
UV 5.4

Stage assistant ingénieur

Motion planning using interval analysis

Benoît DESROCHERS

Supervisor :

Luc Jaulin

March 12, 2014

Abstract: Interval analysis is a powerful tool which could deal with complex problems

especially when there are non linear or there have no solution. However, motion planning

using intervals remains a subject that has been little studied to date, and tools like

contractor has never been used for this purpose. This study aim to develop tools and

algorithms, which could deal with path panning issues, made as simple as possible, in

order to simplify the usage of interval in this �eld of research. Throw an example of

application : the wire loop game, we illustrated the possibility of doing path planning

with interval analysis in an e�cient way. We also introduced the separator object and

the one associated with the constraint: " a point is inside a polygon". Next we were able

to show explicitly a feasible path throw the con�guration space. The main advantage

of interval methods seems to be their capacity to represent the C-space as tree or graph
composed of continuous boxes, without loosing any solution, and on which we could apply

very e�cient graph algorithms. These methods are guaranteed and are able to prove that

no path exist. To our knowledge, it is a key point which could distinguish interval methods

from the others However they need to be compare with other available ones.

2

Contents

1 Generalities about Path-Planning 4

1.1 C-space . 4

1.2 Main Motion Planning Algorithms. 5

1.2.1 Generalities . 5

1.2.2 Interval-Based Search . 5

2 Con�guration Space for the Wire Loop Game 6

2.1 Modeling . 6

2.2 Separator . 7

2.2.1 Contractor . 8

2.2.2 De�nition and Algebra . 8

2.2.3 Border-Based Separator . 9

2.2.4 Example of Set Inversion Using Separator 11

2.3 Geometrical Constraints . 12

2.3.1 Point Inside a Curve . 12

2.3.2 Point Inside a Segment . 12

2.3.3 Point Inside a Polygon . 12

2.3.4 Set Transformations . 13

2.4 Cfree inversion . 14

3 Improvements 15

3.1 Paving-reduction . 15

3.1.1 De�nition of minimal sub-paving 15

3.1.2 Algorithms . 16

3.1.3 Results . 16

3.2 Graph representation and Cameleon algorithm 17

3.2.1 Test Case . 17

3.2.2 Cameleon Algorithm . 17

3.2.3 Results . 18

3

Introduction

Interval analysis is a powerful tool which could deal with complex problems especially

when there are non linear or there have no solution. It is used in a wide range of applica-

tions such as state estimation, [13] [5] [10] [1] [11] or calibration [4] [18]. However, motion

planning using intervals remains a subject that has been little studied to date, and tools

like contractor has never been used for this purpose. This study aim to develop tools

and algorithms, which could deal with path-planing issues, made as simple as possible, in

order to simplify the usage of interval in this �eld of research.

After generalities about path planning, this document deals with an example of appli-

cation: wire loop game. The theory needed such as separator and geometrical constraints

are introduced in section 2 as well as results. Finally the last section introduces path

�nding algorithm are described with their corresponding results.

1 Generalities about Path-Planning

1.1 C-space

The terms motion planning and trajectory planning are often used to describe algorithms

that convert high-level speci�cations of tasks from humans into low-level descriptions of

how to move. Let us consider a system (Σ) and let C-space denote the space of all feasible
states for our system. This will be referred to the con�guration space (C-space), based

on Lagrangian mechanics and the seminal work of Lozano-Pérez [14, 16], who extensively

utilized this notion in the context of planning. The motion planning literature was further

organized around this concept by Latombe's book [12]. Once the con�guration space is

clearly understood, many motion-planning problems that appear di�erent in terms of

geometry and kinematics can be solved by the same planning algorithms. This level of

abstraction is therefore very important. An example of such objects are industrial robots

which are kinematic chains in which adjacent links are connected by n prismatic or rotary

joints, each with one degree of freedom. The position and orientation of each link of

the industrial robot can be characterized by n real numbers, which are the coordinates

of a single n-dimensional point in C-space (see [15], for more information). Let's take

xi ∈ C-space as an initial state and xg ∈ C-space as a �nal state, a basic motion planning

problem is to produce a continuous motion that connects xi to xg while avoiding collision

with known obstacles.

Accordingly, determining the C-space or more precisely its subset, Cfree, of feasible

con�gurations that avoids collision with obstacles is a key feature of the path planning

issues.

4

1.2 Main Motion Planning Algorithms.

1.2.1 Generalities

Low-dimensional problems can be solved with grid-based algorithms that overlay a grid

on top of con�guration space, or geometric algorithms that compute the shape and con-

nectivity of Cfree. These methods assume that each con�guration is identi�ed with a

grid point. At each grid point, the robot is allowed to move to adjacent grid points as

long as the line between them is completely contained within Cfree (this is tested with

collision detection). This discretizes the set of actions, and search algorithms (like A∗)

are used to �nd a path from the start to the goal. However, the number of points on

the grid grows exponentially with the dimension of the con�guration space, which makes

them inappropriate for high-dimensional problems. Nevertheless exact motion planning

for high-dimensional systems under complex constraints is computationally intractable.

Another way is Potential-�eld algorithms [9] which are e�cient, but fall prey to local

minimal (an exception is the harmonic potential �elds [3]). Sampling-based algorithms

avoid the problem of local minimal, and solve many problems quite quickly by taking

a countable number of samples in the C-space. The sampling process is often based on

random algorithms like rapidly exploring random tree (RRT) [17] or probabilistic roadmap

methods (PRMs) [8]. The probability of failure decreases to zero as more time is spent

on �nding the solution. However if no solution exist, these algorithms could run forever.

Sampling-based algorithms are currently considered state-of-the-art for motion planning

in high-dimensional spaces, and have been applied to problems which have dozens or

even hundreds of dimensions (robotic manipulators, biological molecules, animated digi-

tal characters, and legged robots).

1.2.2 Interval-Based Search

These approaches are similar to grid-based search approaches except that they generate a

paving covering entirely the con�guration space instead of a grid. The Cfree is decomposed

into sub-paving C+, C− such as:

C− ⊂ Cfree ⊂ C+. (1)

Interval analysis could thus be used when Cfree cannot be described by linear inequalities

in order to have a guaranteed enclosure. The robot is thus allowed to move freely in C−,
and cannot go outside C+. To both sub-pavings, a neighbor graph is build and graph

algorithms such as Dijkstra or A∗ could be used. When a path is feasible in C−, it is also
feasible in Cfree. When no path exists in C+ from one initial con�guration to the goal, we

have the guarantee that no feasible path exists in Cfree. However, as for the grid-based

approach, the actual interval approach is inappropriate for high-dimensional problems,

due to the fact that the number of boxes generated grows exponentially with respect

to the dimension of con�guration space. Nevertheless, this algorithm is only based on

bisection and inclusion test, which are known to be very ine�cient when the dimension of

5

the problem increases, and could be improved by using Contractor and a clever bisection's

process. The algorithm called Cameleon introduced in [6] avoids bisecting boxes which

belong to the con�guration space and not in�uence the �nal result. This method was the

base of the current work.

2 Con�guration Space for the Wire Loop Game

The problem to be considered is a 2D version of the wire loop game. This game involves

a metal loop on a handle and a length of curved wire (see �gure 1). The player holds the

loop in one hand and attempts to guide it along the curved wire without touching the

loop to the wire. In our 2D version of this game the player is an articulated robot with

two rotary joints and the loop is a segment. The purpose of this project is to �nd a safe

path which allows the loop to make a full rotation around the wire.

2.1 Modeling

The curved wire is composed of union of oriented segments which form a polygon P . Its

border de�nes two sets : Y which corresponds of all points inside P (gray in the �gure

1) and Y its complementary set. The length of the �rst and second arms are 4 and 2

respectively. The length of the loop is 1. The feasible con�guration space Cfree is the set

of parameters such as the point a is inside P and b is outside P de�ned by :

Cfree = {x ∈ [−π, π]2, f1 (x) ∈ Y and f2 (x) /∈ Y}

where f1 (resp. f2) is the non linear function which transform the point O(0, 0)T into the

a (resp. b). In our case fl is :

fl (x) = 4

(
cos(x1)

sin(x2)

)
+ l

(
cos(x1 + x2)

sin(x1 + x2)

)

with l ∈ {1, 2} and x = (x1, x2)T .

Finally, we obtain a set, de�ned with constraints, which corresponds the following set

inversion :

Cfree = f−1
1 (Y) ∩ f−1

2

(
Y
)

6

Figure 1: Two-dimensional wire loop game. In a feasible con�guration, the gray segment
is not allowed to touch the wire. Is it possible to perform to complete circular path

2.2 Separator

Introduction

Set inversion problems aim to bracket a set X, de�ned by constraints, between two sub-

pavings (i.e. union of non overlapping boxes) X− and X+ such that:

X− ⊂ X ⊂ X+

We have also X+ = X−∪∆X where ∆X is the border of the set. The width of this border

depends on the accuracy of the estimation. Generally, the set X is a combination of union,

intersection and/or composition of elementary constraints such as fi(x) < 0. For each

elementary constraint a contractor Cfi is associated and with the contractor's arithmetic

(see [2]) the global contractor Cf is easy to build. This contractor approximates the outer

sub-paving X+. If the inner approximation (X−) is needed, the De Morgan rules can be

used to express the complementary X set of X and build the associated contractor Cf .
However, apply the De Morgan rules for a complex combination of constraints are not

easy and need to be done by hand. This is one of the main reasons why Separators, a new

tool introduced in [7], was developed. It allows us to deal properly and e�ciently with

complex combinations of inner and outer contractors.

The second reason is that sometimes, equations of the inner and outer part are not

available or associated contractors aren't minimal. However, we could have the equation

of the border δX represented by a constraint such as fb(x) = 0. In this case, information

about which removed parts are inside or outside X set are lost. Separator , which allows

us to handle at the same time the inner and outer contractors, provides a new way for

building minimal contractors.

After a short overview of Contractors, the Separator object will be de�ned.

7

2.2.1 Contractor

A contractor is an operator from IRn −→ IRm associated to a set X such as:

∀[x] ∈ IRn , C ([x]) ⊂ [x] (contractance)

∀[x] ∈ IRn , C ([x]) ∩ X = [x] ∩ X (completeness)

A contractor C could have the following properties:

C is monotonic if ∀[x], [y] ∈ IRn, [x] ⊂ [y]→ C ([x]) ⊂ C ([y])

C is idempotent if ∀[x] ∈ IRn, C (C ([x])) = C ([x])

C is minimal if ∀[x] ∈ IRn, C ([x]) ∩ X = [x] ∩ X

The �rst property is essential for the set inversion algorithm because there are required

for the convergence. Hopefully, there are easy to get. On the contrary, the last property is

desirable to increase the e�ciency and the algorithm but is much more di�cult to obtain.

A set S is consistent with the contractor C (we will write S ∼ C) if for all [x], we have :

C ([x]) ∩ S = [x] ∩ S.

We de�ne the negation ¬C of a contractor C as follows :

¬C ([x]) = {x ∈ [x]|x /∈ C ([x])}

Note that ¬C ([x]) is not a box in general, but a union of boxes.

2.2.2 De�nition and Algebra

Implicit De�nition

A Separator S associated with the set X is an application such as:

S : IRn −→ IRn × IRn

[x] 7−→ ([xin], [xout])

with following properties:

(i) [x] = [xout] ∪ [xin]

(ii) [xout] ∩ X = [x] ∩ X
(iii) [xin] ∩ X = [x] ∩ X

We could also de�ne the reminder δS by:

δS([x]) = [xout] ∩ [xin] (2)

8

Explicit De�nition

According to the previous de�nition, a separator S could be de�ned with pair of two

complementary contractors {Cout, Cin} such as:

∀[x] ∈ IRn, [xout] = Cout([x]) and [xout] = Cin([x])

The reminder δS becomes:

δS([x]) = Cout([x]) ∩ Cin([x]) (3)

Remark : the reminder is not a separator, but a contractor on the border of the set.

Separator Algebra

The Separator algebra is a direct extension of contractor algebra. Let's take Si =

{S ini ,Souti }, We could de�ne the following operations:

S1 ∩ S2 =
{
S in

1 ∪ S in

2 ,Sout

1 ∩ Sout

2

}
(intersection)

S1 ∪ S2 =
{
S in

1 ∩ S in

2 ,Sout

1 ∪ Sout

2

}
(union)

{q}⋂ Si =

{
{m−q−1}⋂ S in

i ,
{q}⋂ Sout

i

}
(relaxed intersection)

S1\S2 = S1 ∩ S2. (di�erence)

(4)

These operations are used to combine constraints. More details about separator are given

in [7].

2.2.3 Border-Based Separator

When the inner and outer constraints are available, the separator is easy to build because

we have an explicit form for C = Cout and C = Cin. But sometimes, we only have constraints

which describe the border of the set X and they cannot be slitted into sub-constraints.

So, it is not possible to isolate the inner and the outer contractor. To solve this issue, we

transform the contractor into a separator. Let's take C as a contractor on the border of

set X. The main idea is to contract using C and, for each boxes in ¬C, test if the box

belongs to X or not. The test T de�ned by:

T : IRn −→ [0, 1]

[x] 7−→
{

true if [x] ∈ X
false otherwise

The �gure 2 illustrates the method. The box [x] (dotted line) is contracted on the border

of set X using the contractor C. Then, the two removed parts [x1] and [x2], which belongs

to ¬C ([x]), are tested with T . For the �st one, T will return true because [x1] ⊂ X, and
for the other the test will return false. The algorithm is given by algorithm 1

9

¬C ([x])

X

C ([x])

[x1]

[x2]

[x]

(a) After contraction

X

C ([x])

[x1]

[xin] = C ([x]) ∪ [x2]

[xout] = C ([x]) ∪ [x1]

[x2]

(b) After identi�cation

Figure 2: Border-Based Separator illustration

Algorithm 1: Separator(in: C, T , [x0], out: [xin],[xout])

begin
[x] = C ([x0]);
[xin] = [xout] = [x] ;
Z = [x0]\[x];
foreach connected component y of Z do

if T (y) == true then
[xin] = [xin] ∪ y

else
[xout] = [xout] ∪ y

return ([xin], [xout])
end

10

This method will be used in the next part to build the separator used to solve our

path planning problem.

2.2.4 Example of Set Inversion Using Separator

The following example illustrates how separators could be use to simplify set inversion

throw a common robotics application. Let's take a robot at (x, y) measuring its distances

to three landmarks with an error of ±0.5m. The goal is to use set inversion algorithm to

compute the set of all feasible locations for the robot.

Each landmark de�nes a set Xi such as :

Xi =
{

(x, y) ∈ R2,
√

(x− xi)2 + (y − yi)2 ∈ [di − 0.5, di + 0.5]
}

We have also set Xi de�ned by:

Xi =
{

(x, y) ∈ R2,
√

(x− xi)2 + (y − yi)2 /∈ [di − 0.5, di + 0.5]
}

For each set we could build the associated contractor (in forward/backward way for

example) Ci and Ci. If the robot's location belongs to the intersection of all Xi we have

for the expression of the global contractor :

C = C1 ∩ C2 ∩ C3 and

C = C1 ∩ C2 ∩ C3

= C1 ∪ C2 ∪ C3

But now, if X = (X1 ∩ X3) ∪
(
X2 ∩ X3

)
we will have :

C = (C1 ∩ C3) ∪
(
C2 ∩ C3

)
C =

(
C1 ∪ C2

)
∩
(
C2 ∪ C3

)
So, as its was said previously, apply the De Morgan rules to �nd C is not so easy and could
be done automatically with the Separator arithmetics. When the elementary Separator

Si =
{
Ci, Ci

}
is build the expression for the �rst example will be:

S = S1 ∩ S3 ∩ S2

and for the second example :

S = (S1 ∩ S2) ∪
(
S2 ∩ S3

)
Separators is an abstraction layer for contractors which allow us to manipulate com-

bination of contractors on sets without explicitly take care about the expression of the

outer contractor (C) and the inner one (C).

11

2.3 Geometrical Constraints

This section introduces geometrical constraints, used in our problem, such as how to

characterize points in a segment or in a polygon.

2.3.1 Point Inside a Curve

An elementary curve C is a one dimensional curve of R2 described by :

C =
{
m ∈ R2, f (m) = 0 and g (m) ≤ 0

}
.

where f and g are polynomials. Complex curves are union of elementary curves. In this

report, curves will be only segments.

A point m is inside the curve C if is satis�es the previous constraints.

2.3.2 Point Inside a Segment

Consider an oriented segment [a,b]) where (a,b) ∈ R2. The point m is said inside the

segment if it satis�es the following constraints :{
det (b− a, a−m) = 0

min (a,b) ≤m ≤ max (a,b) .

Remark The �rst constraint is an equality f(x) = 0 and the associated contractor will

contract only on the border. We only have an approximation of X+ because there is no

inner part.

2.3.3 Point Inside a Polygon

In this report, a polygon P is an oriented polygon, convex or not, without self interaction ,

composed of N segments. The border ∆P of the polygon satis�es the following constraint:

∆P =
{
m ∈ R2, ∃i ∈ [[1, N]], m ∈ [ai,bi]

}
Let's us take Cai,bi the contractor for the segment [ai,bi], the contractor for ∆P is:

C∆P =
N⋃
i=1

Cai,bi

Remark : Because the union of minimal contractor is minimal, C∆P is a minimal contractor

for the border of the polygon P . However we have lost the information about which part is

inside P and which is outside. To retrieve the di�erent parts, we use a separator approach

described in section 2.2.3.

12

V1

V2

V3

V6

V5

V4

m

θ12
θ23

θ34
θ45

θ56

θ61

(a) wn(m, P) = 1

m

V1

V2

V3

V4

θ34

θ41

θ12

θ23

(b) wn(m, P) = 0

Figure 3: In �gure (a) m is inside P so T (m) = true and in �gure (b) m is outside P
and the test is false

Separator Test

To identify if a point is inside a polygon, we use the Winding Number which represents the

total number of times that curve travels counterclockwise around the point. The winding

number depends on the orientation of the curve, and is negative if the curve travels around

the point clockwise. Let's take a polygon P with vertices's V1, V2, . . . , Vn = V1 and m a

point not on P the Winding Number is de�ned by:

wn(m, P) =
1

2π

n∑
i=1

θi =
1

2π

n∑
i=1

arccos

(
(Vi −m).(Vi+1 −m)

‖(Vi −m)‖‖(Vi+1 −m)‖

)
So, ifm is outside P we will have wn(m, P) = 0, otherwise ifm is inside, wn(m, P) =

1 (see �gure 3).

Finally we build a separator SP for the polygon P .The �gure (4a) shows the set X (in

dark gray) of all points inside the polygon.

2.3.4 Set Transformations

It is possible to use apply non linear transformation to a set using separator. This method

is based on the Forward-Backward propagation use by separator and set inversion algo-

rithm. The following algorithm details the steps needed for computing the expression

X = f(S) where S is a separator set Y and f a function.

The following �gure (4) shows some example of transformation of the set S1 which is

the set of all points inside the polygon (in dark gray on sub-�gures).

13

(a) Set S1 (b) S2 = Rπ/2 (S1) (c) S3 = S1 ∩ S2

Figure 4: Figure (a) represents set S1 in dark gray, �gure (b) shows the set S1 after a
rotation of angle π

2
and the �gure (c) illustrates the separator intersection. The white

lines represent the border the polygon before and after the rotation

2.4 Cfree inversion

As it was explained in the introduction we want to solve the following set inversion :

Cfree = f−1
1 (Y) ∩ f−1

2

(
Y
)

We have now, a separator for the Map (wire path), expressions of fl with l ∈ {1, 2} and
we know how to intersect 2 separators. The �gure (5) shows the result of the set inversion.

(a) Con�guration space of the robot (b) Path of the robot in the world frame

Figure 5: In �gure (a) : Approximation of the feasible con�guration space Cfree in light
gray. A path corresponding to one solution of the wire loop game is depicted. Figure (b)
represents the path in the world frame

14

The program is written in C++, and use QT for the graphic interface. Interval part

is based on Luc Jaulin library As it was expected, the algorithm is able to �nd a feasible

path to make a full rotation around the wire. It characterizes precisely all con�gurations

which are feasible such as the wire stays inside the loop. However, in this version, the

path has to be found by hand and all the space must be explored before �nding a solution.

Some improvements have been studied and are introduced in the next section.

3 Improvements

The previous method has the following drawbacks :

• the sub-paving could be improve by removing some boxes;

• the path has to be �nd by hand;

• useless part of the C-space are explored;

For each item, a solution is introduces in next sections.

3.1 Paving-reduction

In previous results, we can see boxes without any border with a yellow one. This is because

the separator isn't minimal and some boxes have to be bisected before be removed by the

separator. This section will introduce the concept of minimal sub-paving and will explain

how to merge boxes in order to decrease the number of boxes.

3.1.1 De�nition of minimal sub-paving

When the sivia algorithm is executed, an initial box is contracted and then bisected and

the same thing is repeated for each part of the initial box. The resulting paving could be

represented as a binary tree. Each node has either two sons or is a leaf. The ith node of

the tree contains the two boxes [xin](i) and [xout](i). If j is the father of the node i, we

have

[xin](i) ∩ [xout](i) = [xin](j) ∪ [xout](j).

The binary tree is said to be minimal if for any node i1 (not the root) with brother i2
and father j, we have:

(i) [xin](i1) 6= ∅ and [xout](i1) 6= ∅
(ii) [xin](j) = [xin](i1) t [xin](i2) t ([x](j) \ [xout](j))

(iii) [xout](j) = [xout](i1) t [xout](i2) t [x](j) \ [xin](j)

Equation (i) means that the node is not empty. With equations (ii) and (iii) the inside

and outside parts which are removed at the level node i1 and i2 are merged inside the

node j.

15

3.1.2 Algorithms

From a given tree, it is possible to simplify it into an optimal tree without changing the

approximation for X. This simpli�cation allows us to reduce the number of nodes of the

tree. The algorithm is given by the listing2 which is a recursive version of the SIVIA

algorithm. When a leaf is reached, the function Reduce_node (see listing 3) is called and

nodes are merged.

Algorithm 2: RPaver(in: S inout: [xin](j), [xout](j), [xin](i1), [xout](i1) ,[xin](i2),
[xout](i2)

begin{
[xin], [xout]

}
= S([xin](j) ∩ [xout](j));

[x] = [xin] ∩ [xout];
if w([x]) < ε then

return;

else
Bisect [x] in [x1], [x2];
[xin](i1) = [xout](i1) = [x1];
[xin](i2) = [xout](i2) = [x2];
RPaver(S,[xin](i1),[xout](i1));
RPaver(S,[xin](i1),[xout](i1));
Tree_Reduction(x(j),x(i1),x(i2));

end

Algorithm 3: Tree_Reduction(inOut: x(j),x(i1),x(i2))

[xin](j) = [xin](i1) t [xin](i2) t [¬xout](j);

[xout](j) = [xout](i1) t [xout](i2) t [¬xin](j);

if
(
[xin](i1) ∩ [xout](i1) = ∅ or [xin](i2) ∩ [xout](i2) = ∅

)
then

remove_node_from_tree()

else

[x] = [xin](j) ∩ [xout](j);

[xin](i1) = [xin](i1) ∩ [x];

[xout](i1) = [xout](i1) ∩ [x];

[xin](i2) = [xin](i2) ∩ [x];

[xout](i2) = [xout](i2) ∩ [x];

3.1.3 Results

So we apply the previous algorithm on our path planning problem and as it could be seen

on the �gure (6) we reduce the number of boxes used to approximate X set. In this exam-

ple, the size of the sub-paving was reduced around 30 % (33703 boxes before reduction

and 22500 after). This reduction decreases only the number of boxes when the bisection's

process is over, but it doesn't speed up the algorithm and decreases the computation time.

At the end the sub-paving will be just easier to analyze and manipulate.

16

(a) Sub-paving without reduction (b) Sub-paving with reduction

Figure 6: Comparison between sub-paving with and without reduction. For example all
boxes on the top have been merged

3.2 Graph representation and Cameleon algorithm

In order to �nd automatically a path we represent the sub-paving by an undirected graph.

Each vertex represents a box and when two boxes have over-lapping face (which means

that there are neighbors), an edge joints the two corresponding vertex.

The graph is build on the �y, and while boxes are bisected and contracted, edges and

vertices are added into the graph. Moreover we only add boxes which belong to C− and

C+. At the end we obtain a bi-colored undirected graph of boxes in which we could apply

shortest path's algorithm such as Dijkstra's algorithm from our source con�guration ps
to our goal con�guration pg. We chose to build the graph on the �y instead using the

reduced one because of lake of time but it should have been more e�cient.

3.2.1 Test Case

In order to test and validate the construction of the graph we use a simple polygon see

composed of four edges. The corresponding graph and sub-paving are given is �gure 7.

As it is expected the graph is planar (see �gure 7b) and the Dijkstra's algorithm works

well on it. A path is found from the box number 51 to box 10. The feasible path for the

wire loop game is given in �gure 8.

3.2.2 Cameleon Algorithm

The previous algorithm works well and is able to �nd a path, when it is possible, but needs

to explore all the con�guration space before. A way to solve this issue was introduced by

luc Jaulin [6] and is called cameleon's algorithm. The main idea is to bisect only boxes

which could reach to a valid path. For this purpose, a sequence of white and gray boxes

17

(a) Sub-paving (b) Planar graph

Figure 7: Results of the simple test case for validating the graph construction.

are selected using Dijkstra' algorithm from the point ps to pg and all white boxes of it

are contracted, bisected and added to the graph. Next, a new path is searched and so on

until no path is found, or the sequence contains only gray boxes.

This original algorithm was modi�ed by adding weight on edge between vertices. The

main reason is that path returned by Dijkstra's algorithm is strongly binded with this

weight. To speed up the we want path returned by the algorithm contains less white

boxes as possible in order to limit the number of bisection. For this purpose,we use the

following weight:

box's color white dark gray

yellow 1e4 100

red 100 1

We penalize paths with white boxes and limit the passage between boxes with di�erent

colors This strategy is just an example, others strategies could be chosen such as maximize

the size of boxes used.

3.2.3 Results

The �gure 8 shows the results of the path �nding algorithm compare to the cameleon

one. Some indicators of e�ciency are in table 1. As it could be seen with the wire

loop game application, the cameleon is very e�cient and we have 10 to 30 times less

bisection than SIVIA algorithm. This number is a good indicator for the scalability of

the method and has to be as low as possible. Moreover if there is no feasible path, like

the �gure 9, the algorithm stop quickly with the guarantee that no solution exists. So,

the cameleon's algorithm using contractor seems to have good properties to solve more

complex path-planning problem.

18

Algorithm time (ms) number of bisection graph's size epsilon
SIVIA 15490 33703 29304 0.01
SIVIA 6183 7169 6137 0.05

Cameleon 1151 1266 1438 0.01

Table 1: Comparison between the classical approach and cameleon's algorithm.

(a) Classical approach (b) Cameleon approach

Figure 8: On (a), the sub-paving, with a feasible path, resulting from the Set inversion.
On the right, same path found with camaleon's algorithm

Conclusion

Throw the wire loop game, we illustrated the possibility of doing path planning with

interval analysis in an e�cient and elegant way. We also created the separator object

and the one associated with the constraint: "point is in a polygon" which has never been

done before. Next we were able to show explicitly a feasible path throw the con�guration

space and implement the Cameleon algorithm with minor modi�cations.

The main advantage of interval methods seems to be their capacity to represent the

C-space as tree or graph composed of continuous boxes without loosing any solution, and

on which we could apply very e�cient graph algorithms. These methods are guaranteed

and are able to prove that no path exist. To my knowledge, it is a key point which could

distinguish interval methods from the others.

Future work should be to compare with di�erent existing methods and also try others

classical path planning problems.

19

(a) Con�guration space (b) World frame space

Figure 9: No path was found by the algorithm in (a) because the robot can't keep his
loop around the wire. The con�guration is shown on the �gure (b)

References

[1] F. Abdallah, A. Gning, and P. Bonnifait. Box particle �ltering for nonlinear state

estimation using interval analysis. Automatica, 44(3):807�815, 2008.

[2] G. Chabert and L. Jaulin. Contractor Programming. Arti�cial Intelligence, 173:1079�

1100, 2009.

[3] R. Daily and D.M. Bevly. Harmonic potential �eld path planning for high speed

vehicles. In American Control Conference, 2008, pages 4609�4614, 2008.

[4] D. Daney, N. Andre�, G. Chabert, and Y. Papegay. Interval Method for Calibration

of Parallel Robots : Vision-based Experiments. Mechanism and Machine Theory,

Elsevier, 41:926�944, 2006.

[5] A. Gning and P. Bonnifait. Constraints propagation techniques on intervals for a

guaranteed localization using redundant data. Automatica, 42(7):1167�1175, 2006.

[6] L. Jaulin. Path planning using intervals and graphs. Reliable Computing, 7(1):1�15,

2001.

[7] L. Jaulin and B. Desrochers. Separators: a new interval tool to bracket solution sets;

application to path planning. Submitted to Engineering Applications of Arti�cial

Intelligence, 2014.

20

[8] L.E. Kavraki, P. Svestka, J.-C. Latombe, and M.H. Overmars. Probabilistic roadmaps

for path planning in high-dimensional con�guration spaces. Robotics and Automation,

IEEE Transactions on, 12(4):566�580, 1996.

[9] O. Khatib. Real-time obstacle avoidance for manipulators and mobile robots. In

Robotics and Automation. Proceedings. 1985 IEEE International Conference on, vol-

ume 2, pages 500�505, 1985.

[10] V. Kreinovich, A.V. Lakeyev, J. Rohn, and P.T. Kahl. Computational complexity

and feasibility of data processing and interval computations. Reliable Computing,

4(4):405�409, 1997.

[11] S. Lagrange, N. Delanoue, and L. Jaulin. Injectivity analysis using interval analysis.

application to structural identi�ability. Automatica, 44(11):2959�2962, 2008.

[12] Jean-Claude Latombe. Robot Motion Planning. Kluwer Academic Publishers, Nor-

well, MA, USA, 1991.

[13] O. Lévêque, L. Jaulin, D. Meizel, and E. Walter. Vehicule localization from inaccurate

telemetric data: a set inversion approach. In Proceedings of 5th IFAC Symposium on

Robot Control SY.RO.CO.'97, volume 1, pages 179�186, Nantes, France, 1997.

[14] T. Lozano-Pérez. Automatic planning of manipulator transfer movements. "IEEE

Transactions on Systems Man and Cybernetics", 11(10):681�698, 1981.

[15] T. Lozano-Pérez. Spatial planning: A con�guration space approach. IEEE Transac-

tions on Computers, 32(2):108�120, 1983.

[16] T. Lozano-Pérez and M. A. Wesley. An algorithm for planning collision-free paths

among polyhedral obstacles. Communications of the ACM, 22(10):560�570, 1979.

[17] R. Pepy, M Kie�er, and E Walter. Reliable robust path planning. International

Journal of Applied Mathematics and Computer Science, 3(19):413�424, 2009.

[18] N. Ramdani and P.Poignet. Robust dynamic experimental identi�cation of robots

with set membership uncertainty. IEEE/ASME Transactions on Mechatronics,

10(2):253�256, 2005.

21

