation algorithms studied in this work is to use all the

available data, both internal (the systems inputs) and external (the sensor readings), to

e�ciently compute the states of a given system.

3.2 Bayesian �ltering

The estimation methods most commonly used to solve this kind of problems rely on �ltering

the data using methods of recursive Bayesian estimation. These methods are general

probabilistic approaches that combine multiple available data, which makes it possible

to compute a more precise estimation. Localisation problems often rely on recursively

calculating a robot's position using knowledge of the system combined with new data

being gathered by sensors (a thorough explanation can be seen in Sarkkä [2013]). This is

the reason why recursive Bayesian estimation is extensively used in robotics.

When the model perfectly �ts the real system, the measurement noise is uncorrelated

and their distribution functions are known, the conventional Kalman �lter is the optimal

�lter and gives the best possible solution. The conventional Kalman �lter cannot be used

with non-linear system functions though, so other methods of Bayesian �ltering should be

used when dealing with this kind of situations.

The most common state estimation algorithm applied for non-linear systems is the

3.2. Bayesian �ltering 7

Extended Kalman Filter (EKF). Although, if the non-linearities are severe, the EKF has

troubles giving good estimates because it relies on linearisation. The Unscented Kalman

Filter (UKF) presents improvements but it still is an approximate non-linear estimator [Si-

mon, 2006]. The Particle �lter, which is a completely non-linear estimator, will be described

in the following section.

Particle �lter

The particle �lter is a particle Monte Carlo method used to solve �ltering problems like

the one studied in this work. It operates by applying multiple �particles� (points in a

state space) that represent a probability density distribution. Filtering techniques are

then applied on these particles, resulting in new particles that represent the posterior

distribution. At the initial step, a �rst probability density is calculated randomly (and

evenly) to work as the �rst prior distribution.

These particles are an approximation of the probability distribution by point weights

at each time k, as shown in Equation 3.2.

p(x(k)) �
NX
i=1

w(k)i(x(k)� x(k)i); (3.2)

where each point x(k)i is a particle, and every particle has its corresponding positive weight

w(k)i. Moreover, the point weights are normalised so that
PN

i=1w(k)
i = 1.

A more profound analysis of the particle �lter algorithm can be seen in Gustafsson

et al. [2002]. The basic algorithm can be described by the following:

1. Initialisation: At this stage, the particles x(0)i are initialised, and p(x(0)i) = w(k�

1)i, k = 0 and i = 1; 2; :::; N .

2. Measurement update: Computation of the posterior probabilities with the Bayes

rule:

w(k)i =
1

�k

P (y(k)jx(k)i)w(k � 1)i; (3.3)

while �k =
PN

i=1 P (x(k)ijY(k)) is the normalising constant.

3. Resampling: An optional step, where both the particles x(k)i and their correspond-

ing weights w(k)i are replaced by x0(k)i and w0(k)i. These new particles can have

useful properties, and there are multiple ways to resample. In the particle �ltering

algorithm used during the simulations of this work, the algorithm called multinomial

resampling has been used. This is a useful resampling technique that aims at prevent-

ing a problem that may arise when the estimated probability distribution becomes

too narrow, eventually causing the particle �lter to lose track of the state.

8 Chapter 3. Theoretical concepts

4. State update: Every particle from the new set is moved according to the state

equations:

x(k)i = f(x(k)i; uk; vk) (3.4)

5. Repeat: Do the same for the next step.

Since the particle �lter is a Monte Carlo method, it does not give an optimal estimation

(like the Kalman �lter does for linear systems). Nevertheless, it still produces good ap-

proximations. One limitation of the algorithm is that it might require too much computer

processing time when working with many dimensions.

3.3 Interval analysis

In this section, the main concepts of Interval Analysis used for the development of the box

particle �ltering algorithm will be introduced. Interval analysis is an approach in which

errors (rounding errors or measurement errors, in the studied cases) are modelled as well

de�ned bounds, making it possible for computers to easily perform numerical calculations.

Instead of working with probabilities and density functions, interval analysis is per-

formed by applying a specially de�ned arithmetic directly to these bounds. In other words,

if it can be declared with certainty that a quantity [x]1 must be within the bounds [x; x],

then a quantity [y] = f([x]) is an interval [y; y] which contains all the possible values of

f(x) for x 2 [x]. Interval operations are a special case of set operations (as seen in Jaulin

et al. [2001]), from which many of its fundamental properties are derived.

3.3.1 Set operations

The �rst and most basic kind of operations that can be performed on intervals are derived

directly from set theory. Consider there are two sets, X and Y. Some of the most common

set operations are:

1The quantity is written inside brackets to denote it is an interval quantity. This is the notation used

in this work.

3.3. Interval analysis 9

� Intersection:

X \ Y = fxjx 2 X and x 2 Yg

Figure 3.2: Intersection operation.

� Union:

X [Y = fxjx 2 X or x 2 Yg

Figure 3.3: Union operation.

3.3.2 Extended operations

Besides the basic set operations, any kind of operation de�ned for numbers and vectors can

be applied to intervals and interval vectors. To represent this with sets, taking a function

f de�ned as f(x; y) = x � y, the image of this function can be seen as the following

generalization:

X � Y = fx � yjx 2 X , y 2 Yg (3.5)

This can be used to de�ne set addition, subtraction, etc., which are used to de�ne the same

operations on intervals. The particularities of the de�nitions of interval operations can be

seen in Jaulin et al. [2001].

3.3.3 Boxes (interval vectors)

Given a real interval, denoted [x], de�ned as a closed and connected subset of R, a box

[x] of Rnx is de�ned as the product of nx intervals. Boxes extend the concept of vector for

intervals, and can be used to represent a region of space, instead of a point. For example,

a two-dimensional box (or interval vector) can be used to represent an area, while a two-

dimensional real vector would only represent a point in the same 2D space.

10 Chapter 3. Theoretical concepts

3.3.4 Inclusion functions

An inclusion function [f] of a function f is de�ned so that the image of [x] by [f] is

[f]([x]). This inclusion function is an interval extension to the function f and should be

implemented in a way that the enclosing set is optimal. The value [f]([x]) must always

enclose at least the image of the set [x], but for poor implementations, the resulting interval

can be much wider. Elementary arithmetical operations also have to be extended to the

bounded error context.

To exemplify the di�erences between the same function being extended as two di�erent

inclusion functions, take the function f(x) = x � x. This function can obviously be

simpli�ed to wield the value f(x) = 0. De�ning [f1]([x]) = [x] � [x] and [f2] = [0], using

the value [x] = [0; 2], two very di�erent interval will be computed as a result:

� [f1]([0; 2]) = [�2; 2]

� [f2]([0; 2]) = [0; 0]

It can be observed that the point x = 0 is included in both intervals. The result computed

by [f1] is not optimal though.

In real applications which use complicated equations, it might not be easy to see how

to implement an optimal inclusion function. To solve this problem, contractors can be

used to provide a better version of the inclusion [f] using the original function f , as seen

in Jaulin et al. [2001]. Contractors were not implemented in the algorithm used in this

work.

3.4 Box Particle �lter

In the last few years, an approach based on box particles has been proposed by Abdallah

et al. [2008]. The Box Particle Filter handles box states and bounded errors. It uses

interval analysis in the state update stage and constrained error techniques to perform the

measurement update step. The set of box particles is interpreted as a mixture of uniform

pdf's [Gning et al., 2010]. Using box particles has been shown to control quite e�ciently

the number of required particles, hence reducing the computational cost and providing

good results in several experiments.

More recently, a new approach that takes into account the box particle �ltering ideas

but considering that measurements are tainted by stochastic noise instead of bounded

noise have been proposed in Blesa et al. [2015]. The errors a�ecting the system dynamics

are kept bounded because this type of uncertainty really corresponds to many practical

situations, for example tolerances on parameter values.

3.4. Box Particle �lter 11

The box particle �lter is a state estimation technique that combines ideas from both

the conventional particle �lter and Interval analysis. The basic idea is to replace the

particles x(k)i from the conventional particle �lter by boxes with a �nite but non-zero

area. Analogous to the conventional particle �lter, a probability is given for each box,

creating a distribution of weights. This way, each point weight w(k)i represents now the

probability that the real position is inside the ith box.

For the box particle �ltering proposed in Blesa et al. [2015], the process noise v 2 Rnx

is considered bounded, where vi(k) 2 [��i; �i] for i = 1; :::; nx. On the other hand, the

measurement error e(k) 2 Rny is a stochastic additive error (speci�ed by its known pdf pe)

that includes the measurement noise and the discretization error. As explained in Blesa

et al. [2015], each state is considered as a set X (k), approximated by Nk boxes.

[x(k)]i; i = 1; :::; Nk (3.6)

The width of each box must be equal or smaller than a given accuracy parameter �j for

each component. Each box is given a probability a priori denoted as P ([x(k)]ijY(k � 1)).

The objective is to calculate an estimation of the state evolution X (k+1), computing the

corresponding P ([x(k + 1)]ijY(k)) probabilities.

Despite the fact that the structure of the box particle �ltering algorithm is similar to

the conventional particle �ltering described above, there are substantial di�erences. The

�rst di�erence that should be noted in the proposed box particle �ltering algorithm is that

instead of directly calculating the probability at a point, the integral2 is computed for each

w(k)i, as seen in Equation 3.7.

w(k)i =
1

�(k)
P ([x(k)]ijY(k � 1))

Z
x2[x(k)]i

pe(x)d(x); (3.7)

Where �(k) is a normalization constant used to assure that
PNk

i=1w(k)
i = 1. The deduction

of this integral is based upon the principle that the posterior probability of a box can be

calculated by adding the weights of all particles inside the box when the number of particles

tends to in�nity. The proof is detailed in Blesa et al. [2015].

Another di�erence is that during the state update stage, the box particle �lter considers

all the process error realizations using interval analysis. For every box [x(k)]i a new box

is generated

[x(k + 1)jx(k)]i = [f]([x(k)]i;u(k); [v(k)]) (3.8)

The new boxes [x(k + 1)jx(k)]i inherit the weights w(k)i of their mother boxes [x(k)]i

i = 1; : : : ; Nk.

2The integral of the probability function is calculated for the whole region in Rn
x
de�ned by each box.

12 Chapter 3. Theoretical concepts

Finally, once the updated boxes [x(k+1)jx(k)]i and their associated weights w(k)i have

been computed, a new set of disjoint boxes with the same size and their associated weights

are computed. Optionally, the maximum number of boxes can be bounded eliminating the

boxes with minimum weight if necessary.

Chapter 4

Implementation

In this chapter, the actual Matlab implementation will be explained and analysed.

4.1 Box particle �lter

Two di�erent algorithms were implemented:

� Dynamically creating boxes at each step: the box array at step k is used to calculate

a new box array for step k + 1. This way there are no bounds for the region where

the robot can be found. This unbounded algorithm is the one used for the SLAM

simulation, since no prior knowledge of the environment is supposed.

� Instead of letting the code create an unde�ned number of boxes of di�erent sizes,

a �xed array of equal sized boxes has been used, representing the whole domain of

possible states 1.

Both versions of the algorithm use arrays of �xed size boxes, and they usually do not show

a big di�erence in performance when the estimated path does not approach the limits of

the environment.

The developed algorithm can be divided into the following steps:

1. Initialisation: An array w is used to store the weights of each box at a given time,

representing the weight distribution. If the �rst step is being executed, this array

must be initialised either with a uniform distribution (same weight for every box) or

1This choice is particularly useful in our case of the localization of a mobile robot, where it can represent

the room where the robot is located (assuming there is a bounded area from which the robot cannot escape).

13

14 Chapter 4. Implementation

with a known distribution2. On Figure 4.1, the initial boxes representing the initial

distribution are shown.

Figure 4.1: Box particle �lter example. Initial step.

2. Measurement update: In this step, the weight of each box is updated. Using the

prior probability P ([x(k)]ijY(k�1)) and measurement probability distribution func-

tions pe, the posterior probability P ([x(k)]ijY(k)) can be calculated. The pseudocode

for this part can be seen in Algorithm 1.

Algorithm 1 Box particle �lter measurement update

for all i; w[i] 6= 0 do

L = 1

for j = 1; 2; 3:::N of landmarks do

L L�
R
x2[x(k)]i

pje(x)d(x)

end for

w[i] w[i]� L

end for

�
PNk

i=1w[i]

for i = 1; 2; 3; :::; Nk do

w[i] w[i]� �

end for

On Figure 4.2, an example of the measurement update is shown.

3. State update: This step is analogous to the state update in the conventional particle

�ltering algorithm. Using interval analysis, an interval extension [f] of the state

function f de�ned in Equation 3.1a is used to give an estimation of the next step, as

shown in Equation 3.8.

On Figure 4.3, an example of the state update is shown.

2In case the initial location of the robot is known, for example.

4.1. Box particle �lter 15

Figure 4.2: Box particle �lter example. Measurement update step.

Figure 4.3: Box particle �lter example. State update step.

4. Resampling and repartitioning: The boxes resulting as the output of the system

interval function [f] are proportionally distributed over the existing boxes: Each

box [x(k)]i lying in the region receives a weight value proportional to the interval

intersection between itself and the output box:

w(k + 1)i =

NkX
i=1

NkX
j=1

�
A([x(k + 1)]j \ [f](x(k);u(k)))

A([f](x(k);u(k)))

�
w(k)i

!
(4.1)

Where A([x]) is the area of the box [x] (in the 2D case). The new weight distribution

is normalised at the end. The pseudocode is shown in Algorithm 2.

On Figure 4.4, the resampling step is represented.

16 Chapter 4. Implementation

Algorithm 2 Box particle �lter resampling

for all i; wk[i] 6= 0 do

F = [f](Boxesk[i])

for j;Boxesk+1[j] \ F 6= 6 do

A Area(Boxesk+1[j] \ F)

wk+1[j] wk+1[j] + A� wk[i]

end for

end for

Figure 4.4: Box particle �lter example. Resampling step.

It is also important to note that, for the �xed box array version of the algorithm,

cases where the resulting boxes [f](x(k);u(k)) are outside the limits of the domain

must be treated separately. The algorithm implements this by de�ning a big box

[Xtotal] (representing the whole area) and by always checking if the intersection

[f](x(k);u(k)) \ [Xtotal] is empty. If this intersection is empty, the whole weight

distribution is assumed to be concentrated in the limit boxes. This has positive ef-

fect in the accuracy of estimations computed in this closed-area simulations, since

all outliers are being corrected by discarding any possibility of the position being

outside of [Xtotal].

5. Repeat: The whole process is repeated for k = k + 1 until the whole simulation is

completed.

One of the choices made during the implementation is that it was decide to discard

boxes whose weights are too small (below a certain threshold). This can lead to a slightly

quicker algorithm, but it can also lead to the problem of sample depletion. This problem

arises when the density distribution is too narrow (only a few boxes remaining), which

might lead to the estimator losing track of the robot's position.

4.2. Details 17

4.2 Details

4.2.1 Implementation of intervals

Interval computation is a crucial part of the algorithm, since the possible positions of the

mobile robot are de�ned as an array of boxes (interval vectors), and its corresponding

properties and operations are exploited by the algorithm as seen in Chapter 3, mainly

during the state update and resampling stages.

Since no contractors or separators have been used in this algorithm for now, no exter-

nal interval library has been used and an Interval Matlab class has been created, de�ning

not only intervals and interval vectors, but also their corresponding operations and useful

functions. The class de�nition can be seen in the �le Interval.m3. The simplest way to

de�ne a new interval is:

1 % cr e a t e s the I n t e r v a l x = [a , b]

2 x = In t e r v a l ([a , b]) ;

Listing 4.1: De�ning a new Interval value

The class has been implemented in a way that usual operations with integer, double, etc.

values can also be applied in Interval variables in a natural way, overloading the operators.

This makes it possible to easily implement new robot model equations.

1 x = 5 ;

2 y = In t e r v a l ([1 , 2]) ;

3 z = x + y ;

4 % z i s an I n t e r v a l v a r i ab l e o f va lue = [6 , 7]

5 w = 2�(x + y/2) ;

6 % w i s an I n t e r v a l v a r i ab l e o f va lue = [1 1 , 1 2]

Listing 4.2: Operations with Intervals

The class also takes advantage of Matlab's use of arrays and tries to treat Interval vectors

(boxes) the same way it would treat a common numerical vector.

1 x = In t e r v a l ([0 , 2] , [0 , 2]) ;

2 % x i s an I n t e r v a l vec to r r ep r e s en t i n g the r eg i on [0 , 2] x [0 , 2]

Listing 4.3: Interval vectors

3Only the mathematical functions needed by the used model were implemented, like the basic trigono-

metric functions. An explanation of the sine and cosine functions de�nitions can be seen in Appendix

A.

18 Chapter 4. Implementation

4.2.2 Landmarks

Each observation is modelled with a probability density function that must be integrated

during the measurement update stage. In this work's implementation, a Matlab cell array

has been used to store each probability function, and the measurementUpdate.m script has

been programmed to receive only cell arrays as input.

This is introduced in the program with the variable pe, a cell array containing lambda

functions of 3 variables: the position (x; y) and the measure at instant k. In the case where

only one function is used, it still has to be a cell array of size 1. At each iteration, this

array is updated, since the probability function changes: the pde's variance is known and

do not change, but the mean is updated for every measurement, o�setting the probability

function to make the measured value the most probable value. This creates a new cell

array, called pek in the main script, whose values are only functions of (x; y). These �nal

two-variable density functions array is the one used as input for the measurementUpdate.m

script.

4.3 Obtained data and state estimation

At each step of the simulation, the output data obtained by the algorithm are two arrays:

� Boxes array: to store the exact limits of each one of the de�ned boxes.

� w (or �weight�) array: to store the probability density of the state in each box. For

example, the value w(i; j)4 stores the probability of the correct state being inside the

box Boxes(i; j).

To compute the estimated state value from these data, Equation 4.2 was used.

x̂i;j =
NX
i=1

MX
j=1

w(i; j)med(Boxes(i; j)) (4.2)

Where med([x]) is the mean point of box [x], given by med([x]) = x+ width([x])=2.

On Figures 4.5 and 4.6, the measured probability distribution, the real position and

the estimated position calculated with Equation 4.2 can be seen for two di�erent steps of

the same simulation.

4i and j are used because this example is in the 2D space.

4.3. Obtained data and state estimation 19

Figure 4.5: Example of the measured probability distribution.

20 Chapter 4. Implementation

Figure 4.6: Example of the measured probability distribution (continuation).

Chapter 5

Simulations and performance

comparisons

In this chapter, some simulations comparing the performance of the box particle �lter

algorithms with the conventional particle �lter will be shown. Di�erences in precision,

shape of the estimated path and running time of the Matlab codes will be compared. For

all simulations, a sampling time of ts = 0:5 was used. In addition to that, the equations of

the robot's state is given by (x; v; �), representing the robot's position, speed and angle.

The state equations of the theoretical model are the following:(
x1(k + 1) = x1(k) + tsv cos(�)

x2(k + 1) = x2(k) + tsv sin(�)
(5.1)

5.1 Simulations

5.1.1 Scenario 1

The �rst scenario that will be presented is the path shown on Figure 5.1. In addition to

that, the measurement equations are:8>>>>>><
>>>>>>:

y1 = v + ev

y2 = � + e�

y3 = jx�m1j+ e1distance

y4 = jx�m2j+ e2distance

y5 = jx�m3j+ e3distance

(5.2)

Where the �rst two equations represent the robots internal speed and angle sensors, the

third, fourth and �fth equations represent the measurements of the distance sensor to each

21

22 Chapter 5. Simulations and performance comparisons

Figure 5.1: First scenario used for the simulations, showing the path and landmark posi-

tions.

one of the sensorsm1,m2 andm3, and ev, e� and edistance represent the errors of the speed,

angle and distance sensors, respectively.

Test 1

The �rst test was done with the following variance values for the density functions:

8><
>:
�2 = 0:500

�2
v = 0:500

�2
� = 0:500

(5.3)

Being �2, �2
v and �2

� the error variances from the distance, speed and angle sensors, re-

spectively. The values for the number of particles and boxes for the conventional and �xed

array particle �ltering are:

� Boxes width = [0:913043; 0:913043]

� Number of particles/boxes = 512

The same box dimensions used for the �xed array algorithm were used in the variable

array algorithm, in order to compare both box algorithms using the same accuracy. The

estimated paths can be seen on Figures 5.2, 5.3 and 5.4.

It can be seen that all three estimators were able to calculate paths that are quite close

to the real path. To better compare them, the error plot of all three estimators are shown

on Figure 5.6, also comparing them with the error measured by using only the system

5.1. Simulations 23

Figure 5.2: First test. Comparison between the real path and the computation of all the

estimated path using only the knowledge of the system equations.

equations without the �ltering (dead reckoning). It can be seen that all three estimators

give low errors. The conventional particle �lter gives a good estimation, with the error plot

showing a similar performance to both box particle �ltering applications. Moreover, since

the particle �lter is a Monte Carlo method, big errors can be observed at the beginning

even for the small values of variance used (as shown in Equation 5.3). Another important

thing to notice is that the estimators maintain an almost constant error, while simply using

the system equations and the inputs makes the estimation behave exactly as expected: the

error starts small at the beginning but becomes increasingly bigger.

24 Chapter 5. Simulations and performance comparisons

Figure 5.3: First test. Comparison between the real path and the estimation provided by

the conventional particle �lter.

Figure 5.4: First test. Comparison between the real path and the estimation provided by

the �xed array box particle �lter.

5.1. Simulations 25

Figure 5.5: First test. Comparison between the real path and the estimation provided by

the variable array box particle �lter.

Figure 5.6: First test. Comparison between the real path and the estimation provided by

the variable array box particle �lter.

26 Chapter 5. Simulations and performance comparisons

Test 2

The �rst test was done with rather small variance values. To further analyse the estimators

performances, a new simulation was carried out with the following values:

8><
>:
�2 = 0:050

�2
v = 4:000

�2
� = 1:000

(5.4)

In this new test, the values of the velocity and angle measurement variances are bigger.

Figure 5.7: Second test, conventional particle �ltering.

On Figure 5.10, it is possible to see how both box particle �ltering algorithms outper-

form the conventional particle �lter, giving better estimations. The conventional particle

�lter needs some time to converge, while the box particle �lters produce consistent esti-

mations during the whole simulation. In the �rst test, this only a�ected the beginning of

the simulation (all estimators having a similar performance afterwards). In the second test

errors can be bigger, because the conventional particle �ltering estimator might have the

same problem in having to converge again if ever a big error is observed. The mean error

can be calculated using Equation 5.5, where x(k) is the real position on step k, x̂(k) is the

estimated position on step k and j � j is the norm operator. It can be seen on Figure 5.11

how the mean error values are small for the box particle �ltering estimators.

5.1. Simulations 27

Figure 5.8: Second test, �xed array box particle �ltering.

emean =

vuut NX
k=1

jx(k)� x̂(k)j2 (5.5)

28 Chapter 5. Simulations and performance comparisons

Figure 5.9: Second test, variable array box particle �ltering.

Figure 5.10: Second test, error plot.

5.1. Simulations 29

Figure 5.11: Second test, mean error plot.

30 Chapter 5. Simulations and performance comparisons

5.1.2 Scenario 2

The second scenario that has been tested is based on the simulations in Jaulin [2011], and

the path shown on Figure 5.12. The measurement equations are presented in Equation

Figure 5.12: Second scenario.

5.6. These equations show that the robots has 3 sensors: an angle sensor (a compass) and

a velocity sensor, like in the �rst scenario, and an angle di�erence sensor.8><
>:
y1 = v + ev

y2 = � + e�

y3 = atan2(x2 �my;x1 �mx)� �(k) + emeasure

(5.6)

One reason why this example is interesting is because only one landmark is used, and

that makes it impossible to have an estimate of the robots position using only geometry.

Using �ltering algorithms it is still possible to estimate where the robot is.

Test 3

The values for the variances used are:8><
>:
�2 = 0:500

�2
v = 4:000

�2
� = 1:000

(5.7)

5.1. Simulations 31

Being �2, �2
v and �2

� the error variances from the measure of the angle di�erence, speed and

robot angle sensors, respectively. It can be seen that the box particle �ltering algorithms

have performed di�erently during this simulation. Since the size of the possible space (size

of the room) is not much bigger than the space where the robots passes, the �xed array

performed a lot better than the other algorithms. That happens because the probability

outside of this region is always zero, which means that the algorithm performs a second

test and corrects the estimation based on it.

Figure 5.13: Third test, �xed array box particle �ltering.

32 Chapter 5. Simulations and performance comparisons

Figure 5.14: Third test, variable array box particle �ltering.

Figure 5.15: Third test, error plot.

5.1. Simulations 33

Figure 5.16: Third test, mean error plot.

34 Chapter 5. Simulations and performance comparisons

5.2 Time performance

Even though the box particle �ltering might give better estimations than the conventional

particle �ltering, the conventional particle �ltering was quicker than the interval versions

in the implemented Matlab code. Analysing the �rst and second tests of scenario 1, it can

be seen on Figure 5.17 that the interval algorithms may need much more processing time

than the conventional algorithm.

Simulation 1 Simulation 2

Figure 5.17: Time spent by the computer (in seconds) in each estimator during simulations

1 and 2.

This can be caused by many factors. At �rst, it seemed obvious that both box particle

�ltering algorithms should be slower since they have to compute the integral of the bidi-

mensional probability density function for each box. A better analysis of the code using

Matlab tools showed that both the measurement update and the state update phases were

far slower than the same stages in the conventional particle �ltering implementation. That

happens because the access times of the elements in the interval class arrays and Matlab

cell arrays (also used in the implementations) were bigger than the access time of the ar-

rays of other common inbuilt variable types. Implementing the same algorithm in other

languages (like C or C++) or using a more completely developed interval library as the

basic engine could make the algorithm more e�cient.

This was not a problem for this project since the objective has always been to im-

plement it and compute simulations to calculate the di�erence in estimates between the

interval algorithms and the conventional particle �lter algorithms. Nevertheless, for a real

application on a robot having to calculate each step in real time, a more e�cient approach

would be crucial for the feasibility of the implementation.

5.3. Number of boxes/particles 35

5.3 Number of boxes/particles

In this section, 10 di�erent simulations with increasingly bigger numbers of boxes are

compared, using the variance values shown in Equation 5.8.8><
>:
�2 = 0:500

�2
v = 3:000

�2
� = 1:047

(5.8)

On Figure 5.18 and Figure 5.19, the grid, real path and estimated path are all shown

for each of the simulations. It can be seen that the quality of the estimation does not

change much for a number of boxes higher than 32, meaning that the estimation will still

be limited to the intrinsic randomness of the system.

On Figure 5.20 the error plot of some of these simulations can be seen and on Figure

5.21 the mean error for all the simulations is represented. As it can be seen on Figure

5.21, from 2 to 32 boxes, the error mean lowers considerably, but it seems to be constant

for bigger number of boxes. The time spent calculating the simulations were increasingly

higher though, as shown on Figure 5.22. Even though the quality of the estimations stayed

the same, the computational cost got higher with higher numbers of boxes. Increasing the

number of boxes in the box particle �lter increases the possible accuracy of the estimator,

but it also decreases the e�ciency much more than augmenting the number of particles in

the conventional particle �ltering. Therefore, this accuracy parameter must be calibrated

according to the characteristics of the system in order not to waste computer power.

36 Chapter 5. Simulations and performance comparisons

Figure 5.18: Comparison for di�erent number of number of boxes. Simulations with 2, 4,

8, 16, 32 and 64 boxes.

5.3. Number of boxes/particles 37

Figure 5.19: Comparison for di�erent number of number of boxes. Simulations with 128,

256, 512, 1024, 2048 and 4096 boxes.

38 Chapter 5. Simulations and performance comparisons

Figure 5.20: Error plot for the simulations with 2, 32 and 4096 boxes.

Figure 5.21: Error mean for all simulations.

5.3. Number of boxes/particles 39

Figure 5.22: Time spent calculating all simulations, in seconds.

40 Chapter 5. Simulations and performance comparisons

5.4 Simultaneous Localization and Mapping

Simultaneous localization and mapping (SLAM) is the problem of estimating the surround-

ing environment (creating a map) while simultaneously getting localized in it using sensors.

Since a big part of the SLAM problem consists in estimating the position in a map (even

though the map is being created in real time), an estimator is an important part of the

algorithm. The most used estimator used with SLAM is the extended Kalman �lter, as

showed in the seminal work Smith and Cheeseman [1987]. A simple SLAM simulation has

been carried out using the Box Particle Filter as estimator engine. The implementation is

based on the online course Solà [2014].

5.4.1 Implementation

The robot follows the same model shown in Equation 5.1. The di�erence is that the sensors

are supposed to be distance sensors which can detect the distance of walls (or objects) inside

an angle interval ��� < � < ��.

After initialising the robot at position (0; 0) with 100% certainty, the SLAM algorithm

consists of the following operations:

� The robot moves, obtaining a new view of the environment. The movement is calcu-

lated according to equation 3.1a, increasing the uncertainty. In this implementation,

the robot's movement is analogous to the box particle �lter state update stage, also

applying the resampling process.

� The robot observes new features on the map, extracting some measurement from

them (like distance, for example). These new detected landmarks have uncertain

locations because of the errors in the sensors and in the robot's position. In this

project's simulation, the landmarks are all stored in an array which contains their real

positions. In a real application, a landmark detection system must be implemented.

� The robot detects previously known landmarks, and uses them to re�ne the estima-

tion of both the robot's position and the other landmarks.

In this implementation, for simplicity, the detection of previous landmarks only re�ne

the estimation of the robot and the detected landmarks (the position of each landmark

is de�ned to be the mean of all the estimated positions of the same landmark). This is

achieved by keeping track of the number of times n each landmark has been observed,

and every time a new observation is done, the new estimation is given by:

x̂in+1 =
�xin+1 + nx̂in

n+ 1
; (5.9)

where �xin is the nth observation and x̂in is the mean after the nth observation.

5.4. Simultaneous Localization and Mapping 41

5.4.2 Results

The �rst test was done using the following variance values:

8><
>:
�2 = 0:700

�2
v = 2:000

�2
� = 0:500

(5.10)

The room, the resulting estimated map and the robot's trajectory can be seen on

Figure 5.23. For this simulation, the robot ran through the proposed path twice. Since

each landmark's estimated position is the mean of all observations of it, passing more than

once gave a better estimation of the map.

Figure 5.23: SLAM simulation 1. Real map, estimated map and robot's trajectory.

On Figure 5.24, a second simulation with a more complex environment can be seen,

using the following values: 8><
>:
�2 = 1:200

�2
v = 0:200

�2
� = 0:010

(5.11)

Both SLAM simulations showed how the implemented box particle �lter can be used as

an estimator engine in applications.

42 Chapter 5. Simulations and performance comparisons

Figure 5.24: SLAM simulation 2. Real map, estimated map and robot's trajectory. The

robot performs a 360 degrees rotation at each corner, in order to see the entire room.

Sample depletion

During the SLAM simulations, it was observed that if boxes of small width values are used,

the estimator might lose track of the robot. This is one of the problems of particle �lters

in general, and it is important to further study the resampling stage, since it is the stage

that might create this problem.

Chapter 6

Conclusion

The proposed box particle �ltering algorithm proposed in Blesa et al. [2015] has been

successfully implemented and tested in a 2D robot localisation problem. Results coming

from various simulations show that the estimator can compute estimations usually as good

as the conventional particle �ltering, but with more robustness when the error is big and

with less chance of causing sample depletion.

It has also been shown that the Box Particle Filter can be used as an estimator engine

for a SLAM implementation.

Sample depletion problems were observed during the SLAM tests. These problems were

discussed in Blesa et al. [2015], and the resampling problem must be further studied in

order to better handle this problem.

The box particle �lter was implemented in Matlab, and the time used by the computer

during its execution were higher than the time needed by the conventional particle �lter

algorithm. To fully analyse if it can be used in practice as a substitute for the conventional

particle �lter, a more e�cient implementation must be developed, using the computer's

resources in a better way.

43

Appendix A

Implementation of Interval sine and

cosine functions

In this section, the used realisation of the Interval sine and cosine functions implemented

in the Matlab Interval class will be explained.

A.1 Cosine function

Suppose the function the angle is de�ned as the interval [x] and its cosine [y] = cos([x])

must be computed.

1. The �rst step is to measure the width of the interval [x]. If width([x]) = xhigh�xlow �

2�, then the resulting interval is [y] = [�1; 1].

2. If not, an o�set is computed using the following property:

cos(x+ n�) = (�1)ncos(x)

The objective of this o�set is to place the angle interval between �� and �. The

value n is computed and a new angle [x0] = [x] � n� is used as the input of the

function.

3. A list L is initialised with the values L(1) = (�1)n cos(x0low), L(2) = (�1)n cos(x0high)

and, if the [x0] � 0, the value L(3) = (�1)n is also added to the list.

4. The limits of the resulting value [y] will be calculated as: ylow is the smallest value

of L and yhigh is the biggest value of L.

The Matlab code is giving in the following:

45

46 Appendix A. Implementation of Interval sine and cosine functions

1 f unc t i on r e s = co s I n t e r v a l (x)

2 i f (x . width >= 2� pi)

3 r e s = In t e r v a l ([�1 ,1]) ;

4 e l s e

5 i f (x . ub > pi)

6 n = f l o o r (x . ub/ p i) ;

7 x = x�n� pi ;

8 e l s e i f (x . lb < pi)

9 n = f l o o r (abs (x . ub/ p i)) ;

10 x = x+n� pi ;

11 end

12

13 L = cos ([x . lb , x . ub]) ;

14 i f (x . conta in s (0))

15 L = [L , 1] ;

16 end

17 L = ((�1)^n)�L ;

18 r e s = In t e r v a l ([min (L) ,max(L)]) ;

19 end

20 end

Listing A.1: Matlab implementation of Interval cosine

A.2 Sine function

No new function has been implemented for the sine function. The cosine function is

executed using the fact that cos(x� �=2) = sin(x).

Bibliography

F. Abdallah, A. Gning, and P. Bonnifait. Box particle �ltering for nonlinear state estima-

tion using interval analysis. Automatica, 44(3):807�815, 2008.

Joaquim Blesa, Françoise Le Gall, Carine Jauberthie, and Louise Travé-Massuyès. State

estimation and fault detection using box particle �ltering with stochastic measurements.

International Workshop on Principles of Diagnosis, 2015.

A. Gning, L. Mihaylova, and F. Abdallah. Mixture of uniform probability density functions

for non linear state estimation using interval analysis. In Information Fusion (FUSION),

2010 13th Conference on, pages 1�8. IEEE, 2010.

Frefrik Gustafsson, Fredrik Gunnarsson, Niclas Bergman, Urban Forssell, Jonas Jansson,

Rickard Karlsson, and Per-Johan Nordlung. Particle �lters for positioning, navigation

and tracking. IEEE Transactions on Signal Processing, 2002.

L. Jaulin, M. Kie�er, O. Didrit, and E. Walter. Applied Interval Analysis with Examples in

Parameter and State Estimation, Robust Control and Robotics,. Springer-Verlag, 2001.

Luc Jaulin. Set-membership localization with probabilistic errors. Elsevier, 2011.

Simo Sarkkä. Bayesian Filtering and Smoothing. Cambridge University Press, 2013.

Dan Simon. Optimal State Estimation. Kalman, H1 and Nonlinear Approaches. John

Wiley & Sons, Inc, 2006.

R. Smith and P. Cheeseman. On the representation and estimation of spatial uncertainty.

Int. Journal of Robotics Research, 5(4):56�68, 1987.

Joan Solà. Simulataneous localization and mapping with the extended kalman �lter, a very

quick guide. http://www.joansola.eu/, 2014.

47

	Introduction
	Project objectives
	Theoretical concepts
	Problem definition
	Bayesian filtering
	Interval analysis
	Set operations
	Extended operations
	Boxes (interval vectors)
	Inclusion functions

	Box Particle filter

	Implementation
	Box particle filter
	Details
	Implementation of intervals
	Landmarks

	Obtained data and state estimation

	Simulations and performance comparisons
	Simulations
	Scenario 1
	Scenario 2

	Time performance
	Number of boxes/particles
	Simultaneous Localization and Mapping
	Implementation
	Results

	Conclusion
	Implementation of Interval sine and cosine functions
	Cosine function
	Sine function

