
Master Thesis

Internship Report

Introduction To Safe Reinforcement
Learning

Supervisor: Goran FREHSE (ENSTA Paris)

Tutor: Luc JAULIN (ENSTA Bretagne)

September 2020

David BRELLMANN - CI 2020 - ROB

Abstract

Recent advances in artificial intelligence (AI) have contributed to a proliferation of autonomous
agents such as vehicles, drones, and inspection robots. Often, these autonomous agents are used
in environments where it is essential that the AI avoids accidents (collisions, battery depletion)
and they must thus respect hard constraints. With the popularization of Reinforcement Learn-
ing methods, it is even more difficult to check the safety of the system because they are based
on approximations.
The aim of this project is to study Reinforcement Learning methods using neural networks, also
called Deep Reinforcement Learning methods, on a simulated Cart-Pole environment as a case
study. Deep RL methods are compared with each other based on their training performance
as well as on their safety on both deterministic and non-deterministic versions of the environ-
ment. In addition to the choice of a Reinforcement Learning method, this report highlights the
importance of choosing a good features encoding. Finally, we work towards defining suitable
metrics for quantifying the safety of a controller.

All the implementations made during this project are available at https://github.com/
DavidBrellmann/DeepRL.

Keywords: Reinforcement Learning, Deep Reinforcement Learning, safety, neural network,
features encoding, metrics, external disturbance, Cart-Pole.

Résumé

Les récents progrès en l’Intelligence Artificielle (IA) ont contribué à la prolifération d’agents
autonomes comme des robots, des drones et des robots d’inspection. Souvent, ces agents
autonomes sont utilisés dans des environnements où il est nécessaire pour l’IA d’éviter les ac-
cidents (collisions, batterie vide) et par conséquent ils doivent donc respecter des contraintes
strictes. Avec la popularisation des méthodes d’Apprentissage par Renforcement, il est encore
plus difficile de vérifier la sécurité d’un système parce que ces méthodes sont basées sur des
approximations.
Le but de ce projet est d’étudier les méthodes d’Apprentissage par Renforcement utilisant les
réseaux de neurones (également appelées méthodes d’Apprentissage par Renforcement Profond)
sur un environnement de Cart-Pole simulé. Les méthodes d’apprentissage par renforcement
profondes sont comparées entre elles selon leurs performances à l’entraînement et selon leurs
capacités à générer des contrôleurs sûrs sur des versions déterministes et non-déterministes
de l’environnement. Outre le choix d’une méthode d’apprentissage du renforcement, ce rap-
port souligne l’importance de choisir de bons descripteurs. Enfin, ce projet vise à définir des
métriques appropriées pour pouvoir quantifier la sécurité d’un contrôleur.

Toutes les implémentations réalisées lors de ce projet sont disponible sur https://github.
com/DavidBrellmann/DeepRL.

Mots-clés: Apprentissage par Renforcement, Apprentissage par Renforcement Profond, sécu-
rité, réseaux de neurones, descripteurs, métriques, perturbation extérieure, Cart-Pole.

1

https://github.com/DavidBrellmann/DeepRL
https://github.com/DavidBrellmann/DeepRL
https://github.com/DavidBrellmann/DeepRL
https://github.com/DavidBrellmann/DeepRL

Acknowledgements

I would like to thank Goran FREHSE profusely for the opportunity of doing my final project
with him, but above all for guiding me relentlessly and for all the benefits he provided me
during this internship. It was not easy with Covid but he was always available and listening to
help me.
I could not forget to mention David FILLIAT and Pavan VASISHTA for their external view
on my work and for their valuable advice. I thank both for their interest on my project. I
also would like to thank all the members of U2IS for the great ambiance at the office and for
welcoming me at ENSTA Paris.
Finally, I would like to thank Luc JAULIN who coordinates the Robotics branch at ENSTA
Bretagne. His teaching, his advice and his pedagogical qualities encouraged me to continue in
research

2

Contents

1 Introduction 6
1.1 The Host Organization . 7
1.2 Contributions . 8
1.3 Structure of the Report . 8

2 Introduction To Reinforcement Learning 9
2.1 Reinforcement Learning Framework . 9

2.1.1 Agent-Environment Interface . 9
2.1.2 Markov Decision Process . 9
2.1.3 Returns And Episodes . 11
2.1.4 Policy . 12
2.1.5 Value Functions . 12
2.1.6 Optimal Policy . 13
2.1.7 On-Policy VS Off-policy . 13

2.2 Generalized Policy Iteration . 13
2.2.1 Policy Evaluation . 14
2.2.2 Policy Improvement . 14
2.2.3 Generalized Policy Iteration . 15

2.3 On-Policy Control With Approximation . 16
2.3.1 The Prediction Objective V E . 16
2.3.2 Stochastic-Gradient And Semi-Gradient Methods 17
2.3.3 Semi-Gradient SARSA . 18

2.4 Features Encoding . 19
2.4.1 Tile Coding . 19
2.4.2 Fourier Basis . 21

3 Tile Coding Versus Fourier Basis 23
3.1 Introduction To The Cart-Pole Environment 23
3.2 Tile Coding . 24
3.3 Fourier Basis . 27

4 Introduction To Deep Reinforcement Learning 31
4.1 Deep Q-Network (DQN) . 31
4.2 Advantage Actor-Critic Methods . 32

4.2.1 Introduction To Actor-Critic Methods 32
4.2.2 A2C In Deep RL . 36

4.3 Trust Region Policy Optimization And Its derivatives 37
4.3.1 Natural Policy Gradient And Trust Region Policy Optimization 37
4.3.2 Proximal Policy Optimization (PPO) 41

3

4.3.3 Actor-Critic Using Kronecker-Factored Trust Region (ACKTR) 43
4.4 Soft Actor-Critic (SAC) . 43

5 Deep Reinforcement Learning Methods Applied To The Cart-Pole Envi-
ronment 46
5.1 Fourier Basis Improvement . 46
5.2 Comparison Of Training Performance . 49

5.2.1 Comparison On A Deterministic Environment 49
5.2.2 Comparison On A Non-Deterministic Environment 52
5.2.3 Deep RL Methods On A Delayed Environment 54

5.3 Performance After Training . 56
5.3.1 Metrics . 57
5.3.2 Performance On A Deterministic Environment 57
5.3.3 Performance On A Non-Deterministic Environment 60

6 Measurements Of Safety Requirements 62
6.1 Safety Of Dynamical System . 63

6.1.1 Constraint Zone . 63
6.1.2 Dynamical System . 63
6.1.3 Trajectory . 63

6.2 Directed Hausdorff Metric . 64
6.3 Quantitative Robustness Estimate Metric . 64
6.4 Metrics Based On A Probabilistic Approach . 65

6.4.1 A Probabilistic Approach Of The Safety Requirements 65
6.4.2 Empirical Metric Based On The Beta Distribution 67

6.5 On Infinite Horizon Time . 67

7 Conclusions 69

A Appendix To Introduction To Reinforcement Learning 71
A.1 Measurable Space . 71
A.2 Probability Measure . 71
A.3 Stochastic Process . 72
A.4 Stochastic Kernel . 72

B Appendix To Deep Reinforcement Learning 73
B.1 Extensions To DQN . 73

B.1.1 Double DQN . 73
B.1.2 Prioritized Experience Replay . 74
B.1.3 NoisyNets . 75
B.1.4 Duel DQN . 77

B.2 Introduction To Kronecker-factored Approximate Curvature 79

C Appendix To Deep Reinforcement Learning Methods Applied To The Cart-
Pole Environment 81
C.1 Hyperparameters For Fourier Basis Improvement 81
C.2 Hyperparameters For Comparison Of Deep RL Methods 82

D Appendix To Measurements Of Safety Requirements 85

4

D.1 Signal Temporal Logic . 85
D.1.1 STL Formalism . 85
D.1.2 Boolean Semantics . 86
D.1.3 Quantitative Semantics . 86

D.2 Empirical Distribution Function . 87
D.3 CDF-based Nonparametric Confidence Interval 87

D.3.1 Confidence Interval And Binomial Distribution 87
D.3.2 The Beta Distribution Generator Method 87

Bibliography 90

5

Chapter 1

Introduction

Reinforcement Learning (RL) is an important subfield of Machine Learning which addresses
the problem of automatic learning of optimal decisions over time. Reinforcement Learning
gained popularity in the 1990s and and since the 2010s received more traction due to the use
of neural networks in Machine Learning. Contrary to Supervised Learning, there are no exter-
nal supervisors to help the learner to make the right decision with a training set of labelled
input/output pairs.
The learner needs to interact with its environment in uncharted territories. A learner/agent
interacts directly with its environment in order to know which action to take at each time step.
The goal is to maximize a numerical reward signal by choosing correct actions. However, the
learner is not told which actions to take, but instead must discover which action yields the most
reward by trying them (trial and error). Besides, actions can not affect only the immediate
reward and situation but also the next situation and, through that, all subsequent rewards
(delayed rewards). For this reason, one of the major problems in Reinforcement Learning
is the trade-off between exploration (by trying different actions) and exploitation (by using
the current knowledge).

One of the main reasons of the popularity of Reinforcement Learning is that these methods do
not require any specific knowledge of a model. As no model is required, RL methods are able
to offer a solution to problems where modeling is very difficult or almost impossible and thus
may be an interesting alternative to "conventional methods".
Besides, it is easier to use a RL method on several different tasks without spending time re-
adapting the method except for the choice of hyper-parameters. Although, it has been shown
that a same set of hyper-parameters can be used on a large number of environments, this was
the case for example for the DQN which was tested on 49 Atari games [1]. Nevertheless, their
use in robotic control is challenging and it is the focus of several recent works [2, 3, 4]. Indeed,
the behavior and the efficiency of these methods in real-world domains is not very well known.
Because there is a learning process, one can hope that the method learns, understands and
anticipates external disturbances on the system such as noise, delay...

One of the main objectives to be met by the agent in the real-world is the safety of the
system, both after and during the learning process. In most applications, some states are dan-
gerous because they may deteriorate the system, they lead the system to its self-destruction or
its malfunction. Such states are called forbidden states and they are defined by constraints.

6

States from which the controller can ensure that the system never enters the forbidden states
are called safe. A priori, we only know which states are forbidden, not which states are safe.
A controller is said safe if the controller always evolves in safe states. Respecting safety re-
quirements are essential for the proper functioning of the system because a violation of these
requirements leads to a deterioration or a destruction of the system. Several recent papers treat
the safety of RL methods during training but this report considers the safety of a controller
during operations, i.e., when the training is over. For quantitative evaluation, safety metrics
are discussed that can be used for both conventional and learned controller.

In this context, the objectives of this internship are:

• to study and understand the most well-known model-free RL methods,

• to define a protocol and metrics in terms of both performance and safety to compare RL
methods with each other as well as with conventional methods (PID),

• to test the RL methods on a robotic control task (the Cart-Pole task) on deterministic
and non-deterministic environments with disturbances (such as noise, delay, ...).

1.1 The Host Organization

ENSTA Paris, formerly known as École Nationale Supérieure de Techniques Avancées, is a
prestigious French engineering school. Founded in 1741, it is the oldest engineering school in
France. It is located in Palaiseau in the south of Paris, on the Paris-Saclay campus. ENSTA
Paris is also a founding member of Institut Polytechnique de Paris (IP Paris), a leading educa-
tional and research institution in France and internationally that brings together five prestigious
French engineering schools: École Polytechnique, ENSTA Paris, ENSAE Paris, Télécom Paris
and Télécom SudParis.

The Computer Science and Systems Engineering Laboratory (U2IS) is developing research in
the field of design and reliability of systems integrating autonomous decision-making processes
with applications in intelligent transport, robotics, defense and energy. The laboratory brings
together the research activities of ENSTA Paris in computer science, robotics, vision, embedded
systems, signal and image processing and hybrid system design and analysis. The laboratory is
focusing on application-oriented research. Even if they can come from fundamental fields, the
motivation of most of its work is to be able to be integrated in products (components, robotic
systems, design or validation tools) that are evaluated finally by the industry and can give place
to technology transfers.

7

1.2 Contributions

In this report, we are going to propose:

• a state of the art of the main Reinforcement Learning and Deep Reinforcement Learning
methods (Chapter 2 and Chapter 4), with some slight reformulations for unifying several
research works (Chapter 2).

• the use of Fourier Basis as features encoding for Deep RL methods to improve the per-
formance (Chapter 4). As in Supervised Machine Learning, there exists several features
encodings for classical Reinforcement Learning methods. Fourier Basis [5] is known as
efficient features encoding for classic RL methods (Chapter 3). However, to the best of my
knowledge, it seems that few, if any, features encoding are used with Deep RL methods.

• a comparison of the training performance of Deep RL methods and of the safety after
the training. Performance were evaluated on a standard simulated environment (OpenAI
GYM) as well as on a non-deterministic environments with the addition of noise and
delays (Chapter 4). Such external disturbances are important for closing the simulation
to real gap.

• a set of metrics measuring the safety requirements based on state constraints (Chapter 6)
for a given controller that can be either conventional or learned by a RL method. Three
types of metrics are suggested to correctly quantify the safety of a controller: a distance
to the forbidden states, a quantitative interpretation of the Signal Temporal Logic and
an approximation of the confidence interval for the probability distribution.

All the implementations made during this project are available at https://github.com/
DavidBrellmann/DeepRL.

1.3 Structure of the Report

Chapter 2 describes the basic framework of Reinforcement Learning and the main classical RL
methods. A comparison of the combinations of RL methods with different features encodings,
in particular Fourier Basis, is realized in Chapter 3.
Chapter 4 is an overview of RL methods using neural networks, also called Deep RL methods.
In chapter 5, the Deep RL methods are evaluated both on a deterministic environment and on
a non-deterministic environment.
The chapter 6 is a discussion of metrics for measuring safety requirements based on states
constraints of a given controller that can be conventional or learned by a RL method.
Throughout this report, all simulations were made on a simulated Cart-Pole environment de-
scribed in section 3.1.

8

https://github.com/DavidBrellmann/DeepRL
https://github.com/DavidBrellmann/DeepRL

Chapter 2

Introduction To Reinforcement Learning

This chapter recalls the basis of Reinforcement Learning, taking mainly from Sutton’s classic
book [6] and from Starchurski’s book [7]. The purpose of this chapter is to standardize notations
and notions of Reinforcement Learning found in the litterature. Notations of both books are
combined for a better clarity. The following chapter uses the notions developed in this chapter
on the Cart-Pole environment.

2.1 Reinforcement Learning Framework

2.1.1 Agent-Environment Interface

An agent is both the learner and the decision maker. Anything outside the agent is called
the environment. The agent and the environment are constantly interacting: the agent by
selecting and performing actions and the environment by responding to these actions and
presenting new situations, the states, to the agent. Moreover, the environment also gives rise
to rewards that the agent seeks to maximize over time through its choice of actions.

2.1.2 Markov Decision Process

Markov Decision Process (MDP) are a mathematically formalism used to describe Rein-
forcement Learning problems [6, 7]. We denote by B(Rn) the Borel subset of Rn (appendix
A.1). A Markov Decision Process 1 corresponds to a tuple (S,A,Γ, R, P, ψ) where:

• S ∈ B(Rn) is the state space.

• A ∈ B(Rm) is the action space
1There is no really universal definition for MDP, the proposed definition aims to unify most definitions found

in the litterature

9

Figure 2.1: Interactions Agent-Environment (MDP process) - At each time step t, the agent
receives from the environment a state st ∈ S, and on that basis takes an action at ∈ A.
One time step later, the environment gives a reward rt+1 = R(st, at) ∈ R to the agent for its
previous action. The agent finds itself in a new state st+1 and the process is repeated - taken
from [6]

• Γ is a mapping S → B(A) where Γ(s) corresponds to the collection of all feasible actions
for the agent when the state is s. We define gr Γ as the set of feasible states/actions pairs.

gr Γ := {(s, u) ∈ S ×A : u ∈ Γ(s)}

• R is a bounded reward function R : gr Γ→ R

• P is stochastic kernel (appendix A.4) on gr Γ called the transition function which
captures the dynamics of the environment.

• ψ ∈P(S) is a probability measure (appendix A.2) where P(S) is the set of all probability
measures on (S,B(S)). At time zero, s0 ∈ S is drawn from ψ.

At time zero, the initial state s0 ∈ S is drawn from ψ. At the start of time t the agent observes
the state st ∈ S and responds with action at ∈ Γ(st) ⊆ A. After choosing at, the agent receives
a reward R(st, at) and the state is updated according to st+1 = P (st, at). The whole process
then repeats, with the agent choosing at+1, receiving reward R(st+1, at+1) and so on. The Fig-
ure 2.1 resumes the process.

The transition probabilities P depends on nothing other than the current location of the state
and not of the other past states. This is called the Markov Assumption.

The reward function R is the way of communicating to the agent what to achieve. A same goal
may be defined by multiple reward functions. The reward function can be seen as a "carrot-
and-stick" policy : the agent is rewarded when it performs well and it is punished otherwise.

In practice, it is difficult to find a subset of Rn which is not in B(Rn). Therefore, the state
space S and the action space A are always elements of B(Rn) and B(Rm) respectively.

10

2.1.3 Returns And Episodes

The aim of the agent is to maximize rewards it receives in the long run. RL problems are
actually optimization problems.

Indeed, only choosing the action with the highest current reward is not the best strategy:
selecting an action with the highest reward may lead the agent to a subspace of the state space
S where there are only low rewards.
For this reason, the agent seeks instead to maximize the expected return Gt [6] :

Gt =
T−t∑
i=1

rt+i =
T−t∑
i=1

R(st+i−1, at+i−1) (2.1)

where T ∈ N is the time horizon.

The definition 2.1 makes sense for episodic tasks when agent-environment interactions break
naturally into subsequences called episodes. Each episode ends in a special state called the
terminal state which is followed by a reset where the next state is drawn from ψ. From one
episode to another the time horizon T is not necessarily the same. In this report, the subset
S+ ⊆ S denotes the terminal states set.

For some tasks, agent-environment interactions do not always break naturally into identifi-
able episodes (T = ∞). Such tasks are called continuous tasks. For continuous task, with
the definition 2.1, Gt diverges.
The expected return need to be redefined for continuous task:

Gt =
∞∑
i=1

γi−1rt+i =
∞∑
i=1

γi−1R(st+i−1, at+i−1) (2.2)

where γ ∈ [0, 1] is the discount factor [6, 7].

Gt in definition 2.2 is the discounted expected return [6, 7]. If γ < 1, the infinite sum
in 2.2 is finite. The discount factor γ quantifies how much value the reward will lose in one
time-step. It depends on the definition of the problem, because it regulates how much the agent
pays attention to the future. It may be used for episodic tasks too as a trick to find a faster
suboptimal solution.

• γ close to zero means a "myopic" evaluation which is more focused on the present and
immediate rewards.

• γ close to one means "far-sighted" evaluation which takes future rewards into account
more strongly.

The definition 2.1 is equivalent to the definition 2.2 by introducing an absorbing state at
the end of episodic tasks. Episode termination for episodic task is now considered to be the
entering in the absorbing state that transitions only to itself and which generates only null
rewards. This process is depicted in the Figure 2.2.

11

Figure 2.2: Example of an episodic task with an absorbing state (taken from [6])

2.1.4 Policy

In a MDP, the actions that are taken by the agent affect the future path of a state variable.
Actions are specified in terms of a policy function π. A policy π maps the current state s ∈ S
of the system to a probability measure in P(Γ(s)) [6]:

π(s) ∈P(Γ(s))

where P(Γ(s)) depicts the set of all probability measures on (Γ(s),B(Γ(s)))2.

For a better clarity, π(a|s) refers to π(s)(a) for each state s ∈ S and for each action a ∈ Γ(s).
Therefore, if an agent is following a policy π at time step t, π(a|s) is then the probability to
take the action at = a ∈ Γ(s) if the state st = s.

2.1.5 Value Functions

In a MDP, a value function determines "how it is good" for an agent following a policy π to
be in a state s ∈ S using expected discounted returns [6, 7].
Two types of value functions are considered for estimating the value for a specific state and for
a pair of state-action.
The state-value function Vπ : S → R of an MDP defined for a policy π is the expected return
when starting from s ∈ S and then following π:

Vπ(s) = Eπ [Gt|st = s] = Eπ

[
∞∑
i=0

γiR(st+i, at+i)|st = s

]
(2.3)

where Eπ[.] denotes the expected value of a random variable given that the agent follows the
policy π in a MDP. In addition to the probability π, the transition function P appears in this
expectation.
The action-value function Qπ : gr Γ → R of an MDP defined for a policy π is the expected
return when starting from s, taking the action a ∈ Γ(s) and then following π.

Qπ(s, a) = Eπ [Gt|st = s, at = a] = Eπ

[
∞∑
i=0

γiR(st+i, at+i)|st = s, at = a

]
(2.4)

2In the same way as for MDP, the definition of a policy is not universal. It varies from a mapping to the
action space to a mapping to a probability measure.

12

2.1.6 Optimal Policy

RL problems are optimization problems. Indeed, the agent aims to increase the cumulative re-
wards as much as possible and thus to find an optimal policy π∗ = arg maxπ Vπ = arg maxπQπ

[6, 7].

Value functions define a partial ordering over policies. A policy π is said to be better than
or equal to π′ if :

π ≥ π′ ⇔ Vπ(s) ≥ Vπ′(s),∀s ∈ S (2.5)

With the order defined by (2.5), an optimal policy π∗ can be also defined as:

π∗ ≥ π,∀π (2.6)

There may be several optimal policies. However all optimal policies share the same value
functions :

V ∗(s) = max
π

Vπ(s),∀s ∈ S (2.7)

Q∗(s, a) = max
π

Qπ(s, a),∀(s, a) ∈ gr Γ (2.8)

2.1.7 On-Policy VS Off-policy

Two kind of learning are distinguished in RL. The On-Policy learning learns about policy π
from experiences sampled from π. So, it learns action values for a near-optimal policy that still
explores. Whereas the Off-Policy learning learns about policy π from experiences sampled
from b. So the target policy π is different from the behavioral policy b used to interact
with the environment. In order to use episodes from b to learn π, the coverage assumption
is required : π(a|s) > 0⇒ b(a|s) > 0,∀(s, a) ∈ gr Γ.

Usually, off-policy learning are more powerful and general because it can learn from non-learning
controller or human expert. With the same behavioral policy b, multiple target policies π can
be learned. Besides, the behavioral policy b may be more exploratory than the policy used in
on-policy learning. It includes on-policy learning in the specific case where the target policy and
behavioral policy are the same. Frequently, off-policy learning methods have higher variance
and slower convergence than on-policy learning.

2.2 Generalized Policy Iteration

The purpose of this section is to explain the pattern of almost all model-free RL methods.

13

2.2.1 Policy Evaluation

To know if the current policy π is good, RL method seeks to determine the effectiveness of
π. Such process is called Policy Evaluation [6]. Value functions can give some information
about the efficiency of the policy π because by definition they represent how it is good for
an agent following a policy π to be in a state s ∈ S. Methods using value functions for the
policy evaluation are named value function methods [6]. Value function methods work on
deterministic policies.

2.2.2 Policy Improvement

After evaluating the effectiveness of the policy π, the next step of RL methods is to find a
better policy π′ from π. Before defining the Policy Improvement [6] step for value-function
methods, it is important to introduce the Policy Improvement Theorem.

Theorem 2.2.1 (Policy Improvement Theorem [6]). Let π and π′ be any pair of deterministic
policies such that ∀s ∈ S,

Qπ(s, π′(s)) ≥ Vπ(s) (2.9)

Then the policy π′ must be as good as, or better than π

Vπ′(s) ≥ Vπ(s) (2.10)

If the condition (2.9) is a strict inequality then result (2.10) is a strict inequality too.

The proof of the Policy Improvement Theorem is given in the Sutton’s book [6].

For value function methods, according to the Policy Improvement Theorem, it is possible to
improve a policy π by acting greedy on its value function. The new greedy policy π′ with
respect to π is defined for any state s ∈ S as :

π′(s) = arg max
a∈Γ(s)

Qπ(s, a)

The Policy Improvement Theorem is applied because:

Qπ(s, π′(s)) = max
a∈Γ(s)

Qπ(s, a) =
∑

a′∈Γ(s)

π(a′|s) max
a∈Γ(s)

Qπ(s, a)

≥
∑

a′∈Γ(s)

π(a′|s)Qπ(s, a′) = Vπ(s)

If Vπ = Vπ′ then the optimal policy is found. Note the sum can be replaced by an integral for
infinite action space A.

Therefore, the sequence (πk)k∈N defined by:

πk+1(s) = arg max
a∈Γ(s)

Qπ(s, a);∀s ∈ S

14

converges to the optimal policy π∗. See the Stachurski’s Book [7] for a complete proof of the
convergence of the sequence (πk).

Nevertheless, there is problem by acting greedy and creating deterministic policy because there
is no more exploration. Indeed, many state-action pairs in gr Γ may never be visited. If the
policy is deterministic, returns would be observed only for one action from each state and es-
timates of other actions would not improve with experiences. This problem is very important,
because to improve a policy with the best action selection, values of all actions from each state
need to be known.
For maintaining exploration, one solution would be to use the assumption of exploring
starts [6]. This method assumes that any state-action in gr Γ pair has a non-zero probability
of being selected at the beginning of each episode. This assumption guarantees that every
state-action pair will be visited in the limit of an infinite number of episodes. However, it can
not always be used when learning from actual interactions.

Another popular way is to add directly exploration into the policy with a soft policy. A soft
policy π is a policy which has a nonzero probability for every action that can be selected.

π(a|s) > 0,∀(s, a) ∈ gr Γ

An ε-soft policy π (with ε > 0) is a policy where each action has at least a ε/|Γ(s)| probability
of being selected.

π(a|s) ≥ ε

|Γ(s)|
,∀(s, a) ∈ gr Γ

An ε-greedy policy π (with ε > 0) is an ε-soft policy with a probability equal to 1−ε+ε/|Γ(s)|
to select the greedy action and a probability of ε/|Γ(s)| to select any other actions. As well as
for the greedy policy, the Policy Improvement Theorem for an ε-greedy policy can be applied
to justify there is an improvement. A proof is given in the Sutton’s book [6].

2.2.3 Generalized Policy Iteration

The term of Generalized Policy Iteration (GPI) [6] refers to the general idea of interactions
between two processes :

• Policy Prediction : To estimate the effectiveness of a policy π.

• Policy Improvement : To improve the current policy π.

Each process modifies the basis for the other as it is illustrated by the Figure 2.3. The process
is guaranteed being stable for optimal policies. A rigorous demonstration of this stability is
given in the John Stachurski’s book [7].

15

Figure 2.3: Illustration of the Generalized Policy Iteration for value-function methods (taken
from [6])

2.3 On-Policy Control With Approximation

This section presents a class of on-policy approximate value function methods [6] for an
infinite or large state space S and a finite action space A.

As any value functions methods, value functions need to be estimated for the policy evaluation.
Because the state space S may be infinite or quite large, value functions are approximated with
parameterized functions v̂(s,w) ≈ Vπ(s) where w ∈ Rd is a weight vector. v̂ might be a linear
function or computed with a multi-layers artificial neural network.
Usually, the number of weights (dimw) is much less than the number of states. Consequently,
modifying one weight changes the estimated values of many states. Such generalization
makes the learning potentially more powerful but also potentially more difficult to manage
and understand. Because value functions are approximated with parametrized functions, most
of Supervised Learning methods can be applied. However, the challenge is harder in RL be-
cause Supervised Learning methods assume a static training set over which multiple passes
are made whereas in RL the learning is online while the agent interacts with its environment.
Moreover, approximation methods need to handle non-stationary target functions because the
policy changes.

2.3.1 The Prediction Objective V E

With the realistic assumption that there are far more states than weights, making one state’s
estimate more accurately invariably means making others less accurate. The idea is to consider
which states are the most important and having the best estimate for them. Let the probability
measure µ ∈ P(S) be a state distribution representing how much the error is important in a
given state s ∈ S. For example, µ could be the fraction of time spent in each state.

The Mean Squared Value Error V E [6] is defined as:

V E =
∑
s∈S

µ(s)(Vπ(s)− v̂(s,w))2 (2.11)

= Eπ
[
(Vπ(s)− v̂(s,w))2

]
(2.12)

The aim is now to minimize the error V E to approximate v̂(s,w) ≈ Vπ(s),∀s ∈ S if the agent
follows the policy π.

16

2.3.2 Stochastic-Gradient And Semi-Gradient Methods

At every time step t, one assumes observing an example Vπ(st) where st ∈ S is given by the
state distribution µ defined in the section 2.3.1. The Stochastic Gradient-Descent (SGD)
is a method approximating a function with a parameterized function. In RL, The SGD method
adjusts the weight vector w ∈ Rd after each example Vπ(st) by a small amount in the direction
that would most reduce the error V E (section 2.3.1) on that example [6]. The update of the
weight vector w is given by:

wt+1 = wt −
1

2
αt∇(Vπ(st)− v̂(st,wt))

2

= wt + αt(Vπ(st)− v̂(st,wt))∇v̂(st,wt)

where αt is the positive step-size parameter at time t, wt the weight vector at time step t and
∇v̂(st,wt) is the derivative of v̂(st,wt) with respect to the components of the vector wt.
There is guarantee of convergence if :∑

t≥1

αt =∞ and
∑
t≥1

α2
t <∞ (2.13)

In practice, a constant step-size parameter αt is used because the convergence is faster. Besides,
it is more suited for non-stationary rewards because it gives more weights to recent rewards.
However, there is no guarantee of convergence to an optimal solution.

SGD is the iterative version of gradient-descent. In the SGD method, the target output
Vπ(st) is considered to be known but it is not the case in practice. Let the target Ut be a
noise-corrupted version of Vπ(st) (E [Ut|st = s] = Vπ(st)). For each time step t, the update of
the weight vector w is :

wt+1 = wt + αt(Ut − v̂(st,wt))∇v̂(st,wt) (2.14)

wt is still guaranteed to converge to a local optimum if conditions (2.13) are respected [6].
Therefore, with the expected return Gt as target, SGD method converges to a locally optimal
solution.

A bootstrapping [6] of Vπ(st) estimates Vπ(st) with estimates of the values of successor states.
For example,

Vπ(st) = E [Gt|st = s] = E [R(st, at) + γGt+1|st = s]

= E [R(st, at) + γVπ(st)|st = s]

≈ E [R(st, at) + γv̂(st,wt)|st = s] = E
[
Ût|st = s

]
However, convergence is no more guaranteed when bootstrapping is used. The target Ût =
R(st, at) + γv̂(st,wt) depends on the current value of the weight vector wt and it is therefore
biased. It is not anymore a true gradient-descent method. Such methods using the update
2.14 with bootstrapping are called semi-gradient methods [6]. Even if the convergence is
less robust than true gradient methods, semi-gradient methods converge reliably in some cases
such as the linear case [6]. They are preferred because they are significantly faster, and they
insure continual and online learning.

17

A linear approximation of the value function Vπ is given by:

v̂(s,w) = w>x(s) =
d∑
i=1

wixi(s) (2.15)

where x(s) is the feature vector representing the state s ∈ S (see section 2.4 for example of
features encoding). Each component xi(s) of x(s) is a function xi : S → R.
The update (2.14) with a linear approximation is:

wt+1 = wt + αt(Ut − v̂(st,wt))x(st) (2.16)

For semi-gradient methods under linear function approximation, the Sutton’s book [6] provides
a proof of convergence to a solution wTD (TD point) close to the true solution. Therefore, such
methods do not converge exactly to the optimal solution.

2.3.3 Semi-Gradient SARSA

With a model, state value functions are sufficient to determine a policy: one looks ahead one
step and chooses whichever action leads to the best combination of reward and next state ac-
cording to a greedy or ε-greedy strategy. Without a model, however, state value functions are
not sufficient. One must explicitly estimate the value of each action in order for the values to
be useful in suggesting a policy. Thereby, one prefer to work with action value functions.

The same strategies developed in the section 2.3.2 can be used for action value functions.
For a policy π, the action value function Qπ is approximated with a parameterized function
q̂ such that q̂(s, a,wt) ≈ Qπ(s, a),∀(s, a) ∈ gr Γ where w ∈ Rd is the weight vector. The
semi-gradient methods are the most commonly used because of their speed. To converge, the
parameterized function q̂ is considered as a linear approximation Qπ. The update made at each
time t for the weight vector w is thus:

wt+1 = wt + αt(Ut − q̂(st, at,wt))∇q̂(st, at,wt) (2.17)

where E [Ut|st = s, at = a] = Qπ(st, at).

The Semi-Gradient SARSA [6] uses the update 2.17 with the target Ut = R(st, at) +
γq̂(st, at,wt). The Pseudo-Code of this method is given by Algorithm 1. In the same way, all
on-policy tabular methods based on SARSA such as Expected SARSA [6], n-step SARSA
[6], SARSA(λ)... have a corresponding semi-gradient version. They all have the same update
rule 2.17 but with their respective targets.

For continuous tasks, differential returns are used. For further details see the Sutton’s
book [6].

18

Algorithm 1 Semi-Gradient SARSA π ≈ π∗ (taken from [6]))
Require: step-size α ∈ [0, 1], small ε > 0
Require: a differentiable action-value function parameterization q̂ : S ×A× Rd → R
Initialize :

Initialize value-function weights w ∈ Rd arbitrarily (w = 0)
loop
Initialize s
for each step of the episode do

Choose a ∈ Γ(s) thanks to q̂(s, .,w) (e.g. ε-greedy strategy)
Observe R(s, a), s′

if s′ is terminal then
w← w + α(R(s, a)− q̂(s, a,w))∇q̂(s, a,w)
Go to the next episode

end if
Choose a′ ∈ Γ(s′) thanks to q̂(s′, .,w) (e.g. ε-greedy strategy)
w← w + α(R(s, a) + γq̂(s′, a′,w− q̂(s, a,w))∇q̂(s, a,w)
s← s′

a← a′

end for
end loop

2.4 Features Encoding

This section introduces different feature constructions for x(s) where s ∈ S. Features add
prior domain knowledge to RL systems and they should correspond to aspects of the state
space along which generalization may be appropriate. The case where the state space S is not
encoded corresponds to the linear case. Of course, a linear choice may be chosen but it cannot
take into account any interactions between features. For the Cart-Pole task, a high angular
velocity can be either good or bad depending on the angle. If the angle is high then a high
angular velocity may be dangerous.

2.4.1 Tile Coding

Tile Coding [6] is one of the most practical feature representation for multi-dimensional infi-
nite state space in RL problems. In Tile Coding, the receptive fields of the features are grouped
into partitions of the state space. Each such partition is called a tiling, and each element of
the partition is called a tile. Each tile is a receptive field for one binary feature. Every state
s ∈ S is exactly in one tile of each tiling, the number of features encoding a state s corresponds
thus to the number of tilings used. Figure 2.4 illustrates an example of Tile Coding on a two-
dimensional state space S.

Tilings are offset from each other by a fraction of the tile width wi for each dimension i ∈ [1, n].
If there are m tilings then the quantity wi

m
is the unit distance for the offset in the dimen-

sion i. Uniformly offset tiling are offset from each other by exactly the unit distance wi
m

for every dimension i ∈ [1, n]. We say that each tiling is offset by the displacement vector

19

Figure 2.4: Multiple, overlapping grid-tilings on a limited two-dimensional space. Tilings are
offset from one another by a uniform amount in each dimension (taken from [6])

u = (1, . . . , 1) ∈ Rn. If the displacement vector u is not collinear to the vector (1, . . . , 1) ∈ Rn,
the offest is said to be asymmetric.

Offsets between each tiling impacts the generalization as described by Figure 2.5. In Fig-
ure 2.5, eight tilings are used. Each of the eight subfigures shows the pattern of generalization
from a state to its neighbors. Artefacts on diagonal are observed in many patterns with uniform
offsets whereas the generalization is better for the asymmetric offest with the displacement vec-
tor u = (1, 3). Miller and Glanz recommended using displacement vectors consisting with first
odd integers. In particular for infinite state space S ⊆ Rn, a good choice is to use the first odd
integers (1, 3, 5, · · · , 2n−1) with m the number of tilings set to an integer power of 2 or greater
than 4n. For a good convergence, Sutton [6] suggests using the step-size parameter α = 1

10m
.

Figure 2.5: Strength of generalization for uniformly and asymmetrically offset tilings (taken
from [6])

20

A Tile Coding with one tiling is named a State Aggregation. State Aggregation is a sort
of discretization of the state space S because S is represented by a single feature whose tile it
falls within.

2.4.2 Fourier Basis

Any τ - periodic function f (f is τ -periodic if f(x+ τ) = f(x)) can be described as a weighted
sum of sine and cosine basis functions of different frequencies : the Fourier Series. The func-
tion f can be approximated by truncating the Fourier Series.

For a τ -periodic function f , the mth degree Fourier expansion f is:

f(x) =
a0

2
+

m∑
k=1

(ak cos(k
2π

τ
x) + bk sin(k

2π

τ
x)) (2.18)

where ak = 2
τ

∫ τ
0
f(x) cos(2πkx

τ
)dx and bk = 2

τ

∫ τ
0
f(x) sin(2πkx

τ
)dx.

As well as for periodic function, aperiodic functions defined over a bounded interval can be
approximated with Fourier Series [5]. Indeed, if a bounded aperiodic functions is considered as
a τ -periodic function where τ is equal to the length of interval then the function of interest is
just one period of the periodic linear combination of sine and cosine features.

An even and odd function is just a linear combination of sine and cosine features respectively.
For aperiodic function bounded on an interval I, if τ is set to twice the length of the interval of
interest I and attention is restricted only to the approximation over the half interval [0, τ/2],
just the cosine features or sine features can be used.
In general, it is better to use the “half-even” approximation and drop the sine terms because
this causes only a slight discontinuity at the origin (Figure 2.6).

Figure 2.6: Even and odd functions (taken from [5])

The univariate mth order Fourier basis [5] corresponds to the m + 1 features defined
as:

xi(s) = cos(iπs) ∈ [−1, 1] (2.19)

for all i ∈ [0,m] where the input variable s is defined over the the interval I = [0, 1]. Figure
2.7 depicts a few of the resulting basis functions.

A similar basis can be introduced for the multi-variate case. If for each state s = (s1, s2, · · · , sn)> ∈

21

Figure 2.7: One dimensional Fourier cosine-basis features xi for i = 1, 2, 3, 4 (taken from [5])

S, such that si ∈ [0, 1],∀i ∈ [0, 1] then the ith feature for the order-m Fourier cosine basis
[5] is :

xi(s) = cos(πs>ci) (2.20)

where ci = (ci1, c
i
2, · · · , cik) for cij ∈ {0, · · · ,m} for j = {1, · · · , n} and i = {0, · · · , (m + 1)k}.

The s>ci value is an integer determining the feature’s frequency along that dimension. Example
of basis functions over a two-dimensional state space S are shown in Figure 2.8. Therefore, when

Figure 2.8: A selection of 6 two-dimensional Fourier cosine features, each labeled by the vector
ci that defines it (taken from [5])
c = [0, 0] results in a constant feature along both dimensions. When c = [0, ky] or c = [kx, 0]
for positive integers kx and ky, the feature varies along the corresponding non-zero component.
kx and ky determine the frequency. Only when c = [kx, ky] does it depend on both; this
basis function represents an interaction between both dimensions. The ratio between kx and
ky describes the direction of the interaction, while their values determine the basis function’s
frequency along each dimension.

the Fourier Basis is used in RL problems, the methods learn the coefficients of the mth degree
Fourier expansion of the function that they want to approximate (the action value function for
example).

22

Chapter 3

Tile Coding Versus Fourier Basis

The objective of this chapter is to study the influence of Tile Coding and Fourier Based (in-
troduced in the previous chapter) on classical Reinforcement Learning methods. Experiments
have been made on the Cart-Pole problem. All methods implemented in this chapter were
implemented from scratch.

3.1 Introduction To The Cart-Pole Environment

A classic Cart-Pole environment was used for experiments based on OpenAI gym Cart-Pole-
Environment (https://gym.openai.com/). This environment corresponds to the version of
the Cart-Pole problem described by Barton, Sutton, and Anderson [6].
The objective in the Cart-Pole - known also as an Inverted Pendulum - problem is to apply
forces to a cart moving along a track so as to keep a pole hinged to the cart from falling over.
There are two cases of failure: either the pole falls past a given angle from vertical or the
cart runs over the track. Besides, Gym considers the Cart-Pole has an episodic task having a
maximum number of steps. Therefore, the conditions of terminations of an episode are when:

• the pole angle is more than 12 degrees

• the cart position is more than 2.4

• the episode length is greater than a predefined number steps (usually 200 or 500
steps)

In Gym, the state space S of the Cart-Pole task is a subset of R4. A state s = (s1, s2, s3, s4)> ∈ S
is a vector where s1 ∈ [−4.8, 4.8] is the cart’s position, s2 ∈ R is the cart’s velocity,
s3 ∈ [−24◦, 24◦] is the pole’s angle, and s4 ∈ R is the pole’s angular velocity.
At the beginning of the task, a state s0 = (s0,1, s0,2, s0,3, s0,4)> is randomly chosen where all
state variable s0,i are assigned into a uniform random value in [−0.05, 0.05]. The position 0
corresponds to the middle of the ray.

At any state s ∈ S, the cart has only two possible actions: either move to the left (force of
−1) or move to the right (force of +1). Consequently, the action space A is discrete and

23

https://gym.openai.com/

Figure 3.1: Cart-Pole used by OpenAI Gym

for every state s ∈ S we have Γ(s) = {−1, 1}.

A reward of +1 is provided for every step of the episode implying R(s, a) = 1,∀(s, a) ∈ gr Γ.

The Figure 3.1 depicts the Cart-Pole used in Gym.

Note that the cart moves along a frictionless track and no noise is added.

Firsts tests were made on the Cart-Pole task with classic tabular RL methods (SARSA, Q-
Learning, SARSA(λ), ...) introduced in the Sutton’s book [6] after discretization of the state
space S but the performance was very poor. Therefore, even if it is known that approximation
methods do not converge to the optimal policy, they remain more efficient than tabular meth-
ods for large state spaces or infinite state spaces. All methods in this section take as input the
four observations returned by the environment.

In order to use the Features Encoding defined in the previous chapter, it is necessary to apply
a preprocessing f on the the speed and the angular velocity before using the features encoding
methods because they are not bounded.
Therefore, for every state s = (s1, s2, s3, s4) ∈ S, the preprocessing f : R → [−3, 3] is applied
on the state variables s2 and s4 where:

f(x) =

x if x ∈ [−3, 3]
−3 if x < −3
3 if x > 3

In practice the speed and the angular velocity are almost always in [−3, 3].

3.2 Tile Coding

This subsection describes the use of the Tile Coding as features encoding for the Cart-Pole
task. According to the section 2.4.1, the optimal number of tilings is 16 (because dimR4 = 4
and 24 = 16) and the displacement vector for each tiling is collinear to [1, 3, 5, 7]>.
Likewise, the literature suggests the step-size parameter:

α =
1

10× 16
=

1

160
≈ 0.01666666666 (3.1)

24

Figure 3.2: Training performance of Semi-Gradient SARSA combined with Tile-Coding using
8 tiles per dimension

(a) Training 1 (b) Training 2

Figure 3.3: Difference between two trainings for Semi-Gradient SARSA combined with Tile-
Coding [4, 4, 8, 8]

A first test with the same tile width for all dimensions of the state space S was made but poor
performance was observed suggesting the use of a different tile width per dimensions.

A Grid-Search on the Semi-Gradient SARSA method was made to find the best number of
tiles dividing each dimension of the state space S. Figure 3.2 depicts the performance of the
Semi-Gradient SARSA combined with Tile Coding using the result found by the Grid-Search
(8 tiles per dimension) for episodes with a maximum length of 500 steps. It is clear the method
learns but it is highly unstable after convergence.

The instability can be reduced by considering a different number of tiles for each dimension.
In other words, it seems that some dimensions need a better precision than others. A new
Grid-Search on the Semi-Gradient SARSA method was made to find the best number of tiles
per dimension. [4, 4, 8, 8] was the best number of tiles dividing the cart’s position, the cart’s
speed, the pole’s angle, and the pole’s angular velocity respectively. More attention is given to
the angle than the position. Figure 3.3 shows performance of Semi-Gradient SARSA combined
with Tile-Coding using the [4, 4, 8, 8] configuration for episodes with a maximum length of 500
steps. The training is very different from one simulation to another. Indeed, in the Figure 3.3a,
there are few instabilities and a fast convergence (achieved before the 200th episode) whereas

25

Figure 3.4: Training performance of Semi-Gradient SARSA n-step combined with Tile-Coding
[8, 8, 8, 8] (over 20 trainings) for various values of n

in in the Figure 3.3b the opposite is true : many instabilities and a slow convergence (achieved
at the 420th episode). Therefore, it very important to consider a large number of simulations
to know the general behavior. It is clear that despite a high variance between simulations,
dividing each dimension with a different number of tiles is better. There are less and less in-
stabilities as the number of episodes increases suggesting that the RL methods try to reduce
these instabilities and still learn.

Despite better results, it is not enough for a task as easy as the Cart-Pole task. Other meth-
ods need to be considered such as the Semi-Gradient n-step SARSA [6]. It is the same
semi-gradient update rule used by Semi-Gradient SARSA except with the target:

Ût = R(st+1, at+1)+γR(st+2, at+2)+γ2R(st+3, at+3)+· · ·+γn−1R(st+n, at+n)+γnq̂(st+n, st+n,wt+n)

For many tasks, there exists n > 1 where Semi-Gradient n-step SARSA has better performance
than Semi-Gradient SARSA. Figure 3.4 resumes performance of Semi-Gradient SARSA n-step
combined with the Tile-Coding [4, 4, 8, 8] configuration over 20 training for various values of n.
Surprisingly, it seems that using a n-step parameter greater than one do not improve perfor-
mances suggesting that the Semi-Gradient SARSA is already the best Semi-Gradient SARSA
method. Despite the convergence speed is faster for Semi Gradient SARSA n-steps methods,
performance is degraded over the long term as it is shown with n = 10. It is clear that increas-
ing n reduces the performance over the long term but it is not clear that increasing n reduce
or improve performance on early episodes.

With a lot of instabilities and a slow convergence, Tile Coding is not the best feature en-
coding for the Cart-Pole task. These poor results can be explained because the number of
features is huge. For example, for the best Tile Coding [4, 4, 8, 8] configuration there are 31399
features and thus 31399 weights to learn ! The more weights there are, the longer it takes to
learn.

26

Figure 3.5: Training performance of Semi-Gradient SARSA combined with order-3 Fourier
Basis (over 40 trainings) for various values of the step-size parameter α

3.3 Fourier Basis

This subsection describes the use of the Fourier Basis (subsection 2.4.2), in particular the order-
3 and order-5 Fourier Basis, as features encoding for the Cart-Pole task. Only episodes with
a maximum length of 500 steps are considered. The first advantage of the Fourier Basis over
the Tile Coding is the number of features with only 256 features and 1296 features for order-3
and order-5 Fourier Basis, respectively. A lower number of features means a lower number of
features and thus a higher speed of convergence and a lower computation time.

Even if Konidaris, Osentoski, and Thomas (2011) suggest a different step-size parameter for
each feature, the literature does not suggest any trivial constant step-size α for every feature
from what I know so far. A Grid Search over the step-size parameters α was thus necessary.
The Figure 3.5 resumes results of this research on Semi-Gradient SARSA using order-3 Fourier
Basis. Semi-Gradient SARSA is much more efficient and faster with order-3 Fourier Basis than
with Tile Coding. In the worst case, for α = 0.003, the convergence is achieved at the 200th

episodes (versus at the 400th episodes for Tile Coding).

Average cumulative rewards over the last 100 episodes are indicators of the performance of
a method after training. Therefore, Semi-Gradient SARSA with low α seem to get better
results. The maximum average cumulative rewards over the last 100 episodes is achieved for
α = 0.0007. It should be noted that by lowering the step-size parameter α too much, perfor-
mance begins to deteriorate. On the contrary for high α, the average cumulative rewards over
the 100 first episodes is bigger than for low α. Similarly to Tile Coding, methods with a fast
convergence are not the more efficient. These results are consistent with the literature, choos-
ing a high step size parameter implies a fast convergence but a convergence to a suboptimal
solution. It is a known problem for gradient descent methods. Similarly, a low α implies a

27

Figure 3.6: Training performance of Semi-Gradient SARSA combined with a order-5 Fourier
Basis (over 40 trainings) for various values of the step-size parameter α

slower convergence but a stronger guarantee to converge to the optimal solution. Thereby, the
choice of α appears as a trade-off between speed and efficiency.

Comparing the results for m = 3 with those for m = 5, Figure 3.6 shows us that the or-
der of the Fourier Basis has an influence on the step size parameter α. Indeed, the higher is the
order of the Fourier Basis, smaller the step-size parameter α is. The best step-size parameter
α found for the order 5 Fourier Basis is α = 0.00025. Besides, in any case, the convergence
is slower with order 5 than with order 3. It is explained by a greater number of features with
order 5 implying more weights to learn.

It can be interesting, to check the impact of another method like the Semi-Gradient Ex-
pected SARSA [6] on the performance. Semi-Gradient Expected SARSA is a method close
to the Semi-Gradient SARSA with the target:

Ût = R(st+1, at+1) + γ
∑
a∈Γ(s)

π(a|st+1)q̂(st+1, a,wt)

Figure 3.7 depicts the results of a Grid-Search on the Semi-Gradient Expected SARSA. Training
performance are similar to those with Semi-Gradient SARSA. Moreover, the order of magnitude
of best step-size parameters α is identical. Furthermore, Expected SARSA is not significantly
better or worse than Semi-Gradient SARSA.

The study has been extended to other derivatives of Semi-Gradient SARSA methods as the
Semi-Gradient SARSA(λ). The Semi-Gradient SARSA(λ) is an improvement of the Semi-
Gradient n-step SARSA where the target Ût is a weighted average of the target of the Semi-
Gradient SARSA n-step for different values n. For a trace-decay λ close to 0 the target takes
more into account the target of Semi-Gradient n-step for small n, whereas it is the opposite for

28

Figure 3.7: Training perfomance of Semi-Gradient Expected SARSA with a order-3 Fourier
Basis (over 40 trainings) for various values of the step-size parameter α

λ close to 1.
Figure 3.8 shows performance for the Semi-Gradient SARSA(λ) [6] combined with a order-3
Fourier Basis for different values of λ and α values. All curves have the same behavior suggest-
ing that the step-size parameter α has the same impact on all Semi-Gradient SARSA methods
and that all Semi-Gradient methods have the same performance. Moreover, all Semi-Gradient
SARSA(λ) share the same optimal parameter α = 0.0005. Increasing the parameter λ seems
to increase the α sensitivity of Semi-Gradient SARSA(λ). In other words higher is λ, smaller is
α. λ = 0.3 is more robust to the variations of the step-size parameter α than other derivatives.

Figure 3.9 is a comparative of all Approximate Solution Methods implemented with the best
hyper-parameters found. It is clear that increasing the Fourier order decreases the speed of the
learning. Besides after convergence, there are more oscillations than with methods combined
with order-3. Semi-Gradient Tree-Backup(λ) performs better than Semi-Gradient SARSA for
the the first episodes but is caught up before convergence. Finally, Semi-Gradient SARSA
combined with order-3 Fourier Basis is the best method. Surprisingly, derivatives using n-step
do not perform better for both features encoding.

29

Figure 3.8: Training performance of Semi-Gradient SARSA(λ) combined with a order-3 Fourier
Basis (over 20 trainings) for various values of the step-size parameter α

Figure 3.9: Comparative of the training performance of Semi-Gradient SARSA and its deriva-
tives combined with Fourier Basis (over 100 trainings)

30

Chapter 4

Introduction To Deep Reinforcement
Learning

Since 2010, great progress has been made in the use of neural networks in Machine Learning to
such an extent that a new family of Machine Learning methods based on neural networks called
Deep Learning has emerged. However, the use of neural networks in Reinforcement Learning
is more recent and challenging. Indeed in RL, contrary to the Supervised Learning and the
Unsupervised Learning, there is no training set with independent and identically distributed
(i.i.d) samples. The use of Deep Learning methods in Reinforcement Learning is named Deep
Reinforcement Learning.
The purpose of this chapter is to propose a state of the art of the best known Deep RL methods.

4.1 Deep Q-Network (DQN)

Deep Q-Learning (DQN) [8] was introduced for the first time in 2014 to solve Atari Games.
As an action-value method, DQN learns a parameterized estimation q̂(s, a,w) of the real action-
value function Qπ(s, a) using a deep neural network and selects actions according to a ε-greedy
strategy with respects to q̂. This method only treats tasks with a finite action space A where
Γ(s) = A,∀s ∈ S. The neural network takes states as inputs and and has as outputs the esti-
mates of the action-value function. The last layer of the DQN architecture is a fully-connected
layer. The parameters of the network are trained with a gradient descent to minimize some
suitable loss function. Indeed, the gradient of the loss is back-propagated into the parame-
ters w. The same error function defined on On-Policy Control approximation, V E (in section
2.3.1), is used. The state-value function is replaced by the action-value function and the target
is replaced by the Q-Learning target Ût = R(st, at) + γmaxa∈Γ(s) q̂(st+1, a,wt) [6, 9]:

L(wt) = Eπ
[
(R(st, at) + γ max

a∈Γ(s)
q̂(st+1, a,wt)− q̂(st, at,wt))

2

]
(4.1)

Nevertheless, the use of neural networks in RL is not so easy, two issue need to be addressed
before the neural network converges towards a solution:

31

• In the same way the use of bootstrapping was problematic for On-Policy Approximation
Value Methods (section 2.3.2), it is an issue for DQN. Contrary to Supervised Learning
problems, the target Ût = R(st, at)+γmaxa∈Γ(s) q̂(st+1, a,wt) is not stable and is changing
with wt. Since, the same parameters wt are used to estimate targets and predictions, it
means that at every step of the training target value shifts as much as estimate q̂ values.
It is like chasing a moving target or chasing its own tail.

A solution is to introduce periods of supervised learning [8]. The idea is to cre-
ate two deep neural networks with parameters w− and w. The network with parameters
w− called the target network is used to retrieve Qπ estimates while the online net-
work with parameters w includes all updates in the training. After a predefined number
of iterations K, w− is updated to w. The purpose of the target network is to fix the Qπ

estimates temporarily for the target.

• In most Learning Methods, samples are assumed independently and identically dis-
tributed (i.i.d). Obviously, it is not the case in Reinforcement Learning because there
is a correlation between samples. Indeed, each sample (st, at, R(st, at), st+1) depends on
what was made in the past. Recall that actions that are taken by the agent affect the
future path of the state variable. Another problem is that DQN tends to forget the pre-
vious experiences as it overwrites with new experiences.

Putting samples into a buffer called Replay Buffer (Lin, 1993), and applying updates
on batch of experiences randomly chosen in the Replay Buffer addresses these problems.
It makes the data distribution more stationary, independent of each other and closer to
the i.i.d. ideal.

The combination of these both concepts (Replay Buffer and Target Network) make the use of
neural networks possible. An example of Pseudo-Code for the DQN is given by the Algorithm
2.

For a better and robust convergence, authors [8] advice the use of the RMSprop optimiza-
tion algorithm to update weights and the Huber Loss which is more robust to outliers.

Appendix B.1 introduces some DQN extensions used in this internship to improve the DQN
performance.

4.2 Advantage Actor-Critic Methods

This section introduces a new strategy for RL methods other than the one proposed with
action-value methods.

4.2.1 Introduction To Actor-Critic Methods

This subsection introduces the classic Actor-Critic methods used in Reinforcement Learning
developped in the Sutton’s book [6].

32

Algorithm 2 Deep Q-Learning π ≈ π∗ (taken from [8])
Initialize :

Initialize replay memory D to capacity N
Initialize action-value function q̂ with random weights

loop
Initialize s1 = {x1} and preprocessed sequenced φ1 = φ(s1)
for each step of episode t = 1, · · · , T do
With probability ε select a random action at ∈ Γ(st) otherwise select at =
arg maxa q̂(φ(st), a,w)
Execute action at in emulator and observe reward rt = R(st, at)
Preprocess φt+1 = φ(st+1)
Store transition (φt, at, rt, φt+1) in D
Sample random minibatch of transitions (φj, aj, rj, φj+1) from D

Set yj =

{
rj if episode terminates at step j + 1
rj + γmaxa′ q̂(φj+1, a

′,w−) otherwise
Perform a gradient descent step on (yj − q̂(φj, aj,w))2) with respect to the network
parameters w
Every K steps, w− ← w

end for
end loop

4.2.1.1 Policy Gradient Methods

So far only action-value methods were considered. Instead of learning value functions to know
which action to select, the new class of methods introduced in this section parameterizes the
policy π with a weight vector θ ∈ Rd. A value function may still be used but only to help to
learn the policy parameters θ. From now on, π(a|s,θ) depicts the probability to take an action
a ∈ Γ(s) if the state is s ∈ S and if the vector parameter is θ. The policy can be parametrized
as long as π(a|s,θ) is differentiable with respect to its parameters.

A Stochastic Gradient Ascent method adjusts the weight vector θ ∈ Rd at each step t
by a small amount in the direction that would most maximize the scalar performance measure
J(θ). The update is given by :

θt+1 = θt + α∇̂J(θt) (4.2)

where ∇̂J(θt) ∈ Rd is a stochastic estimate whose expectation approximates the gradient of
the performance measure with respect to its argument θt and α is the step size parameter.
Such methods using the update rule 4.2 are called Policy Gradient Methods [6].

Contrary to action-value methods, Policy Gradient methods can work with infinite action
space, can find an optimal stochastic policy as well as an optimal deterministic policy (not
an ε-greedy policy). Besides, the action probability distribution changes smoothly with Policy
Gradient methods.

33

4.2.1.2 Policy Gradient Theorem

For episodic tasks, the performance J(θ) is defined as :

J(θ) = Vπθ(s0) (4.3)

where Vπθ the true value function for policy πθ parameterized by vector θ and s0 ∈ S0 is the
initial state drawn from the distribution ψ. Changing the policy parameters θ in a way that
ensures improvement is not easy. It is difficult because performance J(θ) depends on both the
action selection (determined directly by πθ) and the stationary distribution of states following
the target selection behavior (determined indirectly by πθ). The effect of the policy on the
state distribution is a function of the environment and it is typically unknown. However, the
Policy Gradient Theorem [6] offers a solution that does not involve the derivative of the
state distribution. Indeed,

∇J(θ) ∝
∑
s∈S

µ(s)
∑
a∈Γ(s)

Qπ(s, a)∇π(a|s,θ) (4.4)

= Eπ[
∑
a∈Γ(s)

Qπ(s, a)∇π(a|s,θ)] (4.5)

where the gradients are column vectors of partial derivatives with respect to the components
of θ, π denotes the policy parameterized by the weight vector θ and µ ∈ P(S) is the state
distribution under the policy π. A proof for the Policy Gradient Theorem is given in the
Sutton’s book [6].

4.2.1.3 REINFORCE Algorithm

From the Policy Gradient Theorem (4.5):

∇J(θ) ∝ Eπ

[∑
a

Qπ(st, a)π(a|st,θ)
∇π(a|st,θ)

π(a|st,θ)

]
(4.6)

∝ Eπ
[
Qπ(st, at)

∇π(at|st,θ)

π(at|st,θ)

]
(4.7)

∝ Eπ
[
Gt
∇π(at|st,θ)

π(at|st,θ)

]
because E(Gt|st, at) = Qπ(st, at) (4.8)

Knowing that and using the stochastic gradient ascent rule 4.2, we have the update :

θt+1 = θt + αGt
∇π(at|st,θ)

π(at|st,θ)
= θt + αGt∇ ln(π(at|st,θ)) (4.9)

The update (4.9) defines the REINFORCE method. The term Gt makes sense because the
parameters move to most in the direction that favors actions that yield the highest return.
Actions that are selected frequently are at an advantage and might win out even if they do not
yield the highest return. For this reason, the π(at|st,θ) term in (4.9) is used to avoid this issue.
∇ ln(π(At|St,θ)) vector is also known as the eligibility vector.

Because the use of Gt, the REINFORCE method has to wait until the end of the episode,
it is considered as a Monte Carlo method. Such as any Monte Carlo methods, REINFORCE
has a high variance and a slow convergence.

34

4.2.1.4 REINFORCE Algorithm With A Baseline

The Policy Gradient Theorem (4.5) can be generalized to include a comparison of the action-
value to an arbitrary baseline b(s) (for s ∈ S) :

∇J(θ) ∝
∑
s

µ(s)
∑
a

(Qπ(s, a)− b(s))∇π(a|s,θ) (4.10)

The baseline b(s) can be any function as long as it does not vary with action a. Equation (4.10)
is still valid because :∑

a

b(s)∇π(a|s,θ) = b(s)∇
∑
a

π(a|s,θ) = b(s)∇1 = 0

The update rule of the REINFORCE method with baseline [6] is:

θt+1 = θt + α(Gt − b(st))∇ ln(π(at|st,θ))

It is a generalization of the REINFORCE method. The use of a baseline reduces the variance
and speeds up the convergence. For example if in some states all actions have high value, we
need a high baseline to differentiate the higher valued actions from the less highly valued ones.
A natural choice is to choose as baseline the estimate of the state value function v̂(st,w) with
w ∈ Rd′ as weight vector.

4.2.1.5 Actor-Critic Methods

Actor-Critic methods [6] are a combination of both Policy Gradient methods and Action-
Value methods. The Actor term refers to the learned policy and the Critic term refers to the
learned value function. The critic observes agent’s actions and provides feedback. Learning
from this feedback, the agent updates its policy and becomes better at playing that game. For
its part, Critic also updates its parameters to provide feedback to become better for the next
time. In other words, the critic measures how good a selected action is and the actor controls
how the agent behaves.

In the same way as for the Semi-Gradient SARSA method, the idea is to replace the expected
return Gt with the target R(st, at) + γv̂(st+1,wt) where v̂(st,wt) is the critic parameterized
function estimating the state value function with wt ∈ Rd′ as weight vector. The update rule
becomes thus:

θt+1 = θt + α(R(st, at) + γv̂(st+1,wt)− v̂(st,wt))∇ ln(π(at|st,θ))

= θt + αδt∇ ln(π(at|st,θ))

where δt = R(st, at) + γv̂(st+1,wt)− v̂(st,wt) is called the TD error.

Contrary to the REINFORCE methods, Actor-Critic methods update their weights at every
time step of an episode. An example of a Pseudo-Code for Actor-Critic method is given by
Algorithm 3.

35

Algorithm 3 Example of Actor-Critic for estimating πθ ≈ π∗ (taken from [6])
Require: a differentiable policy parametrization π(a|s,θ)
Require: a differentiable state-value function parameterizaton v̂(s,w)
Require: step-size αθ > 0, αw > 0
Initialize :

Initialize policy parameter θ ∈ Rd and state-value heights w ∈ Rd′(e.g to 0)
loop
Initialize s (first state of episode)
I ← 1
while s is not terminal do
a ∼ π(.|s,θ)
Take action a, observe s′ and R(s, a)
δ ← R(s, a) + γv̂(s′,w)− v̂(s,w)
w← w + αwδ∇v̂(s,w)
θ ← θ + αθIδ∇ ln(π(a|s,θ))
I ← γI
s← s′

end while
end loop

4.2.2 A2C In Deep RL

This sections deals again with Deep Reinforcement Learning methods using neural networks.
In the previous section, Actor-Critic methods used an estimate of the state value function as
critic. However, state-value functions have a high variability [6]. A solution is to use advan-
tage functions instead of value functions (see the advantage function definition in appendix
B.1.1). Advantage function captures how better is an action compared to the others at a given
state. Indeed, Aπ(s, a) gives the extra reward earned if the action a ∈ Γ(s) is taken in the
state s ∈ S. if Aπ(st, at) > 0 the gradient is pushed in that direction otherwise the gradient is
pushed in the opposite direction. Actor-Critic methods using advantage function as critic are
called Advantage Actor-Critic methods (A2C) [10].

By definition, estimating the advantage function requires both an estimate of the action-value
function Qπ and of the state-value function Vπ. Fortunately, there exists a trick avoiding the
implementation of another neural network estimating Qπ. Indeed, the advantage function is
defined as:

Aπ(st, at) = Qπ(st, at)− Vπ(st) (4.11)
= Eπ [R(st, at) + γVπ(st+1)− Vπ(st)] (4.12)
≈ Eπ [R(st, at) + γv̂(st+1,wt)− v̂(st,wt)] = Eπ [δt] (4.13)

where v̂(st,wt) is the critic parameterized function estimating the state value function with
wt ∈ Rd′ as weight vector. The TD error δt is thus an estimate of the advantage function.

According to 4.8, the Advantage Actor-Critic loss is defined as :

∇J(θ) = Eπ [Aπ(st, at)∇ ln(π(at|st,θ))]

≈ Eπ [δt∇ ln(π(at|st,θ))]

36

Usually, A2C methods have a single network with two outputs: one softmax output for the pol-
icy prediction π(at|st,θ)) and another one for the the state value function prediction v̂(st,wt).
Both predictions use parameters defined in the first layers [10].

Contrary to most of action-value methods, Advantage Actor-Critic methods do not explore
with ε-greedy policy and implement another strategy named entropy [11]. Entropy is used in
many scientific fields and it was introduced for the first time in physics to denote the lack of
order within a system. In RL, entropy relates directly to the unpredictability of the actions
which an agent takes in a given policy. The greater the entropy, the more random the actions
an agent takes. While learning, entropy of the action selection policy decreases and the policy
becomes more deterministic. To keep exploration and encourage the agent to take actions more
unpredictably, entropy is added to the loss function :

∇J(θ) = Eπ [Aπ(st, at)∇ ln(π(at|st,θ))] + β∇H(π(.|θ))

where β controls the strength of the entropy regularization term and H is the entropy defined
as :

H(π(.|θ) = −Eπ[π(at|st,θ) ln(π(at|st,θ))] (4.14)

Entropy is a good way for learning alternative ways of accomplishing the task. Moreover, it
gives a better generalization for the learning process. Generalization is useful under a number
of circumstances, all of which related to changes in the agent’s knowledge of the environment,
or changes in the environment itself over time.

4.3 Trust Region Policy Optimization And Its derivatives

It is very to difficult to choose a good step-size parameter for Advantage Actor-Critic method
because: input data is non-stationary due to changing policy and observation and reward
distributions change all the time. Besides, the choice of a bad step-size parameter affects the
state distribution and then hurts very badly performance. With a bad policy, the methods is
going to explore another part of the state space that is not necessarily interesting and learn
from that. The performance will collapse and it will take a long time if ever, to recover.
Consequently, because the step-size parameter is not tuned correctly Advantage Actor-Critic
does not perform well most of the time. Trust Region Policy Optimization (TRPO) [2]
is an Advantage Actor-Critic method which solves this issue by constraining the policy so the
policy does not make aggressive and hurtful moves.

4.3.1 Natural Policy Gradient And Trust Region Policy Optimization

Let π denote a stochastic policy and J(π) denoting its expected return :

J(π) = Eπ

[
∞∑
t=0

γtR(st, at)

]
(4.15)

37

The expected return of another policy π̃ can be expressed in terms of the advantage over π,
accumulated over timesteps as shown in [2]:

J(π̃) = J(π) + Eπ̃

[
∞∑
t=0

γtAπ(st, at)

]
(4.16)

Let ρπ be the discounted visitation frequencies :

ρπ(s) =
∞∑
t=0

γtPr(st = s|π) = ψ(s) +
∞∑
t=1

γtµ(s)

where s ∈ S, ψ ∈ P(S) is the MDP state distribution for initial states and µ ∈ P(S) is the
state distribution given by the policy π in a specific MDP. Equation (4.16) can be written as a
sum over states instead of time steps:

J(π̃) = J(π) +
∞∑
t=0

∑
s

Pr(st = s|π̃)
∑
a

π̃(a|s)γtAπ(s, a) (4.17)

= J(π) +
∑
s

∞∑
t=0

γtPr(st = s|π̃)
∑
a

π̃(a|s)Aπ(s, a) (4.18)

= J(π) +
∑
s

ρπ̃(s)
∑
a

π̃(a|s)Aπ(s, a) (4.19)

If there is an update π → π̃ where
∑

a π̃(a|s)Aπ(s, a) ≥ 0, there is a guarantee of improvement
of performance J , or at least a constant performance in the case of equality. It is a reformulation
of the Policy Improvement Theorem conditions 2.9. The dependency in Equation 4.19 between
π̃ and ρπ̃ makes difficult an optimization. For this reason, we define:

Lπ(π̃) = J(π) +
∑
s

ρπ(s)
∑
a

π̃(a|s)Aπ(s, a) (4.20)

Lπ ignores changes in state visitation density due to changes in the policy. Kakade and Langford
[12] demonstrate that Lπ approximates locally J for the first order:

Lπθ0 (πθ0) = J(πθ0), (4.21)

∇Lπθ0 (πθ0)|θ=θ0 = ∇J(πθ)|θ=θ0 (4.22)

Therefore, a sufficiently small step πθ0 → π̃ that improves Lπθ0 will also improve J , but does
not give us any guidance on how big of a step to take. Besides, Lπ is a lower bound function
approximating J locally at the current policy:

J(π̃) ≥ Lπ(π̃)− CDmax
KL (π, π̃) (4.23)

where :

C =
4εγ

(1− γ)2

ε = max
s,a
|Aπ(s, a)|

38

Figure 4.1: Principle of the MM algorithm (adapted from https://medium.com/@jonathan_
hui/rl-proximal-policy-optimization-ppo-explained-77f014ec3f12)

The proof of this inequality is given in [2].

With Mi(π) = Lπi(π) − CDmax
KL (πi, π), any improvement in Mi(πi+1) over Mi(πi) will also

punch J(πi+1) up at least the same amount.

J(πi+1) ≥Mi(πi+1) by Equation 4.23,
J(πi) = Mi(πi) by definition

J(πi+1)− J(πi) ≥Mi(πi+1)−Mi(πi)

Such algorithm maximizing Mi to improve J is a Minorization-Maximization algorithm
(MM algorithm). MM algorithm treats maximization problem by finding an approximated
lower bound of the original objective as the surrogate objective and then maximizes the ap-
proximated lower bound so as to optimize the original objective. The principle of an MM
algorithm is summarized in Figure 4.1.

From now on, we are going to consider again the case where the policy π is parameterized
with a vector θ. From now on, notations will be adapted to parameterization : J(θ) := J(πθ),
Lθ(θ) := Lπθ(πθ), ρπθ := ρθ and DKL(θ ‖ θ̃) := DKL(πθ ‖ πθ̃). Besides, θold denotes the
previous policy parameters that we want to improve upon According to the MM algorithm and
the inequality 4.23, to improve the policy π at each step, the following maximization need to
be performed :

maximize
θ

Lθold(θ)− CDmax
KL (θold,θ) (4.24)

However, in practice the use of the coefficient C implies a small step size parameter. One way to
take larger steps in a robust way is to use a constraint δ on the KL divergence between the new
policy and the old policy. Such constraint defines a trust region. With the Lagrangian Duality,
the objective is mathematically the same as the following using a trust region constraint.

maximize
θ

Lθold(θ)

subject to Dmax
KL (θold,θ) ≤ δ

(4.25)

In practice, the trust region parameter δ is much easier to tune than the parameter C. The
problem is that finding the maximum KL divergence (among all policies) is intractable. The
requirement is relaxed and the mean of the KL divergence is used instead of the maximum.

maximize
θ

∑
s

ρθold(s)
∑
a

πθ(a|s)Aθold(s, a) definition 4.20

subject to D
ρθold
KL (θold,θ) ≤ δ

(4.26)

39

https://medium.com/@jonathan_hui/rl-proximal-policy-optimization-ppo-explained-77f014ec3f12
https://medium.com/@jonathan_hui/rl-proximal-policy-optimization-ppo-explained-77f014ec3f12

where Dρ

KL(θ1,θ2) = Es∼ρ [DKL(πθ1(.|s) ‖ πθ2(.|s))] In practice, it is easier to use data from
old policies: ∑

s

ρθold(s)
∑
a

πθ(a|s)Aθold(s, a)

= Es∼ρθold ,a∼πθ [Aθold(s, a)]

= Es∼ρθold ,a∼πθold

[
πθ(a|s)
πθold(a, s)

Aθold(s, a)

]
Therefore, the problem becomes:

maximize
θ

Es∼ρθold ,a∼πθold

[
πθ(a|s)

πθold(a, s)
Aθold(s, a)

]
subject to D

ρθold
KL (θold,θ) ≤ δ

(4.27)

or equivalently:

maximize
θ

Es∼ρπold ,a∼πθold

[
πθ(a|s)

πθold(a, s)
Aθold(s, a)

]
− CDρθold

KL (θold,θ) (4.28)

The problem is solved by using the first order Taylor approximation for the objective and the
second order for the KL divergence :

Lπθold
(θ) ≈ Lπθold

(θold) + g>(θ − θold) with g = ∇Lπθold
(θ)|θold

D
ρθold
KL (θold,θ) ≈ 1

2
(θ − θold)>F(θ − θold) with F = ∇2D

ρθold
KL (θold,θ)|θold

(4.29)

The matrix F is called the Fisher Information Matrix [2]. The quadratic part of Lπθold
(θ)

is negligible compared to the KL divergence quadratic term. The problem becomes easier:

maximize
θ

g>(θ − θold)

subject to
1

2
(θ − θold)>F(θ − θold) ≤ δ

(4.30)

or :
maximize

θ
g>(θ − θold)− C 1

2
(θ − θold)>F(θ − θold) (4.31)

It can be solved analytically with the solution:

θ = θold +

√
2δ

g>F−1g
F−1g = θold + αF−1g (4.32)

where α =
√

2δ
g>F−1g

A proof of this result is given in the course [13].

∇̃J(θ) = F−1g is called the natural gradient of J(θ). The gradient ∇J(θ) gives the steepest
direction to maximize rewards in the parameter space whereas ∇̃J(θ) is the steepest direction
in the policy space into the corresponding parameter space. However, computing the natural
policy gradient is very expensive because the computation of the Fisher Matrix F and its in-
verse. For this reason, Trust Region Policy Optimization (TRPO) [2] uses the conjugate
gradient method combined with a Line Search method [14] to optimize the computation of
the natural policy gradient.

40

4.3.2 Proximal Policy Optimization (PPO)

Even if TRPO performs better than classic A2C methods, there are several limitations because
it is hard to use with architectures with multiple outputs (one for computing action probabilities
and another one the state-value prediction), it empirically performs poorly on tasks requiring
deep CNNs or RNNs and it is difficult to implement.

Proximal Policy Optimization (PPO) [15] is a method performing better than TRPO in
many tasks. It makes a first order derivative solution closer to the second-order derivative so-
lution by adding soft constraints. There is still a chance of having a bad policy decision once a
while with the first-order solutions as the stochastic gradient descent. But soft constraints are
added into the objective function so the optimization has better insurance to optimize within
a trust region, the chance of bad decision becomes smaller. To optimize a policy π, PPO alter-
nates between sampling data from the policy π and performing several epochs of optimization
on the sampled data.
Let rt(θ) be the ratio :

rt(θ) =
πθ(at|st)
πθold(at|st)

(4.33)

TRPO seeks to maximize the following surrogate function (given by equation 4.27) :

LTRPO(θ) = Eπ
[
πθ(at|st)
πθold(at|st)

ât(st, at)

]
= Eπ [rt(θ)ât(st, at)] (4.34)

where ât is an estimate of the advantage function Aπ at time t. Because the current policy
is improved at each epoch, the difference between the current and the old policy is getting
larger. The variance of the estimation increases and bad decision can be made because of the
inaccuracy. Objective is thus changed in PPO, to penalize changes to the policy that move
rt(θ) away from 1 :

LPPO(θ) = Et [min(rt(θ)ât(st, at), clip(rt(θ), 1− ε, 1 + ε)ât(st, at))] (4.35)

where ε is a hyperparameter (authors suggest to set ε = 2 [3]).
LPPO(θ) = LTRPO(θ) around θold but becomes different as long as θ moves way from θold

Clipping prevents policy from having incentive to go far away from the old policy. Indeed, if
the probability ratio between the new policy and the old policy falls outside the range (1− ε)
and (1 + ε), the advantage function will be clipped. By taking the minimum of the clipped and
unclipped objective, the final objective becomes a lower bound. Figure 4.2 resumes the effect
of clip on the advantage function. An example of Pseudo-Code for the PPO algorithm is given
by the Algorithm 4.

Authors [3] strongly suggest the use of the Generalized Advantage Estimation [16] (GAE)
to estimate the advantage function. Equation (4.13) shows that the TD error estimates the ad-
vantage function. A new class of advantage function estimators can be defined by generalizing
the TD error on more successor states:

â
(1)
t = R(st, at) + γVπ(st+1)− Vπ(st)

â
(2)
t = R(st, at) + γR(st+1, at+1) + γ2Vπ(st+1)− Vπ(st)

· · · = · · ·
â

(∞)
t = R(st, at) + γR(st+1, at+1) + γ2R(st+2, at+2) + · · · − Vπ(st)

41

Figure 4.2: Plots showing one term (i.e., a single timestep) of the surrogate function LPPO

as a function of the probability ratio r, for positive advantages (left) and negative advantages
(right). The red circle on each plot shows the starting point for the optimization, i.e., r = 1.
Note that LPPO sums many of these terms. (taken from [15])

Algorithm 4 PPO (taken from [14])
Require: Initial input policy parameters θ0, clipping the threshold ε
for k = 0, 1, 2, · · · do
Collect set of trajectories Dk on policy πθk
Estimate advantages â

πθk
t using any advantage estimation algorithm

Compute the policy update θk+1 = arg maxθ L
PPO
θk

(θ) by taking K steps of minibatch SGD
(via Adam).

end for

Estimators â(k)
t with small k have low variance but high bias, whereas those with large k have

low bias but high variance because the γkVπ(st) becomes smaller as long as k →∞.
GAE approximates the advantage function by averaging all of these estimates :

â
GAE(γ,λ)
t = (1− λ)(â

(1)
t + λâ

(2)
t + λ2â

(3)
t + · · ·) (4.36)

= (1− λ)(δt + λ(δt + δt+1) + λ2(δt + δt+1 + δt+2) + · · ·) (4.37)

= (1− λ)

(
δt

1

1− λ
+ δt+1

λ

1− λ
+ · · ·

)
(4.38)

=
∞∑
l=0

(γλ)lδt+l (4.39)

where δt = R(st, at) + γVπ(st+1) − Vπ(st) is the TD error at time step t and λ ∈ [0, 1] is an
hyperparameter adjusting the bias-variance tradeoff.

42

4.3.3 Actor-Critic Using Kronecker-Factored Trust Region (ACKTR)

As well as PPO, Actor-Critic using Kronecker-Factored Trust Region (ACKTR) [17] is
an improvement of TRPO. In TRPO, the computation of the natural gradient ∇̃J(θ) = F−1g
is expensive in computation despite the use of conjugate gradient. Contrary to PPO, ACKTR
is a second order optimization. ACKTR approximates the natural gradient layer per layer with
the Kronecker-factored Approximate Curvature (K-FAC) [18] introduced in Appendix
B.2.

Critic can also be optimized by applying natural gradient. Usually, learning the critic can be
thought of as a least-squares function approximation problem. In the setting of least-squares
function approximation, the second-order algorithm of choice is commonly Gauss-Newton,
which approximates the curvature as the Gauss-Newton matrix G = E[J>J], where J is the
Jacobian of the mapping from parameters to outputs. The Gauss-Newton matrix is equivalent
to the Fisher matrix for a Gaussian observation model; this equivalence allows us to apply
K-FAC to the critic as well. Because there is equivalence, we assume the critic v̂ is defined
to be a Gaussian distribution p(v̂|st) ∼ N (v̂;Vπ(st), σ

2). The Fisher matrix for the critic is
defined with respect to the Gaussian output distribution. In practice, we can simply set σ = 1,
which is equivalent to the vanilla Gauss-Newton method.

For the layers shared by actor and critic networks, there is an Independence assumption of
the joint distribution of the policy and the value distribution : Pr(at, v̂t|st) = p(at|st)p(v̂t|st)
then K-FAC is applied to :

F = E
[
d log(p(at, v̂t|st,θ))

dθ

d log(p(at, v̂t|st,θ))>

dθ

]
to perform updates simultaneously.

4.4 Soft Actor-Critic (SAC)

Soft Actor-Critic (SAC) [4] is an off-policy Actor-Critic method incorporating the entropy
measure [11] (see entropy in section 4.2.2) of the policy into the reward to encourage exploration.
SAC is used only on continuous action-space A. The SAC objective is to learn a policy that
acts as randomly as possible while it is still able to succeed at the task. SAC was designed
for real-world robotic applications. Contrary to the previous Actor-Critic methods, SAC learns
three distinct neural networks for the policy (with parameters θ), for the soft Q-value estimates
(with parameters w) and for the soft state estimates (with parameters ψ). The policy is trained
with the objective to maximize the expected return and the entropy at the same time:

J(θ) =
∞∑
t=0

Eπ
[
γtR(st, at) + αH(πθ(.|st)

]
where where H is the entropy measure and α is the temperature parameter controlling how
important the entropy term is. The entropy maximization leads to policies that can explore
more and if there exist multiple options that seem to be equally good, the policy should assign
each with an equal probability to be chosen.

43

Authors defined soft Q-value and soft state-value as:

Qπ(st, at) = R(st, at) + γEπ [Vπ(st+1)]]

where Vπ(st) = Eπ [Qπ(st, at)− α log(π(at|st))] [4].

The soft state value function v̂ (with parameters ψ) is trained to minimize the Mean
Squared Error (MSE):

Jv̂(ψ) = Est∼D
[

1

2
(v̂(st)− Eπ [q̂(st, at)− log πθ(at|st)])2

]
with gradient:

∇ψJv̂(ψ) = ∇ψv̂(st)(v̂(st)− q̂(st, at) + log πθ(at|st))

where D is the replay buffer.
The soft action-value function q̂ is trained to minimize the soft Bellman residual (see
[4]):

Jq̂(w) = E(st,at)∼D

[
1

2
(q̂(st, at)−

(
R(st, at) + γEπ

[
v̂ψ̄ (st+1)]

))2
]

with gradient:
∇wJq̂(w) = ∇wq̂(st, at)(q̂(st, at)−R(st, at)− γv̂ψ̄(st+1))

where ψ̄ is the target value function which is the exponential moving average, just like how the
parameter of the target Q network is treated in DQN to stabilize the training.
SAC updates the policy to minimize the KL-divergence [4]:

πnew = arg min
π′

DKL

(
π(.|st)||

exp(Qπold(st, .)

Zπold(st)

)
= arg min

π
DKL (π(.|st)|| exp(Qπold(st, .)− logZπold(st)))

where Zπold(st) is the partition function to normalize the distribution. It is usually intractable
but does not contribute to the gradient.
The objective is thus:

Jπ(θ) = ∇θ DKL (πθ(.|st)|| exp(q̂(st, .)− logZw(st)))

= Eπ [log πθ(at|st)− q̂(st, at) + logZw(st)]

This update guarantees that Qπnew(st, at) ≥ Qπold(st, at). The proof of this result is given in
the paper [4]. The Pseudo-Code of SAC is given by Algorithm 5.

The classic SAC method was defined here. However, there exits some extensions that uses
only the action-value function and disposes of the state-value function. There is also an auto-
matic discovery of the temperature parameter α. You can check these extensions on this paper
[4]. These extensions were used for the experiments in the next chapters.

44

Algorithm 5 SAC (taken from [4])
Require: The learning rates λπ, λq̂, λv̂ for function πθ, q̂, v̂ respectively; The weight factor τ
for exponential moving average.
Initialize parameters θ,w,ψ, ψ̄
for each iteration do
for each environment step t do
at ∼ πθ(.|st)
Take action at, observe st+1, R(st, at)
Store transition (st, at, R(st, at), st+1) in D

end for
for each gradient step do
ψ ← ψ − λv̂∇ψJv̂(ψ)
w← w− λq̂∇wJq̂(w)
θ ← θ − λπθ∇θJπθ(θ)
ψ̄ ← τψ + (1− τ)ψ̄

end for
end for

45

Chapter 5

Deep Reinforcement Learning Methods
Applied To The Cart-Pole Environment

The objective of this chapter is to study the behavior of Deep Reinforcement Learning methods
(introduced in Chapter 4) for the Cart-Pole task (introduced in section 3.1).
The following Deep RL methods were implemented from scratch with PyTorch:

• Action-Value Methods: DQN (section 4.1) with its extensions:

– PER (Appendix B.1.2)
– NoisyNets (Appendix B.1.3)
– DDQN (Appendix B.1.1)
– Duel-DQN (Appendix B.1.4)

• Policy-Gradient Methods

– REINFORCE using neural networks (section 4.2.1.3)

• Advantage Actor-Critic methods:

– A2C (section 4.2.2)
– PPO (section 4.3.2)
– ACKTR (section 4.3.3)
– SAC

The project is available on GitHub: https://github.com/DavidBrellmann/DeepRL.

5.1 Fourier Basis Improvement

Fourier Basis was introduced for the fist time as features encoding for approximating the state-
value function in classic RL methods [5, 6]. Efficiency of Fourier Basis on classic RL methods
for the Cart-Pole environment is highlighted in Chapter 3. Nevertheless, to the best of my
knowledge, no study has been done on the impact of Fourier Basis as features encoding on

46

https://github.com/DavidBrellmann/DeepRL

(a) With order-1 Fourier Basis (b) Without order-1 Fourier Basis

Figure 5.1: Training performance of Duel-DQN combined with and without order-1 Fourier
Basis over 60 trainings (maximum episode length: 500 steps)

(a) With order-1 Fourier Basis (b) Without order-1 Fourier Basis

Figure 5.2: Training performance of PPO combined with and without order-1 Fourier Basis
over 60 trainings (maximum episode length: 200 steps)

Deep Reinforcement Learning methods. The use of Fourier Basis requires the same preprocess-
ing f applied in section 2.4.

The same Cart-Pole environment defined in section 3.1 was used for experiments. Fourier
Basis is used to encode the observations returned by the environment and the Deep RL meth-
ods take as inputs the features returned by the Fourier Basis.
Figures 5.1 and Figure 5.2 respectively describe the training performance of Duel-DQN and
PPO combined with and without order-1 Fourier Basis as features encoding. Hyperparameters
for both methods were found with a Grid-Search (see Appendix C.1 for their values). The
green curve represents the number of steps per episode during training representing the ability
of the Cart-Pole to respect hard constraints (see conditions of termination in section 3.1). The
blue curve depicts cumulative rewards per episode during the training. Since we get the same
reward at each step, both curves are similar.
There is no doubt that combining Deep RL methods with order-1 Fourier Basis improves per-
formance very significantly. Regardless of the strategy adopted by RL methods, there is an
improvement for both Actor-Critic methods (PPO) and value function methods (Duel-DQN).
Indeed, without Fourier Basis as features encoding, the training is very slow and the methods
fail to converge toward an optimal policy within 800 episodes. It is even observed for PPO
that without the use of Fourier Basis as features encoding, the method unlearns from the 500th

47

(a) With order-1 Fourier Basis (b) Without order-1 Fourier Basis

Figure 5.3: Training performance of SAC combined with and without order-1 Fourier Basis
over 60 trainings (maximum episode length: 500 steps)

Figure 5.4: Reward Distribution according to the Cart position

episode and converges toward a policy with poor performance. The same method with order-1
Fourier Basis converges on average towards an optimal policy in less than 100 episodes. Note
that for PPO without features encoding, no better hyperparameters were found. During the
hyperparameter research, it was observed that there are far more sets of hyperparameters con-
verging towards an optimal policy for Deep RL methods combined with Fourier Basis than
without features encoding. Such observations suggest that Deep RL methods combined with
Fourier Basis are more resistant to the variation of hyperparameters.

In addition, during the research of hyperparamters it seemed that increasing the Fourier Basis
order does not improve performance. Indeed, even if performance is still better than without
Fourier Basis, it is not as good as with 1-order Fourier Basis. Such observations can be ex-
plained because increasing the Fourier order exponentially increases the amount of features [5]
and make the learning more difficult.

A similar comparison was made for SAC as illustrated in Figure 5.3. As a reminder, SAC
only works on a continuous action space. Thereby, the Gym Cart-Pole environment was cus-
tomized for a continuous the action space A = [0, 1]. Moreover, the Cart-Pole environment used
with SAC has another reward distribution depicted in Figure 5.4. The shape of this reward
function will be discussed in more details in section 5.3. Just like PPO and DQN, Fourier Basis
significantly improves SAC performance.

48

Such good performance can be explained because when Fourier Basis is combined with neural
network, the first layer of the neural network determines coefficients of anmth Fourier expansion
and not approximate without any knowledge a function. It becomes then easier for the layer to
approximate the function and the training is thus faster. Moreover, Cart-Pole has few inputs
with only four observations therefore the number of features generated by Fourier Basis is not
huge (only 16 features). However, as the number of features increases exponentially with the
number of inputs, combining Deep RL methods with Fourier Basis on environments with more
observations would not necessarily give better performance. Further research are conducted on
more environments to answer this question.

From now on, all Deep RL methods are combined with order-1 Fourier Basis.

5.2 Comparison Of Training Performance

The purpose of this section is to compare training performance of Deep RL methods with
each other on both deterministic and non-deterministic versions of the Cart-Pole environment.
There exists few papers comparing RL methods with each other on the Cart-Pole environment
[19] but no papers were found to compare the use of Deep RL methods on the Cart-Pole envi-
ronment.

In this section, the Gym Cart-Pole environment (introduced in section 3.1) is customized.
From now on, all episodes have a maximal length of 500 steps and the reward distribution is
changed with the distribution given by the Figure 5.4. This new reward distribution encourages
the agent to stay in position within the zone defined by the plateau in Figure 5.4. The problem
becomes thus more difficult since it forces the Cart-Pole to respect the same constraints as
before in addition to forcing it to stay in a smaller zone in position. The shape of this reward
function will be discussed in more details in section 5.3. In addition, the initial position of the
Cart-Pole is no longer randomly chosen between [−0.05, 0.05] but in the zone corresponding to
the plateau ([−0.25, 0.25]).

5.2.1 Comparison On A Deterministic Environment

The Gym Cart-Pole environment is by default deterministic because no external disturbances
are applied (noise, frictions, ...). In this section, training performance of Deep RL methods are
compared in this perfect simulated deterministic environment with no external disturbance. As
usual, hyperparameters for Deep RL methods were found with a Grid-Search.

5.2.1.1 DQN And Its Extensions

For DQN and its extensions, there exists an alternative to the ε-greedy strategy for exploration
called NoisyNets [20] (see Appendix B.1.3). In practice when NoisyNets are combined with
DQN, the learning speed is very different from one training to another. Sometimes DQN
converges towards an optimal policy within 800 episodes, sometimes it does not. Whereas
with an ε-greedy strategy the variance during training is lower. For this reason, an ε-greedy

49

(a) DQN (b) DDQN

(c) Duel-DDQN (d) Duel-DQN

Figure 5.5: Training performance of DQN and its extensions combined with order-1 Fourier
Basis on the deterministic Cart-Pole task over 60 trainings (maximum episode length of 500
steps)

policy strategy was preferred. To speed up the training, a widely known trick is the use of an
ε-decreasing exploration over steps. The training starts with a high εstart ≈ 1 and ends to a
small εend ≈ 0. In this way, the exploration is encouraged at the beginning of the training. The
ε-decreasing exploration considered for the Cart-Pole task is given by:

ε(t) = max(εend, εstart − log(t+ 1)εdecay) (5.1)

where εdecay ∈ R is the ε decay and t is the step.
Performance of DQN are better with the PER extension (Appendix B.1.2). However, it intro-
duces two new hyper-parameters: α which determines how much prioritization is used and β
which corresponds to the amount of importance-sampling correction. Authors suggest the use
of a variable β over time [15]. Indeed, at the beginning of the training, it is recommended to
have a high bias and a low variance to speed up the learning. For training, the bias is corrected
by decreasing the bias (and then increasing β) to converge toward an optimal policy. A linear
decrease of β was chosen:

β(t) = min(1, t× βdecay + βstart) (5.2)

where βstart ∈ [0, 1] is the β threshold start value and βdecay ∈ R is the β decay. Authors suggest
βstart = 0.4.
All other hyperparameters chosen for DQN and its extensions can be found in Table C.4.

Figure 5.5 depicts training performance of DQN and its extensions on the deterministic version
of the Cart-Pole environment. The average cumulative rewards per episode (blue curve) give
us information about the ability of the agent to stay in the plateau. Whereas, the average

50

steps per episode (green curve) represent its ability to balance the pole. The pole is correctly
balanced when the number of steps per episode is equal to 500 steps and the Cart stays in the
plateau for the whole episode when the average cumulative rewards value per episode is equal
to 2500.

It is obvious that DQN and its extensions learn and converge toward an optimal policy. How-
ever, DQN and its extensions do not reach exactly the maximum cumulative rewards on aver-
age. Besides, there is no guarantee after the training that the agent balances the pole correctly
during 500 steps because the standard deviation is not equal to zero for the 800th episode. Con-
sequently, learning these methods within 800 episodes is not enough, they need more episodes.
Besides, there is a short period (over 100 episodes) starting from the 200th where methods un-
learn. A wrong setting of the parameter β and the variation of β may explain this phenomenon.
Maybe if βdecay is increased and thus the bias is decreased, the problem may be fixed.

In addition, Figure 5.5 shows that these methods do not simultaneously learn to stay in the
plateau and to balance the pole, in other words the angle and position control is not simultane-
ous. Indeed the green curve and the blue curve are similar for all methods. Such leaning may
seems to be counter-intuitive since if the agent fails to maintain the pole, the episode ends and
therefore it no longer earns rewards. Balancing the pole should have an higher priority than
the position control during the training but it is not the case in practice. These results suggest
that this prioritization was not clear enough in the reward distribution.

Finally, DQN extensions do not perform better than DQN, it is even worse. The use of DDQN
appears to increase the variance because DDQN and Duel-DDQN have a higher standard devi-
ation than DQN and Duel-DQN, respectively. Likewise, a duel architecture is no more efficient.
Maybe another hyper-parameter set for the duel-architecture would improve performances.

5.2.1.2 Advantage Actor-Critic Methods

REINFORCE method was the first Policy-Gradient method implemented but results with the
constant reward signal were not convincing compared to those of the DQN. For this reason, no
experiences were done with the new reward distribution.

This subsection studies the training performance of the Advantage Actor-Critic methods A2C,
PPO, ACKTR and SAC. All hyperparameters were found with a Grid-Search ans can be found
in Appendix C.2. A value loss coefficient hyperparameter for critic is added for Advantage
Actor-Critic methods. Since it is usual for Actor and Critic to share the same first layers in
the neural architecture, it is common to use the same learning rate η to update both Actor and
Critic layers. However, it was observed that having a slightly different learning rate can im-
prove performance. For this reason, a value loss coefficient is introduced to modify the learning
rate of the critic by multiplying it by the coefficient. Besides another hyperparameter called
the trace-decay for the critic is added to speed up the learning. This trace-decay is used to
estimate the "true" state value and is similar to the trace decay used by the TD(λ) method [6].

Figure 5.6 depicts training performance of A2C, PPO, ACKTR and SAC methods on the
deterministic version of the Cart-Pole environment. It is clear that Advantage Actor-Critic
methods learn faster than DQN methods. Moreover, the variance is lower for Advantage-Actor

51

(a) A2C (b) PPO

(c) ACKTR (d) SAC

Figure 5.6: Training performance of Actor-Critic methods combined with order-1 Fourier Basis
on the deterministic Cart-Pole task over 60 trainings (maximum episode length of 500 steps)

Critic methods. Recall a near-zero standard deviation over a long period indicates that the
learning is nearly finished. At the end of the training, for all Actor-Critic methods, there is
a zero standard deviation for the green curve suggesting that methods succeed in learning to
respect the hard constraints (defined by the condition of terminations) of the Cart-Pole task.
However, this is not the case for the blue curves meaning that the learning of the position
control is not completely finished. As for DQN, Actor-Critic methods do not set an higher
priority to balance the pole than to control the position because the blue and green curves are
almost similar during the training.

A2C is the fastest learning method with the fastest convergence and near-zero variance at
the end of learning. ACKTR is the slowest method to converge at the beginning of learning,
but it is one of the only methods to have a standard deviation close to zero at the end of learn-
ing. It is the opposite for PPO with a very fast convergence at the beginning of the training
with a slightly larger standard deviation at the end of the training. Nevertheless, it seems that
all methods learned to respect hard constraints at the end of the training for a finite horizon
time. In other words they were able to learn what they were asked to learn.

5.2.2 Comparison On A Non-Deterministic Environment

So far Deep RL methods were only applied on a deterministic version of the Cart-Pole en-
vironment with no external disturbance. However, in the real world the environment is not
necessarily deterministic and external disturbances (noise, delays) can make the environment
non-deterministic. For closing the simulation to real gap, it is important that the methods

52

(a) A2C (b) PPO

(c) ACKTR (d) SAC

(e) Duel-DQN

Figure 5.7: Training performance of several Deep-RL methods combined with order-1 Fourier
Basis on a non-deterministic version of the Cart-Pole environment over 60 trainings (maximum
episode length of 500 steps)

are able to learn in non-deterministic environments. To have a more representative real-world
environment, Gaussian noise is added to the observations. The environment becomes thus
non-deterministic for the agent. In this subsection, only Gaussian noise of zero mean is consid-
ered as noise with standard deviation of 0.0025, 0.01, 0.013, 0.01 applied to the position, the
velocity, the angle, and the angular velocity respectively. Note that standard deviations were
chosen arbitrarily. The non-deterministic environment uses the reward distribution depicted in
Figure 5.4. A Grid-Search was performed to find the best hyperparameters for each method.
Almost the same hyperparameters as those used in the previous sub-section were found, except
for the batch size. It seems that increasing the batch size improves performance when external
perturbations are added.

Figure 5.7 depicts the behavior of Deep RL methods on the non-deterministic version of the
Cart-Pole environment. Unlike the deterministic version, Duel-DQN does not converge toward

53

(a) With a delay (b) Without a delay

Figure 5.8: Training performance of Duel-DQN combined with order-1 Fourier Basis with/with-
out delay over 60 trainings (maximum episode length of 500 steps)

an optimal policy during the training. At the beginning of the training, the method seems to
learn then starting from the 200th it unlearns and converge towards a policy with poor perfor-
mance. The same phenomenon of unlearning was observed on a deterministic environment but
after a while the method was able to relearn and converge towards an optimal solution.
In contrast, Actor-Critic methods still converge towards an optimal policy. The standard de-
viation for the training is just higher on non-deterministic environment than on deterministic
environment. It can be concluded that learning takes more time in non-deterministic environ-
ments than in deterministic environments to converge towards an optimal policy for Actor-Critic
methods. PPO and ACKTR have training performances similar to those obtained in a deter-
ministic environment, except that the standard deviation is slightly higher. Unfortunately, this
is not the case for A2C. The addition of noise significantly slows down the learning of A2C
with a higher standard deviation and a slower convergence on average. The fact that PPO
and ACKTR outperform A2C is perhaps not so surprising since they were initially tested and
developed for robotic applications [3, 17].

5.2.3 Deep RL Methods On A Delayed Environment

Noise is not the only external disturbance that can be found in the real world, the agent can
also be subject to delays. For example, there may be a delay when the environment sends
information to the agent and the agent processes it. Such delays are really common in robotics.
It is therefore very useful to study the training performance of Deep RL methods on a delayed
version of the Cart-Pole environment. The same reward distribution depicted in Figure 5.4
was on this new version of the Cart-Pole environment. In the Gym Cart-Pole environment, the
state is measured every 20 ms and the information is sent directly to the agent. For this study,
a delay of 60 ms is introduced between the time the state is measured and the time it is sent
to the agent. Same hyperparameters found in the previous subsection and defined in Appendix
C.1 are used.

Figure 5.8 describes the training performance of the Duel-DQN with and without the addi-
tion of delay. It is obvious that adding a delay affects the training of Duel-DQN. Duel-DQN is
no longer able to converge towards an optimal policy in 800 episodes. Even worse, Duel-DQN
seems to converge on a sub-optimal policy with poor performance and the variance is signifi-

54

(a) With a delay (b) Without a delay

Figure 5.9: Training performance of PPO combined with order-1 Fourier Basis with/without
delay over 60 trainings (maximum episode length of 500 steps)

(a) With a delay (b) Without a delay

Figure 5.10: Training performance of PPO combined with order-1 Fourier Basis with/without
delay over 60 trainings on a version of the Cart-Pole environment with a continuous action
space (maximum episode length of 500 steps)

cant. Such high variance means that training is very different from one simulation to another
and that it is very difficult to know the behavior of the method during the training.

The delay has less impact on PPO as shown in Figure 5.9. Indeed, although PPO takes
longer to converge toward a policy, it still converges toward an optimal policy in less than 800
episodes. The convergence is almost twice longer with a delay. It can therefore be said that the
PPO continues to learn effectively even though the training is much longer with the addition
of noise. Until now in this subsection, the action space A was discrete but Actor-Critic meth-
ods like PPO can be adapted for continuous action space [6]. Therefore, PPO was also tested
with the same hyperparameters on a Cart-Pole environment with a continuous action space.
Results are shown in Figure 5.10. For PPO, with a continuous space of action learning is more
difficult with a longer learning and a greater variance than in an environment with a discrete
action space. However, even if, PPO does not converge towards an optimal policy within 800
episodes, it is clear that the method learns unlike Duel-DQN. Perhaps with a longer training,
the method would converge towards an optimal policy. ACKTR behaves similarly to PPO with
longer learning on a delayed environment than on the perfect environment. However, not all
Actor-Critic methods react in the same way to delay, as shown in Figure 5.11 for SAC. Similar
Duel-DQN, SAC converges towards a policy with poor performance when a delay is added.

55

(a) With a delay (b) Without a delay

Figure 5.11: Training performance of SAC combined with order-1 Fourier Basis with/without
delay over 60 trainings on a version of the Cart-Pole environment with a continuous action
space (maximum episode length of 500 steps)

These experiments show that adding a delay degrades the learning of Deep RL methods more
than noise. Indeed, some methods such as DQN or SAC are no longer able to converge to-
wards an optimal policy. While for others, such as PPO or ACKTR, the learning takes much
more time. Such poort results can be explained by a bad tuning of hyperpramaters, no special
Grid-Search was performed on the delayed version of the Cart-Pole environment. The general
behavior of Deep RL methods on delayed environments is not known although there exists some
papers dealing with the case where rewards are delayed [21, 22].

5.3 Performance After Training

We saw in the previous sections that Deep RL methods learn on both deterministic and non-
deterministic versions of the Cart-Pole environment, but it is important to ensure that the
learned controller is effective. The objective of this section is to study the post-training per-
formance of the methods on the Cart-Pole environment and to compare them with each other
and with more conventional methods.

From now on, the training was made on finite horizon time but it would be nice after the
training to have an agent that can be used for an infinite horizon time. It was observed that
with a constant reward signal, the policy was unsafe for episodes longer than the training hori-
zon. Indeed, for example, after training the agent on finite horizon time of 200 steps on the
classic gym Cart-Pole environment, it was common to see the cart getting out of the rail after
the 200 steps. There are RL methods for learning on continuous tasks, however most methods
are developed for episodic tasks. To fix this problem, one idea is to encourage the agent during
the training to return in the set of its initial states by changing the reward distribution. This
property is called the Inductive Invariance property and will be discussed in more details in
Chapter 6. For the Cart-Pole environment, it was decided to use the reward distribution shown
in Figure 5.4 to incite the Cart-Pole to return in the set of its initial positions. The plateau
that we will note P in the reward distribution corresponds to the set of the initial position
of the Cart-Pole. Note that with this reward distribution, no penalty is assigned to the other
state variables.

56

5.3.1 Metrics

In order to measure the ability of the agent to return to the set of its initial states, metrics
must to be defined. The list below summarizes metrics used in this subsection to evaluate the
post-training performance of the Deep RL methods:

• the success rate which indicates the percentage of complete episodes. An episode is
complete if its duration corresponds to the predefined maximum number of steps (= 501
steps in this section). A rate equal to one guarantees the agent respects hard constraints
for the training horizon time,

• the average length of an episode which is the average number of steps per episode.
The maximum number of steps is 501 in this section,

• the average number of outliers in position which is the average number of steps over
the last 150 steps of each complete episode where the Cart-Pole is not in the set of its
initial positions P = [−0.25, 0.25],

• the statistics on distances in position which is the distance between the Cart’s po-
sition and the set of its initial positions P : dpos(x,P) = infp∈P{|x − p|} where x is the
position of the Cart. This distance is only computed over the last 150 steps of each com-
plete episode. A distance greater than zero means that the step is an outlier in position
and quantifies how far the outlier is from P ,

• the average number of outliers in angle which is the average number of steps over
the last 150 steps of each complete episode where the Cart-Pole is not in the set of its
initial angles I = [−2.86◦, 2.86◦],

• the statistics on distances in angle which is the distance between the Pole’s angle and
the set of its initial angles I: dangle(x, I) = infθ′∈I{|θ − θ′|} where θ is the angle of the
Pole. This distance is only computed over the last 150 steps of each complete episode. A
distance greater than zero means that the step is an outlier in angle and quantifies how
far the outlier is from I ,

5.3.2 Performance On A Deterministic Environment

In this sub-section we compare the Deep RL methods by comparing the ability of the con-
trollers resulting from these methods to return to the set of initial states P . Deep RL methods
are compared with each other but also with a conventional method (PID). The PID used is
in fact the combination of two PIDs: one that regulates the position of the cart and another
that regulates the angle of the pole. The two outputs are added to give a single output. As
the action space is discrete, the sign of the sum is studied to discretize which the actions to be
taken. The coefficients were chosen manually.
The post-training performance of Deep RL methods were computed on 60 different controllers
learned by these methods. Metrics were computed on the data of states of 800 episodes for
each controller learned. In order to study the behavior of a controller, it is important to test it
on as many different configurations as possible. For this reason, P is divided into 800 disjoint
segments corresponding to the 800 episodes. For which segment, a position is randomly chosen

57

Methods Sucess Rate Average Length of Episode

PID 1.0 501
DQN 0.9922 499.46
DDQN 0.9599 492.20

Duel-DQN 0.9787 498.12
Duel-DDQN 0.9762 498.05

A2C 1.0 501
PPO 1.0 501

ACKTR 1.0 501

Table 5.1: Performance Metrics

Metrics PID DQN DDQN Duel-
DQN

Duel-
DDQN A2C PPO ACKTR

Number Of
Steps In P 151 117,02 95,97 110,54 109,54 148,99 148.12 151

Average 0 2.06e-01 3.50e-01 2.50e-01 2.41e-01 4.50e-02 9.31-02 0

Median 0 1.13e-01 2.35e-01 1.62e-01 1.59e-01 3.12e-01 9.88e-02 0

Q1 0 4.33e-02 8.66e-02 5.39e-02 6.05e-02 3.18e-02 3.02e-02 0

Q3 0 3.01e-01 5.36e-01 3.54e-01 3.34e-01 5.73e-02 1.35e-01 0

Variance 0 9.98e-03 2.44e-02 2.10e-02 1.32e-02 4.32e-04 4.28e-03 0

Worst Distance 0 2.18 2.19 2.16 2.17 1.31e-01 4.65e-01 0

Table 5.2: Statistics on distances in position. Distances in position are computed for the last
150 steps of each episode. The worst distance corresponds to the maximum distance observed.
For each episode, distances are averaged. Average, median, Q1, Q3 and variance are computed
on these average distances.

to be the initial position of the Cart.

Table 5.1, Table 5.2, and Table 5.3 resume metrics computed for some Deep RL methods.
We can see that the Actor-Critical Advantage methods succeed in the Cart-Pole task over the
training time horizon with a success rate equal to 1 (Table 5.1). This is not true for the Action-
Value methods even though DQN is very close to this rate. These results are consistent with
what was observed during training. Since the Actor-Critical methods are faster for learning,
it is normal that they perform better after training. Besides, it confirms that the learning to
respect hard constraints was over for Actor-Critic methods.

In addition, Actor-Critic methods perform better than Action-Value methods to return into
P over the training time horizon (Table 5.2). The number of outliers is significantly lower as
well as the distance of its outliers from P . The worst distance is almost 20 times lower with
Advantage Actor-Critic methods than with Action-Value methods. ACKTR is the only method

58

Metrics PID DQN DDQN Duel-
DQN

Duel-
DDQN A2C PPO ACKTR

Number Of
Steps In I 151 150,26 149,37 147,22 148,18 151 151 151

Average 0 1.03e-02 1.48e-02 1.14e-02 1.29e-02 0 0 0

Median 0 5.61e-03 9.12e-03 6.74e-03 7.59e-03 0 0 0

Q1 0 3.10e-03 3.36e-03 3.26e-03 3.00e-03 0 0 0

Q3 0 1.36e-02 2.23e-02 1.68e-02 1.88e-02 0 0 0

Variance 0 6.67e-05 1.35e-04 7.18e-05 9.26e-05 0 0 0

Worst Distance 0 1.84e-01 1.60e-01 1.61e-01 1.56e-01 0 0 0

Table 5.3: Statistics on distances in angle. Distances in angle are computed for the last 150
steps of each episode. The worst distance corresponds to the maximum distance observed. For
each episode, distances are averaged. Average, median, Q1, Q3 and variance are computed on
these average distances.

at the end of the training that provides similar performance to the PID controller even if A2C
and PPO are close. Such results suggest that a training in 800 episodes is not enough to learn
to return in P . This is also likely the case for DQN and its extensions. For longer training, all
methods would achieve the same performance as PID.

Same results are observed for the angle control, Advantage Actor-Critic methods perform better
than action-value methods with no outliers observed (Table 5.3) over the training time horizon.
Even if there are some outliers for DQN and its extensions, they are very close to I. Never-
theless, these metrics on angle do not make sense because rewards are assigned according to
the position of the cart and not according to the angle of the pole. The agent is not explicitly
encouraged with rewards to return to I, but it seems to return there naturally. It is possible
than with the current reward distribution and the condition of termination, the agent may have
an incentive to return to I.

Not so surprisingly, these results are consistent with what was observed in section 5.2 during
the training. Advantage-Actor Critic methods give better results than Action-Value methods
after the training because they learn faster and the learning was almost finished. ACKTR is
the only method close to the performance got with the PID controller. With a longer train-
ing, there is a good chance of for learned controller to achieve performance similar to the PID
controller. There is a good chance that a controller learned with ACKTR can be used over
an infinite horizon time. Even if no outliers are observed in angle and position, to verify the
inductive invariance property it is necessary to test all the trajectories generated by ACKTR
and calculate metrics for speed and angular velocity. In chapter 6, there is a discussion about
how to efficiently measure the safety of a controller.

59

Methods Sucess Rate Average Length of Episode

PID 1.0 501
A2C 0,9165 461,08
PPO 1.0 501

ACKTR 0,99944 500,76

Table 5.4: Performance metrics on non-determinsitic Cart-Pole

Metrics PID A2C PPO ACKTR

Number Of Steps In P 151 96,09 150,46 141,41

Average 0 1.4964e-01 3.1537e-02 1.8298e-01

Median 0 1.0951e-01 1.5803e-02 1.7781e-01

Q1 0 5.0546e-02 5.8220e-03 6.2138e-02

Q3 0 1.9734e-01 4.0948e-02 2.7826e-01

Variance 0 1.0984e-02 6.7018e-04 1.1417e-03

Worst Distance 0 2.0243 4.9563e-01 1.0624

Table 5.5: Statistics on distances in position on non-deterministic Cart-Pole. Distances in
position are computed for the last 150 steps of each episode. The worst distance corresponds to
the maximum distance observed. For each episode, distances are averaged. Average, median,
Q1, Q3 and variance are computed on these average distances.

5.3.3 Performance On A Non-Deterministic Environment

The same strategy and the same metrics defined in the previous section were used for measuring
the post-training performance of Actor-Critic methods on a non-deterministic version of the
Cart-Pole environment introduced in Section 5.2.2. Results can be found in Table 5.4, 5.5 and
Table 5.5. Unlike the deterministic version of the environment, most Actor-Critic methods do
not respect hard constraints of the Cart-Pole environment (Table 5.4). PPO is the only method
that generates controllers that still meet these strict constraints. Even if, the rate of ACKTR
is very close to one, failures were observed. It even worse for A2C with very poor performance.
These failures can be explained by the fact that training takes more time in a non-deterministic
environment, as explained in section 5.2.2. PPO and ACKTR were better than A2C during
the training and these results are refound after the training. Similar results are observed in
Table 5.5 and Table 5.5. Unlike the deterministic version of the environment, no method
achieves the performance obtained with PID. PPO has surprisingly better performance on a
non-deterministic version of the environment than on the deterministic version of environment
and it seems to be the most robust Deep RL method studied to external perturbations for the
Cart-Pole environment. However, according to the learning curves in Figure 5.7, there is a good
chance that with longer training, most of the Actor-Critic methods would perform as well as
the PID controller.

60

Metrics PID A2C PPO ACKTR

Number Of Steps In I 151 144,03 150,85 150,99

Average 0 7.3247e-03 4.4065e-03 3.0075e-03

Median 0 5.2064e-03 3.2649e-03 1.8893e-03

Q1 0 2.6471e-03 1.8853e-03 8.4088e-04

Q3 0 9.3344e-03 5.9479e-03 3.8694e-03

Variance 0 3.8314e-05 1.1547e-05 1.7800e-06

Worst Distance 0 1.3738e-01 5.1630e-02 1.3592e-02

Table 5.6: Statistics on distances in angle on non-deterministic Cart-Pole. Distances in angle
are computed for the last 150 steps of each episode. The worst distance corresponds to the
maximum distance observed. For each episode, distances are averaged. Average, median, Q1,
Q3 and variance are computed on these average distances.

61

Chapter 6

Measurements Of Safety Requirements

Recent advances in Artificial Intelligence (AI) have contributed to a proliferation of autonomous
agents such as vehicles, drones, and inspection robots. Autonomous agents must respect some
minimal performance (rise time, learning time, overshoot...) as well as safety requirements
based on state constraints. The safety requirements are essential for the proper functioning
of the controller. Indeed, a violation of these requirements can lead to a deterioration of the
system. Often safety requirements are expressed as constraints on state variables. For example,
for the Cart-Pole task we do not want that the cart moves out of the rail, so constraints on its
position are defined.

We define proper metrics measuring the safety requirements of a controller. These metrics
give us a quantitative information to reject a controller as well as to compare controllers be-
tween them. In that way, we can favor the safest controller. Two type of measures can be
distinguished :

• the absolute metrics : they have a formal interpretation over behaviors and they accu-
rately depict a property that we want to check.

• the ranking : it is more suited to compare methods. The values only make sense if you
have several of them to provide a ranking. Formally speaking, a measure used for ranking
only needs to be a pre-order, it is not a metric in the mathematical sense.

The aim of this chapter is to define a set of metrics measuring the safety requirements (based
on state constraints) of a controller. These metrics are computed from data generated by the
controller. The controller can be either a conventional controller or learned by a RL method
as long as it is deterministic. Besides, we consider throughout this chapter that the n state
variables si of the system are normalized. Indeed, the safety requirements on each state
variable must be treated equally.

62

6.1 Safety Of Dynamical System

6.1.1 Constraint Zone

This report considers the state space S of the system as a subspace of Rn (with n the number of
state variables of the system) therefore a metric space can be easily defined. The Chebyshev
distance (δChebychev(s, s′) = maxi(|si− s′i|) for s, s′ ∈ S) associated to the state space S defines
for example a metric space (S, δChebychev) of the state space.

The system has a set of given forbidden or critical states P̄ ⊂ S that need to be avoided.
These states deteriorate the system, may lead to its self-destruction or its malfunction. The
constraint zone P := S \ P̄ ⊆ S is the complementary of the set of forbidden states.

States from which the controller can ensure that the system never enters the forbidden states
are called safe. The states that are not safe are called unsafe; from these, the controller may
not be able to keep the system away from the forbidden states. A priori (i.e., without further
analysis), we only know which states are forbidden, not which states are safe or unsafe. For
example, we know the maximum allowed position of the cart, but we don’t know the maximum
speed just before that position for which the cart can still slow down in time.

6.1.2 Dynamical System

The behavior of the system is mathematically described by a dynamical system on a discrete
time. A dynamical system [7] is a pair (S, h) where S = (S, δ) is an arbitrary metric space and
h is a map from S into itself. Here, the metric space S = (S, δChebychev) is a metric space of the
state space S. h denotes the behavior of the system and gives the next state of the system
from the current state. If st is the current state, the state at the time t+ 1 is given by h(st+1).
Noise can be added into h. For example, we can define h as h(st) = g(st) + Wt where st is
the current state, g is a map from S into itself describing the behavior of the controller and
(Wt)t≥1

i.i.d∼ φ ∈ D(Z) the sequence describing the noise given by the probability distribution of
the noise φ applied at each time t.

6.1.3 Trajectory

By the n-th iterate of s ∈ S under h we mean hn(s). Conventionally, h0(s) = s. A trajectory
T of s0 ∈ S0 is defined as the sequence (ht(s0))t≥0 and s0 is the initial state of the trajectory
T . The subset S0 ⊆ P denotes the set of all initial states of any trajectory generated by the
controller. In the case of a deterministic environment for a deterministic controller and with no
noise applied, h is deterministic. Then, there is just one trajectory generated by the controller
for each initial state s0 ∈ S0. Otherwise, we can have multiple trajectories different from each
other starting from one of the initial states.

A controller is said safe if for any of trajectory T generated, T ⊆ P . In other words, no
forbidden states can be reached from any initial state in S0 following the policy of the con-
troller.

63

6.2 Directed Hausdorff Metric

A first idea to measure the safety requirements is to define a distance metric to measure how
far a trajectory T generated by a controller is from the constraint zone P .

The directed Hausdorff distance is a general dissimilarity measure for two sets of points
in a metric space. It is a well known distance measure in the field of computational geometry
and image processing. Given two sets of points A ⊆ Rn and B ⊆ Rn, the directed Hausdorff
distance

−→
d (A,B) from A to B corresponds to the maximum distance from a point a ∈ A to

the closest point of B, where distance between points is measured by the metric δ(a, b) of the
metric space (Rn, δ)

−→
d (A,B) = sup

x∈A
inf
y∈B

δ(x, y) (6.1)

The directed Hausdorff distance is not a true distance since it is not symmetric; the reverse
Hausdorff distance

−→
d (B,A) is in general different from

−→
d (A,B). However, the directed Haus-

dorff distance has the interesting property that
−→
d (A,B) = 0 if A ⊆ B.

Therefore, considering the metric space of the state space (S, δChebychev), the directed Haus-
dorff distance

−→
d (T ,P) measures how far is the trajectory from the constraint zone. If we have

−→
d (T ,P) = 0 then the system evolves for the trajectory T inside the constraint zone P . In this
way, we are able know to determine and quantify safety requirements for a given trajectory. If
for any trajectory T generated by the controller we have

−→
d (T ,P) = 0 then the controller is

safe. Besides, we know how far the trajectory is far from P when
−→
d (T ,P) > 0.

Even if we have a way to measure the distance between a trajectory and the constraint zone,
we do not know how far the trajectory is from the forbidden states set P̄ if

−→
d (T ,P) = 0.

Indeed, the controller may evolve close to P̄ . Consequently, with this metric, we do not favor
the controller furthest away from P̄ . For this reason, we need a more accurate metric.

6.3 Quantitative Robustness Estimate Metric

A boolean answer to know if the safety requirements are respected provides only a partial infor-
mation and can be augmented with quantitative information about the satisfaction to provide
a better basis for decision making. Therefore, Signal Temporal Logic can be an interesting
framework to determine a new metric measuring the safety requirements. Signal Temporal
Logic (STL) is a convenient and powerful formalism for continuous and hybrid systems for
computing the robustness degree in which a piecewise-continuous signal satisfies or violates an
STL formula [23]. Appendix D.1 recall the STL formalism necessary to understand this section.

To define a metric measuring the safety requirements, we can consider the states variables
of a trajectory as signals. Moreover, the safety requirements are expressed as state constraints
thus the constraint zone is defined from constraints on state variables. A constraint on a state
variable si is defined as ψi,j : ai,j < xi ≤ bi,j where ai,j < bi,j and ai,j, bi,j ∈ R∪{+∞}∪{−∞}
are the constraints corresponding to ψi,j.

64

Let ϕi be the conjunction of the m constraints corresponding to all the constraints defined
on the state variable si : ϕi = ∧j=1,...,mψi,j = ψi,1 ∧ . . . ∧ ψi,m.

Let w denote the execution trace of real-valued signals of the state variables of the system
{xw1 , . . . , xwn} of a trajectory T generated by the controller. The time domain D is here the
length of the trajectory.

The assertions
w, t |= ∧i=1,...,nϕi

check if the the state x = (xw1 , . . . , x
w
n) from the trajectory T at time t is in the constraint

zone. From now on, we only consider finite trajectories. Therefore, if T is the length of the
trajectory T , the assertions :

w, t |= ∧i=1,...,n�[0,T]ϕi

check if the the the trajectory T is in the constraint zone.

The robustness estimate metric for checking the safety requirement is defined as :

ρ(∧i=1,...,n�[0,T]ϕi, w, 0) = min
i

inf
t∈[0,T]

ρ(ϕi, w, t)

= min
i

inf
t∈[0,T]

ρ(∧j=1,...,mψi,j, w, t)

= min
i

inf
t∈[0,T]

min{ρ(ψi,j, w, t)|i ∈ [1, n], j ∈ [1,m]}

If ρ(∧i=1,...,n�[0,T]ϕi, w, 0) > 0 then the the trajectory T is in the constraint zone. Its magnitude
gives information about how far the state variable x is far from P̄ . ρ(∧i=1,...,n�[0,T]ϕi, w, 0) is a
metric to measure the safety requirements based on state constraints. This metric evaluates for
a given trajectory the furthest point from the constraint zone P if ρ(∧i=1,...,n�[0,T]ϕi, w, 0) < 0
or the closer one from P̄ if ρ(∧i=1,...,n�[0,T]ϕi, w, 0) > 0. The robustness estimate metric actually
measures the worst constraints violation on the trajectory T . If we have a sequence of m finite
trajectories (Ti)i=1,...,m we take the minimal robustness metric.

6.4 Metrics Based On A Probabilistic Approach

Until now, only distances were used to define metrics. In this section, we will consider a
probabilistic approach to define metrics for the safety requirements.

6.4.1 A Probabilistic Approach Of The Safety Requirements

We can consider at each time step t the cumulative distribution (Appendix D.3.1) F t
i asso-

ciated to the state variable xi (i ∈ [1, n]). F t
i (x) represents the probability for the state variable

xi to be below a quantity x at the time step t :

F t
i (x) = Pr(xi(t) ≤ x)

65

Given a constraint ψti,j on the state variable xi at time step t (see the definition of ψi,j in the
section 6.3), the probability :

1− Pr(ψti,j) = 1− (F t
i (bi,j)− F t

i (ai,j))

= 1− F t
i (bi,j) + F t

i (ai,j)

represents the the probability that the state variable xi does not respect the constraint ψti,j at
the time step t where ai,j, bi,j are the constraints associated to ψti,j.

The bijection const is defined as const(ψi,j) = [ai,j, bi,j] where ai,j, bi,j are the constraints as-
sociated to ψti,j (see the definition of ψi,j in the section 6.3). Two constraints ψti,j and ψti,k are
said disjoint if const(ψi,j) ∩ const(ψi,k) = ∅

Let ϕi be the set of all disjoint constraints ψi,j on the state variable xi. All constraints on
the state variable can be expressed as a set of all disjoint constraints. Indeed, if two con-
straints ψti,j and ψti,k are not disjoint then you build the constraint ψti,l such that const(ψi,l) =
const(ψi,j) ∪ const(ψi,k). We have then:

Pr(ϕ̄ti) = 1− Pr(ϕti) = 1− Pr(∪pk=1ψ
t
i,k)

= 1−
p∑

k=1

(
F t
i (bi,k)− F t

i (ai,k)
)

where Pr(ϕ̄ti) represents the probability that the state variable xi does not respect its constraints
at time step t and p is the number of constraints defined in ϕi(t). And

Pr(ϕ̄0:T
i) = Pr(∪Tt=0ϕ̄

t
i) =

T∑
t=0

(1− Pr(ϕti))

=
T∑
t=0

(
1−

p∑
k=1

(
F t
i (bi,k)− F t

i (ai,k)
))

is the probability that the state variable xi does not respect the constraints on the the period
[0, T] with the assumption that ∀t, t′ ∈ [0, T] with t 6= t′, the events ϕ̄ti and ϕ̄t

′
i are independent.

For the time horizon T , the approximation of the probability Pr(ϕ̄0:T
i) defines metrics to mea-

sure the safety requirements based on states constraints. Contrary to the robustness estimate
metrics which was only focused on the worst constraint violation, the probabilistic approach
considers equally all the constraints violations. This metric is not better than the robustness
estimate metrics but gives other information. For example, consider the case where we have
two controllers : a controller C1 with few constraint violations and another controller C2 with
more violations. Besides, we assume that the controller C1 has a worst constraint violation
than the controller C2. Therefore, the robustness estimate metric says that the controller C1

is worst than the controller C2 but the probabilistic metric may say the opposite. Thus, which
metric has right ? The answer is that it depends on the tasks. There are no universal metrics
giving always the best controller for any task.

66

6.4.2 Empirical Metric Based On The Beta Distribution

We assume that we have collected from a controller a set of m trajectories {Ti}i=1,...,m. The
set Dti = {xi(t) ∈ Tj|j ∈ [1,m]} is a set of m i.i.d samples given by the cumulative distribution
F t
i of the state variable xi at time step t. With the Beta distribution generator method

[24] we are able to compute the confidence intervals F t
i,l and F t

i,u at a confidence level c of the
cumulative distribution F t

i (see Appendix D.3.1 for further explanations). Given a constraint
ψi,k where const(ψi,k) = [ai,k, bi,k], we have:

F t
i,l(bi,k)− F t

i,u(ai,k) ≤ F t
i (bi,k)− F t

i (ai,k) ≤ F t
i,u(bi,k)− F t

i,l(ai,k)

We can then set an interval with a confidence level c for Pr(ϕ̄0:T
i) where T is the length of all

trajectories:

T∑
t=0

(
1−

p∑
k=1

(
F t
i,l(bi,k)− F t

i,u(ai,k)
))

︸ ︷︷ ︸
=Ai

≤ Pr(ϕ̄0:T
i) ≤

T∑
t=0

(
1−

p∑
k=1

(
F t
i,u(bi,k)− F t

i,l(ai,k)
))

︸ ︷︷ ︸
=Bi

Besides with the Empirical Distribution Function [25] (Appendix D.2), we can have an
approximate F̂ t

i of the cumulative distribution function F t
i and thus an approximate of Pr(ϕ̄0:T

i):

P(ϕ̄0:T
i) ≈

T∑
t=0

(
1−

p∑
k=1

(
F̂ t
i (bi,k)− F̂ t

i (ai,k)
))

︸ ︷︷ ︸
=P̂i

The interval [Ai, Bi] and P̂i give us information on the probability that the controller does not
respect the constraints on the state variable xi for a time horizon T . Both of them are relevant.
Indeed, if for example we have two controller for which we have [A1

i , B
1
i] and P̂ 1

i and [A2
i , B

2
i]

and P̂ 2
i , respectively, such that:

[A2
i , B

2
i] ⊆ [A1

i , B
1
i] (6.2)

and
P̂ 1
i ≤ P̂ 2

i

It is not so easy to know which controller is the best. It depends on the task. For this reason,
sometimes it can be more interesting to keep either the interval [Ai, Bi] or P̂i

6.5 On Infinite Horizon Time

Until now, we only use metrics on a finite horizon time T to check if a controller respects the
safety requirements. However, most tasks have an infinite horizon time and we do not know
its behavior after this time horizon T . Thereby, with the current metrics for tasks on a finite
horizon time T we have no guarantee on the safety of the controller.
Moreover, even if we have a finite horizon time T , we have to check all the trajectories generated
by the controller to be sure that the controller is safe. The number of trajectories generated
by the controller may be infinite if S0 is infinite. In practice, it is not possible. For this rea-
son, we need to properly define a property that the controller has to check to make sure it is safe.

67

(S, h) is the dynamical system given by the controller. A deterministic controller means that
there exists a bijection between the initial states set S0 and the set Σ of trajectories generated
by the controller. If for every x0 ∈ S0, there exists t′ such that ht′(x0) ∈ S0 and that the finite
sequence T 0:t′ = {x0, h

1(x0), . . . , ht
′
(x0)} ⊆ P then the controller is safe. It is the Inductive

Invariance. Every controller which satisfies this property is safe but every safe controller does
not satisfy this property. However, in that way we can find some controllers which are safe for
an infinite horizon time. The Inductive Invariance can be checked with the metrics previously
defined between the trajectory generated by the controller and the set S0.

In practice, it is very difficult to determine exactly each element of the subset S0. Indeed,
when the system reboots, we are not exactly sure that the systems reboots exactly at a specific
initial state x0 but more in a neighboring state of x0. Therefore, S0 is more like an infinite
subset defined by constraints than a finite subset. As S0 is infinite, we have an infinite number
of trajectories and consequently we can not in practice check the Inductive Invariance. Thereby,
we can just test for as many different trajectories as possible the conditions of the Inductive
Invariance with the defined metrics to compare methods or to get an idea of the controller
behavior. But we are no longer able to say with certainty that the controller is safe.

68

Chapter 7

Conclusions

The first part of this report attempts to introduce the basics of Reinforcement Learning and
Deep Reinforcement Learning in a compact yet simple form for anyone who would like to get
started in Reinforcement Learning.
The experiments highlight the importance of the choice of features encoding for Deep RL meth-
ods and more particularly reveal the efficiency of Fourier Basis encoding. Indeed, with Fourier
Basis, the Deep RL methods learn faster, converge to better policies and are easier to tune.
A comparison of the training performance of several Deep RL methods on the Cart-Pole en-
vironment shows that not all Deep RL methods react in the same way, in particular in a
non-deterministic environment with external disturbances (noise, delays). For some methods
such as DQN, the learning becomes impossible with the addition of external disturbances. In
contrast, most Actor-Critic methods are more robust but the training requires generally more
time and the variance is higher. Surprisingly, the Proximal Policy Optimization (PPO) is the
exception: it has the same training performance in a non-deterministic environment with even
a lower variance than with a deterministic version of the environment.
Basic metrics were introduced to determine the safety of Deep RL methods after the training.
It was observed that with a constant reward signal, the policy was unsafe for episodes longer
than the training horizon. By changing the distribution of rewards to encourage the agent to
respect the Inductive Invariance (its ability to return to its set of initial states), it is possible to
improve the safety over an infinite horizon time even if the training was made on an episodic
task.
Finally, this report defines the safety of a given controller as its ability to stay outside of for-
bidden states given by a set of constraints. Safe states are states from which the controller can
ensure that the system never enters forbidden states deteriorating the system. Three types of
metrics are suggested to correctly quantify the safety of a controller: a distance to the forbidden
states, a quantitative interpretation of the Signal Temporal Logic and an approximation of the
confidence interval for the probability distribution.

For future work, the next steps will be:

• to test Fourier Basis encoding on more environments to prove its efficiency,

• to further compare Deep RL methods with each other and with conventional methods on
simulated experiences and real-world experiences,

69

• to study in more detail the effect of external disturbances such as noise on Deep RL
methods (more environments) and try to understand why some fail,

• to study the choice of different reward distributions on the safety of Deep RL methods,

It would be equally interesting to try to define new methods that impose constraints (by using
a pattern close to the TRPO method) during the learning in order to guarantee the safety of
the controller after the training or methods robust to external disturbances using unsupervised
learning on their replay buffer.

All the implementations made during this project are available at https://github.com/
DavidBrellmann/DeepRL.

.

70

https://github.com/DavidBrellmann/DeepRL
https://github.com/DavidBrellmann/DeepRL

Appendix A

Appendix To Introduction To
Reinforcement Learning

Fundamental concepts useful for the definition of Markov Decision Process are defined in this
appendix. The following definitions are taken from the Stachurski’s Book [7].

A.1 Measurable Space

Let S be any nonempty set. A family of sets S ⊆ B(S) (B(S) denotes the set of all subsets
of S) is called a σ-algebra if:

• S ∈ S

• A ∈ S implies Ac ∈ S

• if (An)n≥1 is a sequence with An in S for all n, then ∪nAn ∈ S

The pair (S,S) is called ameasurable space and elements of S are calledmeasurable sets.

Let S be any metric space. The Borel sets on S denoted B(S) is the smallest σ-algebra
on S that contains O, the open subsets of S. The smallest σ-algebra on S that contains O is
the intersection of all σ-algebra on S that contains O.

A.2 Probability Measure

For a given measurable set (S,S), a probability measure µ is a function from S to [0, 1]
such that:

• µ(∅) = 0

• µ is countably additive: if (An) ∈ S is disjoint then µ(∪nAn) =
∑

n µ(An)

71

• µ(S) = 1

The triple (S,S , µ) is called a probability space.

A.3 Stochastic Process

Let (S,S) be a measurable space. An S-valued stochastic process is a tuple:

(Ω,F ,P, (Xt)t∈T)

where (Ω,F ,P) is a probability space, T is an index set such as N or Z and Xt is an S-valued
random variable on (Ω,F ,P) for all t ∈ T

The idea is that at the beginning, a state x0 is selected from the set Ω according to the
probability law P and then Xt(x) reports the time t outcome for the variable of interest as a
function of that realization.

A.4 Stochastic Kernel

Let S be a Borel subset of Rn. A stochastic kernel on S is a family of probability measures.

P (x, dy) ∈P(S) (x ∈ S)

with P(S) the set of all probability measures on (S,B(S)).

Each finite kernel p on the finite set S defines a general kernel P on S by

P (x,B) =
∑
y∈B

p(x, y) (x ∈ S, B ⊂ S)

Each density kernel p on a Borel set S ⊂ Rn defines a general kernel P on S by

P (x,B) =

∫
B

p(x, y)dy (x ∈ S, B ∈ B(S))

72

Appendix B

Appendix To Deep Reinforcement
Learning

B.1 Extensions To DQN

This appendix proposes a selection of the most popular extensions of DQN.

B.1.1 Double DQN

The max operator in the target of the DQN results in the propagation of over-estimations with
a positive bias toward the q̂ estimations. For further details or explanations to understand this
positive bias, see [6], [26].

Double Deep Q-learning Network (DDQN) [27], addresses this overestimation by decou-
pling, in the maximization performed for the bootstrap target, the selection of the action from
its evaluation.
Indeed, one way to avoid maximization bias is to divide the plays into two sets and use
them to determine two independent estimates q̂1(s, a,w) and q̂2(s, a,w−) of the true action-
value estimate Qπ(s, a). One estimate is used to determine the maximization action a∗ =
arg maxa∈Γ(s) q̂1(s, a,w) and the other one, q̂2(s, a,w−), to provide its action-value function.
The process can be repeated inverting the two estimates.
There are already two networks, the target network and the online network, predicting Qπ.
The decoupling is made thus by the use of the target network and the network for predictions.
From the DQN loss 4.1, the loss for the DDQN is :

L(wt) = Eπ
[
(R(st, at) + γq̂(st+1, arg max

a′∈Γ(st+1)
q̂(st+1, a

′,wt)),w
−
t)− q̂(st, at,wt))

2

]
(B.1)

The convergence may be twice faster with this minor change.

73

B.1.2 Prioritized Experience Replay

In classic DQN, transitions are uniformly sampled from the replay buffer but replaying all tran-
sitions with equal probability is suboptimal. Ideally, we want to sample more frequently those
transitions from which there is much to learn.

Prioritized Experience Replay [15] (PER) solves this problem considering that some expe-
riences may be more interesting than others for our training, but might occur less frequently.
Indeed, samples with a greater TD error improve the critic faster so in PER they have a
higher probability of being selected.
For the DQN method, the TD error δt defined as:

δt = R(st, at) + γ max
a∈Γ(s)

q̂(st+1, a,w
−
t)− q̂(st, at,wt) (B.2)

Two ways of getting priorities may be considered:

• a proportional prioritization: pi = |δi| + ε, where ε is a small constant ensuring that
the sample has some non-zero probability of being drawn.

• a rank based prioritization: pt = 1
rank(t)

which sorts the items according to |δt| to get
the rank.

Both distributions are monotonic in δt, but the latter is likely to be more robust, as it is insen-
sitive to outliers. During exploration, pi terms are not known for brand-new samples because
those have not been evaluated with the networks to get a TD error term. For this reason, PER
initializes pi according to the maximum priority and then favoring those terms during sampling
later.

From priority pi, the probability of sampling transition i is:

P (i) =
pαi∑
k p

α
k

(B.3)

with α ≥ 0. The α term determines how much prioritization is used (if α → 0 we are getting
close to the uniform case, and if α→ 1 there is full prioritization).

The Buffer size N can be quite large and authors suggest a special data structure, the sum-
tree [15], to reduce the time complexity to find samples.

In the loss 4.1, the samples (st, at, R(st, at), st+1) are drawn by the state distribution µ ∈P(S)
corresponding to the policy π. With the classic Replay Buffer combined with uniformly sam-
pling, samples are still drawn from µ. However, PER introduces a bias because samples are not
drawn anymore from µ because some samples are drawn more frequently than with the state
distribution µ.
This bias can be corrected by using importance-sampling weights:

wi =

(
1

N

1

P (i)

)β
(B.4)

74

where N is the size of the PER and β controls how much prioritization is applied.
The importance-sampling weights compensate for the non-uniform probability P (i) if β = 1.
Each minibatch is further scaled such that maxiwi = 1 for stability reasons.
The weight wi is proportional to the the probability sample P (i) : if P (i) → 1 the weight
gets smaller, with an extreme down-weighting of the sample’s impact. Otherwise, if P (i)→ 0,
the weight gets larger. If P (i) = 1

N
,∀i, there is then uniform sampling with weights equal to one.

An example of Pseudo-Code for DDQN combined with PER is given by Algorithm 6.

Algorithm 6 DDQN with PER (taken from [15])
Require: Minibatch of k elements, step-size η, replay period K and size N , exponents α and
β, budget T .
Initialize :

Initialize the Replay memory H = ∅, ∆ = 0, p1 = 1
loop
Observe s0

With probability ε select a random action a0 ∈ Γ(s0) otherwise select a0 =
arg maxa q̂(φ(s0), a,w)
for each step of episode t = 1, · · · , T do
Observe st, rt = R(st, at), γt
Store transition (st−1, at−1, rt, γt, st) in H with maximal priority pt = maxi<t pi
if t ≡ 0 mod K then
for j = 1 to k do
Sample transition j ∼ P (j) =

pαj∑
i p
α
i

Compute importance-sampling weight wj = (N.P (j))−β/maxiwi
Compute TD-error δj = rj +γj q̂(sj, arg maxa∈Γ(sj) q̂(sj, a,w),w−)− q̂(sj−1, aj−1,w)

Update transition priority pj ← |δj|
Accumulate weight-change ∆← ∆ + wj.δj.∇wq̂(sj−1, aj−1,w)

end for
Update weights w← w + η.∆, reset ∆ = 0
From time to time copy weights into target network w− ← w

end if
With probability ε select a random action at ∈ Γ(st) otherwise select at =
arg maxa q̂(φ(st), a,w)

end for
end loop

B.1.3 NoisyNets

Classic DQN uses an ε-greedy strategy to select actions. The limitations of exploring with an
ε-greedy policy may be clear in environments where many actions must be executed to collect
the first reward.

NoisyNets [20] proposes another strategy. Methods treating with NoisyNets use a greedy

75

Figure B.1: Example of Noisy Layer (taken from [20])

strategy to select actions from the the estimate q̂. To maintain exploration, trainable parame-
terized noise are added to the last fully-connected layer. Adding such noise to a deep network
is equivalent or better than using an ε-greedy strategy.

Let be a linear layer of the neural network with p inputs and q outputs, represented by :

y = wx+b (B.5)

where x ∈ Rp is the layer input, w ∈ Rq×p the weight matrix and b ∈ Rq the bias.
The corresponding noisy linear layer is defined as :

y = (µw + σw � εw)x + (µb + σb � εb) (B.6)

where εb ∈ Rq and εw ∈ Rq×p are noise random variables, µw ∈ Rq×p,µb ∈ Rq,σw ∈ Rq×p,σb ∈
Rq are learnable and � denotes the element-wise product. Such noisy layers are depicted in
the Figure B.1.

Authors propose two noise distributions for linear layers in a noisy network :

• Independent Gaussian noise, which uses an Independent Gaussian noise entry per
weight

• Factorised Gaussian noise, which uses an independent noise per each output and
another independent noise per each input. By factorising the entry εwi,j of the matrix εw,
p unit Gaussian variables εi and q unit Gaussian variables εj for noise of the outputs can
be used. Each εwi,j and εbj (corresponding to the entry of the matrix εb) can be defined as :

εwi,j = f(εi)f(εj) (B.7)

εbj = f(εj) (B.8)

where f is a real-valued function. Authors used f(x) = sgn(x)
√
|x|.

Factorised Gaussian noise is more interesting because there is less random numbers generation
and thus the computation time is better.

Over time, the network can learn to ignore the noise, but will do so at different rates in differ-

76

Figure B.2: Single Stream Q-Network (top) and dueling Q-network (bottom). First layers are
convolutionals as the original DQN) (taken from [28])

ent parts of the state space, allowing state-conditional exploration with a form of self-annealing.

It is strongly advised to use different noise for the target network and the online network.
According to the authors, the convergence may be better and faster with NoisyNets.

B.1.4 Duel DQN

This section proposes a new neural network architecture for DQN methods : the dueling ar-
chitecture [28].

As action-value method, DQN learns the action-value function Qπ. By definition, the action-
value function Qπ(st, at) represents how it is good to select an action at in a particular state
st. The idea is to decompose the Qπ function into a sum of two functions :

Qπ(st, at) = Vπ(st) + Aπ(st, at) (B.9)

where Vπ(st) is the state-value function and Aπ(st, at) = qπ(st, at) − Vπ(st) is the advantage
function.
The state-value function Vπ(st) represents how it is good to be in a particular state st whereas
the advantage function Aπ(st, at) gives a relative measure of the importance of each action.

The dueling architecture [28] is composed of two streams that represent the state value and the
advantage function, while sharing a common feature learning module (first layers).
Both streams are combined via a special aggregating layer to produce the estimate q̂ of the
action-value function Qπ.
Figure B.2 resumes this dueling architecture.

The reason behind this separation is that it is easier for the dueling architecture which states
are (or are not) valuable, without having to learn the effect of each action for each state. This
is particularly useful for states where their actions do not affect the environment in a relevant
way. In this case, it is unnecessary to calculate the value of each action thanks to the compu-
tation of the state-value function.

77

Figure B.3: See, attend and drive: Value and advantage saliency maps (red-tinted overlay) on
the Atari game Enduro, for a trained dueling architecture. The value stream learns to pay
attention to the road. The advantage stream learns to pay attention only when there are cars
immediately in front, so as to avoid collisions. (taken from [28])

Authors [28] give an example with the Atari game Enduro (Figure B.3). Indeed, moving
right or left only matters if there is a risk of collision. And, in most states, the choice of the
action has no effect on what happens (both images at the top of Figure B.3). In these states,
the advantage function does not pay attention to the visual input. However, if there is a risk
of collision (both images at the below of Figure B.3), advantage function pays attention to the
danger to compute the best possible action.

Considering the dueling architecture introduced by Figure B.2, there are one stream of fully-
connected layers v̂(st,w,β) estimating the state value function, and another stream output
â(st, at,w,α) evaluating the advantage value, where w denotes the parameters of the convolu-
tional layers and α, β are the parameters of the two streams of fully-connected layers.
From the definition B.9, the aggregating layer may be defined as :

q̂(st, at,w,α,β) = v̂(st,w,β) + â(st, at,w,α) (B.10)

Unfortunately, there is an issue of identifiability.
Indeed, given q̂ there are no way to refind v̂ and â. To improve understanding, adding a con-
stant to v̂ and subtracting this same constant to â implies the same value for q̂; thus there is
an infinity pairs of v̂ and â giving q̂.

Not being able to find v̂ and â given q̂ is a major problem for the neural network’s back
propagation. A solution would be forcing advantage function estimator to have zero advantage
at the chosen action :

q̂(st, at,w,α,β) = v̂(st,w,β) +

(
â(st, at,w,α)− max

a∈Γ(st)
â(st, a,w,α)

)
(B.11)

78

Consequently, for a∗ = arg maxa∈Γ(st) q̂(st, a,w,α,β) = arg maxa∈Γ(st) â(st, a,w,α), q̂(st, a∗,w,α,β) =
v̂(st,w,β).
With such aggregation, v̂(st,w,β) provides an estimate of the value function, while the other
stream produces a correct estimate of the advantage function.

In practice another way is used to improve the stability:

q̂(st, at,w,α,β) = v̂(st,w,β) +

â(st, at,w,α)− 1

|Γ(st)|
∑

a∈Γ(st)

â(st, a,w,α)

 (B.12)

Actually, it makes sense because Aπ(st, at) = Qπ(st, at)−Vπ(st) and Vπ(st) = Ea∼π(st)[Qπ(st, a)]
so Ea∼π(st)[Aπ(st, a)] = 0. However, the original semantics of v̂ and â are lost because they are
now off-target by a constant.

B.2 Introduction To Kronecker-factored Approximate Cur-
vature

Let Wl ∈ RCout×Cin be the weight matrix in the lth layer, where Cout and C in are the number
of output/input neurons of the layer.
We denote by pl = Wlol−1 the weighted sum for the lth layer, and by ol = φ(pl) ∈ RCin the
vector of unit outputs for the lth layer where φ is the activation function of the layer.
Let θ to be the vector consisting of all of the network’s parameters concatenated together, i.e.
[vec(W1)>, vec(W2)> · · · vec(Wl)

>]>, where vec is the operator which vectorizes matrices by
stacking their columns together.

The Fisher Matrix F can be defined as [18]:

F = E
[
d log(π(at|st,θ))

dθ

d log(π(at|st,θ))>

dθ

]
= E

[
DθDθ>

]
where the operator D is defined as:

Dv =
d log(π(at|st,v))

dv

Note that Dθ = [d>1 d
>
2 · · ·d>l] where di = vec(DWi) and so F = E

[
DθDθ>

]
can be viewed

as an l by l block with the (i, j)-th block Fi,j given by Fi,j = E[did>j].
Noting that DWi = gio>i−1 with gi = Dpi and that vec(uv>) = v ⊗ u we have di =
vec(gio>i−1) = oi−1 ⊗ gi, with ⊗ the Kronecker product. Thus we can rewrite the (i, j)-
th block Fi,j as :

Fi,j = E
[
did>j

]
= E

[
(oi−1 ⊗ gi)(oj−1 ⊗ gj)

>]
= E

[
(oi−1 ⊗ gi)(o

>
j−1 ⊗ g>j)

]
= E

[
(oi−1o>j−1 ⊗ gig

>
j)
]

The K-FAC approximation F̂ of the Fisher information matrix F is derived by applying two
statistical assumptions :

79

• Statistics of activation and pre-activation gradients are independent across layers, so that
F̂i,j = 0 for i 6= j making F̂ a block-diagonal matrix.

• Activation and pre-activation gradients are independent, then :

F̂k,k = E
[
(ok−1o>k−1 ⊗ gkg

>
k)
]

= E
[
ok−1o>k−1

]
⊗ E

[
gkg

>
k

]
= Ok−1 ⊗Gk

where Ok = E
[
oko>k

]
and Gk = E

[
gkg>k

]
F̂ is a block-diagonal matrix approximation of the Fisher matrix F.
Knowing that for A,B ∈ Rn×n:

(A⊗B)−1 = A−1 ⊗B−1 (B.13)

(A⊗B) vec(C) = vec(ACB>) (B.14)

The natural gradient according to Wl is defined as:

vec(∇̃Wl
J) = F̂

−1

l,l vec(∇Wl
J) = vec(O−1

l ∇Wl
JG−1

l) (B.15)

The update of the layers is done layer per layer. Each computation involves nodes in each layer
only. Consider the number of nodes in each layer is in thousand or hundred ranges, rather than
millions for the whole network. This is much manageable and K-FAC significantly reduces the
computational complexity.

80

Appendix C

Appendix To Deep Reinforcement
Learning Methods Applied To The
Cart-Pole Environment

C.1 Hyperparameters For Fourier Basis Improvement

Hyperparameters Values (with Fourier) Values (without Fourier)

εstart (exploration) 0.9 0.9
εend (exploration) 0.05 0.05
εdecay (exploration) 0.077 0.077

α (PER) 0.6 0.6
β (PER) 0.4 0.4

βdecay (PER) 1/390000 1/390000
Learning rate η 5e-4 5e-4

Neural Architecture [16] [16, 16]
Batch size n 32 32
Target update 10 10

Discount factor γ 0.99 0.99
Replay Buffer Size 5000 5000

Table C.1: Duel-DQN Hyperparameters combined with and without order-1 Fourier Basis

81

Hyperparameters Values (with Fourier) Values (without Fourier)

Learning rate η 5e-4 7e-5
Value loss coefficient 0.85 0.5
Entropy coefficient 0.01 0.01
Neural Architecture [256] [256]

Batch size n 256 256
Number of epoch 25 15

εclip 0.2 0.2
Trace-decay (GAE) 0.96 0.96
Trace-decay (critic) 0.96 0.96

Advantage Normalization True True
Discount factor γ 0.99 0.99

Table C.2: PPO Hyperparameters combined with and without order-1 Fourier Basis

Hyperparameters Values

Learning rate η 3e-4
Neural architecture for Actor [256]
Neural architecture for Critic [256]

Batch size n 64
Discount factor γ 0.99
Target update 1

Target update smooth 5e-3
Replay Buffer Size 1000000

Table C.3: SAC Hyperparameters combined with and without order-1 Fourier Basis

C.2 Hyperparameters For Comparison Of Deep RL Meth-
ods

82

Hyperparameters Values

εstart (exploration) 0.9
εend (exploration) 0.05
εdecay (exploration) 0.077

α (PER) 0.6
β (PER) 0.4

βdecay (PER) 1/390000
Learning rate η 5e-4

Neural Architecture [16]
Batch size n 32
Target update 10

Discount factor γ 0.99
Replay Buffer Size 10000

Table C.4: DQN and its extensions hyperparameters combined with order-1 Fourier Basis

Hyperparameters Values (with Fourier)

Learning rate η 5e-4
Value loss coefficient 0.9
Entropy coefficient 0.01
Neural Architecture [256]

Batch size n 1
Advantage Normalization False

Discount factor γ 0.99

Table C.5: A2C Hyperparameters combined with order-1 Fourier Basis

Hyperparameters Values (with Fourier)

Learning rate η 5e-4
Value loss coefficient 0.9
Entropy coefficient 0.01
Neural Architecture [256]

Batch size n 256
Number of epoch 25

εclip 0.2
Trace-decay (GAE) 0.96
Trace-decay (critic) 0.96

Advantage Normalization True
Discount factor γ 0.99

Table C.6: PPO Hyperparameters combined with order-1 Fourier Basis

83

Hyperparameters Values (with Fourier)

Learning rate η 2.5e-1
Value loss coefficient 0.9
Entropy coefficient 0.01
Neural Architecture [256]

Batch size n 25
Advantage Normalization False

Discount factor γ 0.99

Table C.7: ACKTR Hyperparameters combined with order-1 Fourier Basis

Hyperparameters Values

Learning rate η 3e-4
Neural architecture for Actor [256]
Neural architecture for Critic [256]

Batch size n 64
Discount factor γ 0.99
Target update 1

Target update smooth 5e-3
Replay Buffer Size 1000000

Table C.8: SAC Hyperparameters combined with order-1 Fourier Basis

84

Appendix D

Appendix To Measurements Of Safety
Requirements

D.1 Signal Temporal Logic

D.1.1 STL Formalism

Let consider the set B := {⊥,>} of boolean values (with ⊥ < >,> = ⊥ and ⊥ = >) and
R̄ = R ∪ B the totally ordered set of real numbers with as smallest element ⊥ and greatest
element >.

A signal is a function D → E, with D an interval of R+ and E ⊆ R̄. Signals with E = R are
called real-valued signals.

An execution trace [23] w is a set of real-valued signals {xw1 , xw2 , · · · , xwk } defined over some
interval D of R where D is called the time domain of w.
Such a trace can be “booleanized” through a set of threshold predicates of the form xi ≥ 0.
Signal Temporal Logic is then a simple extension of Metric Temporal Logic where real-valued
variables (xi)i∈N are transformed into Boolean values via these predicates.

Let w be a trace of time domain D. The STL formula [23] ϕ is said to be defined over
a time interval dom(ϕ,w) given by the following rules: dom(true, w) = dom(xi ≥ 0, w) = D,
dom(¬ϕ,w) = dom(ϕ,w), dom(ϕ ∧ ψ,w) = dom(ϕ,w) ∩ dom(ψ,w), dom(ϕUIψ,w) = {t ∈
R|t + [0, inf(I)] ⊆ dom(ϕ,w) and t + inf(I) ∈ dom(ψ,w)} where I is a closed, non-singular
interval of R+ (includes bounded intervals [a, b] and unbounded intervals [a,+∞) for any
0 ≤ a < b).

85

D.1.2 Boolean Semantics

For a trace w, the validity [23] of an STL formula ϕ at a given time t ∈ dom(ϕ,w) is set
according to the following inductive definition.

w, t |= true

w, t |= xi ≥ 0 iff xwi (t) ≥ 0

w, t |= ¬ϕ iff w, t 6|= ϕ

w, t |= ϕ ∧ ψ iff w, t |= ϕ and w, t |= ψ

w, t |= ϕUIψ iff exists t′ ∈ t+ I s.t. w, t′ |= ψ and for all t′′ ∈ [t, t′], w, t′′ |= ϕ (until operator)

We can redefine other usual operators as syntactic abbreviations:

false := ¬true
♦Iϕ := trueUIϕ (eventually operator)
ϕ ∨ ψ := ¬(¬ϕ ∧ ¬ψ)

�Iϕ := ¬♦I¬ϕ (always operator)

The always operator �[a,b]ϕ means that ∀t′ ∈ [t + a, t + b], (w, t′) |= ϕ. In other words, the
property ϕ is respected on the time interval [t+ a, t+ b].

D.1.3 Quantitative Semantics

Given a formula ϕ, trace w, and time t ∈ dom(ϕ,w), we can also define the quantitative
semantics ρ(ϕ,w, t) [23] by induction as follows:

ρ(true, w, t) = >
ρ(xi ≥ 0, w, t) = xwi (t)

ρ(¬ϕ,w, t) = −ρ(ϕ,w, t)

ρ(ϕ ∧ ψ,w, t) = min{ρ(ϕ,w, t), ρ(ψ,w, t)}
ρ(ϕUIψ,w, t) = sup

t′∈t+I
{min{ρ(ψ,w, t′), inf

t′′∈[t,t′]
ρ(ϕ,w, t′′)}}

Therefore, by definition of the eventually operator and the always operator, we can also define
ρ as :

ρ(♦Iϕ,w, t) = sup
t′∈t+I

ρ(ϕ,w, t′)

ρ(�Iϕ,w, t) = inf
t′∈t+I

ρ(ϕ,w, t′)

The quantitative semantics of STL have many interesting properties. ρ(ϕ,w, t) quantifies the
degree of satisfiability.
A large positive value indicates that the formula ϕ is robustly satisfied by the trace w at time
t, a positive value close to zero suggests that w satisfies ϕ but it is close to violating ϕ, and a
negative value indicates that the formula ϕ is violated by w.

86

D.2 Empirical Distribution Function

The empirical distribution function is a well-known non-parametric estimator F̂n of the
cumulative distribution F of a random variable X with independent, identically distributed
(i.i.d) sample (Xi)i=1,...,n from an unknown distribution function F (x) = P (X ≤ x) [25]. The
empirical cumulative distribution function is defined as:

F̂n(x) =
1

n

n∑
i=1

1{Xi ≤ x} (x ∈ R)

Simply said, Fn(x) is just the fraction of sample that falls bellow x. With the Law of Large
Numbers theorem we know that if X has a cumulative distribution F , then Fn(x)→ F (x) with
probability one for each x as n→∞.

D.3 CDF-based Nonparametric Confidence Interval

D.3.1 Confidence Interval And Binomial Distribution

It could be interesting to know the confidence interval around each estimate F (x). That is
to say, according to a nominal confidence level c, we compute for each value x an interval [pl, pu]
for which we are sure with a probability c that that the true cumulative distribution function
F (x) ∈ [pl, pu].

For each x, the random variable 1{Xi ≤ x} is a Bernoulli random variable with probability
p = F (x). Therefore, as nF̂n(x) is a sum of n Bernoulli random variables, it is has a bino-
mial distribution with parameters n and success probability F (x). Using nF̂n(x) as a binomial
distribution is useful because many techniques have been developed to estimate the confidence
intervals for binomial population proportions, in particular with the Beta Distribution Genera-
tor, the Clopper & Pearson Approach, the Normal Approximation or the Wald method [25, 24].

The Beta Distribution Generator method is presented in the following subsection and
was proposed by Ewan Cameron [24]. Indeed, this methods seems the more efficient and robust
according to the number of samples n for our problem.

D.3.2 The Beta Distribution Generator Method

To have the same notation that the Cameron’s paper [24] for a specific x ∈ R, we note
k =

∑n
i=1 1{Xi ≤ x} ∈ [1, n], p̂ = F̂n(x) = k

n
and p = F (x).

We know that the likelihood of observing the result, p̂, for a given value of p is proportional
to pk(1 − p)n−k. The normalisation of this likelihood function over 0 < p < 1 defines a beta
distribution with integer parameters, a = k + 1 and b = n− k + 1:

B(a, b) =
(a+ b− 1)!

(a− 1)!(b− 1)!
pa−1(1− p)b−1 (D.1)

87

Figure D.1: Example likelihood functions for the true value of the underlying population pro-
portion, p, given five ‘measured’ success fractions, p̂ = k

n
, for samples of sizes n = 6 (left panel)

and n = 36 (right panel). In each case the shape of the curve is given by the beta distribution
with shape parameters as specified by Equation (D.1). The asymmetric nature of this likeli-
hood function in the small sample size regime is clearly evident amongst the n = 6 examples,
as is its convergence in the intermediate-to-large sample size regime towards a narrower, more
symmetric, (pseudo-)normal distribution amongst the n = 36 examples. (taken from [24])

This likelihood function reveals that p̂ is the maximum likelihood estimator of p. The character-
istic shape of the beta distribution likelihood function for p is illustrated in Figure D.1. Given no
a priori knowledge we may suppose that all values of p are equally probable. Formally, this con-
dition is characterised via the Bayes-Laplace uniform prior, for which PPrior(p) = 1,∀p ∈ [0, 1].
Application of the Bayes’ theorem under this assumption allows us to treat then the normalised
likelihood function for p as a posterior probability distribution. Thus, the quantiles of the beta
distribution from Equation (D.1) may be used directly to estimate confidence intervals on the
underlying population proportion given the observed data. Specifically, the lower and upper
bounds, pl and pu, defining an equal-tailed (or central) interval for p at a nominal confidence
level of c = 1− α are given by the quantiles:∫ pl

0

B(a, b)dp =
α

2
and

∫ 1

pu

B(a, b)dp =
α

2
(D.2)

It is interesting to note that the bounds of this equal-tailed interval is asymmetric about the
maximum likelihood value p̂ due to the asymmetric nature of the beta distribution likelihood
function for p.

88

Bibliography

[1] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G.
Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig
Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Ku-
maran, Daan Wierstra, Shane Legg, and Demis Hassabis. Human-level control through
deep reinforcement learning. Nature, 518(7540):529–533, February 2015.

[2] John Schulman, Sergey Levine, Philipp Moritz, Michael I. Jordan, and Pieter Abbeel.
Trust region policy optimization, 2015.

[3] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms, 2017.

[4] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic actor, 2018.

[5] Sarah Osentoski George Konidaris and Philip Thomas. Value function approximation in
reinforcement learning using the fourier basis. 2011.

[6] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The
MIT Press, second edition, 2018.

[7] John Stachurski. Economic Dynamics: Theory and Computation, volume 1 of MIT Press
Books. The MIT Press, December 2009.

[8] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou,
Daan Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning,
2013.

[9] Christopher J. C. H. Watkins and Peter Dayan. Q-learning. Machine Learning, 8(3):279–
292, May 1992.

[10] Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timothy P.
Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for
deep reinforcement learning, 2016.

[11] Ronald Williams and Jing Peng. Function optimization using connectionist reinforcement
learning algorithms. Connection Science, 3:241–, 09 1991.

[12] Sham Kakade and John Langford. Approximately optimal approximate reinforcement
learning. In IN PROC. 19TH INTERNATIONAL CONFERENCE ON MACHINE
LEARNING, pages 267–274, 2002.

89

[13] Katerina Fragkiadaki. Deep reinforcement learning and control : Natural policy gradients,
trpo, ppo. https://www.win.tue.nl/~rmcastro/AppStat2013/files/lecture1.pdf.

[14] Joshua Achiam. Advanced policy gradient methods, 2017. http://rail.eecs.berkeley.
edu/deeprlcourse-fa17/f17docs/lecture_13_advanced_pg.pdf.

[15] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience
replay, 2015.

[16] John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation, 2015.

[17] Yuhuai Wu, Elman Mansimov, Shun Liao, Roger Grosse, and Jimmy Ba. Scalable trust-
region method for deep reinforcement learning using kronecker-factored approximation,
2017.

[18] James Martens and Roger Grosse. Optimizing neural networks with kronecker-factored
approximate curvature, 2015.

[19] Savinay Nagendra, Nikhil Podila, Rashmi Ugarakhod, and Koshy George. Comparison of
reinforcement learning algorithms applied to the cart pole problem, 2018.

[20] Meire Fortunato, Mohammad Gheshlaghi Azar, Bilal Piot, Jacob Menick, Ian Osband,
Alex Graves, Vlad Mnih, Remi Munos, Demis Hassabis, Olivier Pietquin, Charles Blundell,
and Shane Legg. Noisy networks for exploration, 2017.

[21] Jose A. Arjona-Medina, Michael Gillhofer, Michael Widrich, Thomas Unterthiner, Jo-
hannes Brandstetter, and Sepp Hochreiter. Rudder: Return decomposition for delayed
rewards, 2018.

[22] E. Schuitema, Lucian Busoniu, Robert Babuska, and Pieter Jonker. Control delay in
reinforcement learning for real-time dynamic systems: A memoryless approach. pages
3226 – 3231, 11 2010.

[23] Alexandre Donzé, Thomas Ferrère, and Oded Maler. Efficient robust monitoring for stl.
In Natasha Sharygina and Helmut Veith, editors, Computer Aided Verification, pages 264–
279, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[24] Ewan Cameron. On the estimation of confidence intervals for binomial population propor-
tions in astronomy: The simplicity and superiority of the bayesian approach, 2010.

[25] Rui Castro. Lecture 1 - introduction and the empirical cdf. https://www.win.tue.nl/
~rmcastro/AppStat2013/files/lecture1.pdf.

[26] Hado V. Hasselt. Double q-learning. In J. D. Lafferty, C. K. I. Williams, J. Shawe-Taylor,
R. S. Zemel, and A. Culotta, editors, Advances in Neural Information Processing Systems
23, pages 2613–2621. Curran Associates, Inc., 2010.

[27] Hado van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double
q-learning, 2015.

[28] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado van Hasselt, Marc Lanctot, and Nando
de Freitas. Dueling network architectures for deep reinforcement learning, 2015.

90

https://www.win.tue.nl/~rmcastro/AppStat2013/files/lecture1.pdf
http://rail.eecs.berkeley.edu/deeprlcourse-fa17/f17docs/lecture_13_advanced_pg.pdf
http://rail.eecs.berkeley.edu/deeprlcourse-fa17/f17docs/lecture_13_advanced_pg.pdf
https://www.win.tue.nl/~rmcastro/AppStat2013/files/lecture1.pdf
https://www.win.tue.nl/~rmcastro/AppStat2013/files/lecture1.pdf

	Introduction
	The Host Organization
	Contributions
	Structure of the Report

	Introduction To Reinforcement Learning
	Reinforcement Learning Framework
	Agent-Environment Interface
	Markov Decision Process
	Returns And Episodes
	Policy
	Value Functions
	Optimal Policy
	On-Policy VS Off-policy

	Generalized Policy Iteration
	Policy Evaluation
	Policy Improvement
	Generalized Policy Iteration

	On-Policy Control With Approximation
	The Prediction Objective VE
	Stochastic-Gradient And Semi-Gradient Methods
	Semi-Gradient SARSA

	Features Encoding
	Tile Coding
	Fourier Basis

	Tile Coding Versus Fourier Basis
	Introduction To The Cart-Pole Environment
	Tile Coding
	Fourier Basis

	Introduction To Deep Reinforcement Learning
	Deep Q-Network (DQN)
	Advantage Actor-Critic Methods
	Introduction To Actor-Critic Methods
	A2C In Deep RL

	Trust Region Policy Optimization And Its derivatives
	Natural Policy Gradient And Trust Region Policy Optimization
	Proximal Policy Optimization (PPO)
	Actor-Critic Using Kronecker-Factored Trust Region (ACKTR)

	Soft Actor-Critic (SAC)

	Deep Reinforcement Learning Methods Applied To The Cart-Pole Environment
	Fourier Basis Improvement
	Comparison Of Training Performance
	Comparison On A Deterministic Environment
	Comparison On A Non-Deterministic Environment
	Deep RL Methods On A Delayed Environment

	Performance After Training
	Metrics
	Performance On A Deterministic Environment
	Performance On A Non-Deterministic Environment

	Measurements Of Safety Requirements
	Safety Of Dynamical System
	Constraint Zone
	Dynamical System
	Trajectory

	Directed Hausdorff Metric
	Quantitative Robustness Estimate Metric
	Metrics Based On A Probabilistic Approach
	A Probabilistic Approach Of The Safety Requirements
	Empirical Metric Based On The Beta Distribution

	On Infinite Horizon Time

	Conclusions
	Appendix To Introduction To Reinforcement Learning
	Measurable Space
	Probability Measure
	Stochastic Process
	Stochastic Kernel

	Appendix To Deep Reinforcement Learning
	Extensions To DQN
	Double DQN
	Prioritized Experience Replay
	NoisyNets
	Duel DQN

	Introduction To Kronecker-factored Approximate Curvature

	Appendix To Deep Reinforcement Learning Methods Applied To The Cart-Pole Environment
	Hyperparameters For Fourier Basis Improvement
	Hyperparameters For Comparison Of Deep RL Methods

	Appendix To Measurements Of Safety Requirements
	Signal Temporal Logic
	STL Formalism
	Boolean Semantics
	Quantitative Semantics

	Empirical Distribution Function
	CDF-based Nonparametric Confidence Interval
	Confidence Interval And Binomial Distribution
	The Beta Distribution Generator Method

	Bibliography

