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Abstract

Absolute position estimation is a key function of autonomous systems and is often required at

the mission level. One way the get such information is to use an initial model of the environment

provided for instance, by a geographic database or built by an other robot. This study aims at

providing an algorithm which matches the output of a sensor with an initial model to estimate the

pose of the robot in a guaranteed way, using the intervals analysis framework. By construction,

initial models do not perfectly �t the reality and the acquire data set can contains an unknown,

and potentially large, percentage of outliers. When the environment is described by a surface, the

set membership estimator GOMNE can be used to concurrently estimate the number of outliers

and the localisation parameters. However, in the general case, with full 3D representation and

partially mapped objects, it can not be used. To cope this issue, a new algorithm called Outer-

GOMNE is proposed. By combining intervals methods with local estimation algorithms, it

have been applied to the localization problem. After a simulated test case with a 2D map, an

experimental validation using real laser data and di�erent 3D models is reported to illustrate the

performance of the method. Results are compared with ground truth provided by a di�erential

GPS. Outer-GOMNE is able to robustly enclose the ground truth in a sub-paving (union of non

overlapping boxes)

Résumé

La localisation d'un robot mobile dans son environnement est une fonction essentielle des sys-

tèmes autonomes. C'est l'une des briques de base permettant d'e�ectuer des actions de plus

haut niveau, tel que la cartographie ou la plani�cation de trajectoire. L'objectif de ce stage

était d'élaborer une méthode de localisation absolue, c'est-à-dire sans connaissance a priori de

la position du robot, à partir d'un modèle numérique de terrain initial et des données extérocep-

tives fournies par les capteurs du robot. Cependant, par construction, ces modèles contiennent

de nombreuses erreurs qui amènent à estimer, conjointement à la position du robot, le nombre

de mesures aberrantes présentes dans les données. Dès lors que le modèle de terrain n'est pas

surfacique, les techniques d'estimations du nombre de mesures aberrantes ne fonctionnent plus.

Outer-GOMNE a donc été développé pour palier à ce manque. En combinant les méthodes

ensemblistes avec des algorithmes d'estimation locaux (optimisation de fonction, Monte-Carlo,

...) il s'est avéré e�cace et robuste pour ce type de problème. Une expérience avec des données

réelles, et di�érents modèles de terrain, a été conduite pour évaluer et valider l'algorithme.
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1 Introduction

Metric maps of buildings, urban and natural environments are becoming widely available, and

make map-based localization a key function that perfectly complements dead-reckoning and

SLAM approaches to solve the overall robot localisation problem. By providing an �absolute�

position estimate (actually relative to the map frame), map-based localization can indeed be

exploited either as a solution to the kidnapped robot problem, to palliate the inherent drift of

dead-reckoning, in SLAM approaches, or in multi-robot contexts where one robot localizes itself

within a map built by an other.

Related work The literature provides various approaches to this problem, which can be char-

acterized by the way the acquired data are matched to the a priori map (data association), and

the algorithms that compute the position from the matches (estimation). Skyline localisation ap-

proaches match the skyline detected on images with a predicted skyline derived from a 3D model

in urban environments [23], or from a digital elevation map (DEM) in planetary environments

[27, 10]. In this latter context, the absence of absolute localization means and the availability

of sub-meter accuracy orthoimages and DEMs has motivated the development of various ap-

proaches, that register orthoimages built from camera and LIDAR images [25], correlate locally

built DEMs with the global one [13], or matches features (peaks) extracted from LIDAR scans

and the global DEM [7]. An other relevant approach is [30], where spin-images are associated

between aerial and ground data. Note that the �pinpoint landing� problem, which consists in

localizing a lander within existing orbiter DEMs and orthoimages, also call for similar map-based

techniques [29].

In urban environments, the building of maps dedicated to vehicles localization can yield excel-

lent precision: for instance [22] propose algorithms to build an orthoimage of ground re�ectivity,

which is later used to augment the precision of GPS/IMU/odometry solution. Particle �lters

are often used as the estimation engine for map-based localisation [11]. One of their advantage

is that they do not rely on explicit data association: only a likelihood measure is required be-

tween the acquired data and the initial map for a given position hypothesis, and the estimation

scheme progressively discards wrong hypotheses. Yes this approach need to be complemented

with additional motion estimation techniques for the prediction step, and depending on the en-

vironment, can require lengthy displacements to provide a precise localisation estimate when

starting without any prior information on this estimate.

Motivations and approach In most of the outdoor and indoor environments, map-based

localisation approaches are challenged by the presence of dynamic elements, which generate

numerous outliers, and hence considerably hinder the data association process or the likelihood

measure of a position hypothesis. The environment dynamics have a variety of frequencies, from

fast moving people or vehicles, to slowly seasonal changes or infrastructure evolution, via changes

in the illumination conditions. Our aim is to de�ne an approach to estimate the robot position

that is robust with respect to these changes. For that purpose, we rely on the following two

choices:

• Exploit geometric information: the geometry of the environment is an intrinsic property

that does not depend on illumination conditions, neither on the sensors that capture it
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and their viewpoints. Furthermore, most of initial maps are geometric, and in particular

Digital Elevation Maps are easily built with either aerial or ground means;

• Exploit interval analysis, that cast the localisation problem into a set inversion problem.

The literature has shown that interval analysis de�nes robust estimation solutions, while

ensuring integrity: when a estimation is provided, the actual position is guaranteed to lie

within the associated bounds.

Yet, the potential large number of outliers, the facts that initial maps are always partial and

that the initial position can very poorly known challenge the existing set membership approaches.

The main contribution of this work is the proposal of an interval analysis algorithm that can

cope with these problem characteristics.

Outline The next section brie�y recall the basics of interval artihmetics and set inversion, so

as to familiarize the reader with this formalism. Section 3 depicts the GOMNE algorithm, an

essential contribution of the interval analysis literature to achieve robust set inversion in the

presence of an unknown proportion of outliers. Our extension to this algorithm is presented

in section 4, with an extensive analysis of its characteristics in simulation. An extension to

the estimate of the whole trajectory is presented in section 5, and �nally section 6 presents its

application to the robot localization problem using range data and initial Digital Elevation Maps.

A discussion concludes the report.

2 Background On Interval Analysis For Estimation

This section summarizes the basics of interval analysis, for a more detailed introduction see [16].

2.1 Interval Arithmetics

An interval, denoted by [x] is a closed and connected subset of R de�ned by a lower and upper

bound such as:

[x] =
[
x−, x+

]
=
{
x ∈ R, x− ≤ x ≤ x+

}
(1)

The width w of an interval is de�ned by w ([x]) = x+−x−. A box [x] of Rn is a Cartesian product
of n intervals. The set of all boxes of Rn is denoted IRn. Basic operations on real numbers or

vectors can be extended to intervals in a natural way. For two intervals [x] and [y] of Rn and an

operator � ∈ {∩,∪,+,−, ∗, /}, we de�ne [x] � [y] as the smallest interval containing all feasible

values for x � y when x ∈ [x] and y ∈ [y]:

[x] � [y] = [{x � y|x ∈ [x], y ∈ [y]}] (2)

where [.] denotes the convex hull. For instance:

[−1, 5] ∩ [−3, 2] = [−1, 2]

[−3, 3] ∪ [4, 10] = [−3, 10]

[−3, 3]− [4, 10] = [−13, 1]

(3)
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Let f : Rn → Rm. An inclusion function denoted [f ] of f is de�ned by:

∀ [x] ∈ IRn, [f ] ([x]) , [{f (x) ,x ∈ [x]}] (4)

An inclusion function [f ] is convergent if, for any sequence of boxes [x](k)

lim
k→∞

w ([x](k)) = 0⇒ lim
k→∞

w ([f ]([x](k))) (5)

For any function obtained by the composition of elementary operators such as +, -, *, /, cos, sin,

exp, . . . , a natural inclusion function can be built by replacing these operators by their interval

counterpart. For instance, let f (x1, x2) = x1 ∗ cos (x2). The natural inclusion function [f ] is

given by:

[f ] ([x1], [x2]) = [x1] ∗ cos ([x2]) (6)

Its evaluation is done by applying interval arithmetic:

[f ]
(
[−2, 1], [π6 ,

π
3 ]
)

= [−2, 1] ∗ cos
(
[π6 ,

π
3 ]
)

= [−2, 1] ∗ [12 ,
√
3
2 ]

= [−
√

3,
√
3
2 ]

(7)

2.2 Constraint Propagation

A contractor C is an operator from IRn to IRn such as:

C ([x]) ⊂ [x] (contractance)

[x] ⊆ [y]⇒ C ([x]) ⊆ C ([y]) (monotonicity)
(8)

A set X is consistent with the contractor C (denoted as X ∼ C) if for all [x], we have

C ([x]) ∩ X = [x] ∩ X (9)

Let X be a set de�ned with a constraint C such as an equality or an inequality. The contractor

Cout associated with C makes it possible to remove part of a arbitrary initial box [x] which are

not consistent with C without removing any feasible values. This contractor is called the outer

contractor. If X has a non empty volume ( there exist points in X which do not belong to the

border of X), based on the De Morgan rules, it is also possible to de�ne the inner contraction

which removes parts of [x] which belong to the X set. For instance, a curve such as a line has

an empty volume because it is only described by its border (X = δX) and no inner contractor

can be de�ned. On the contrary, it can be de�ned for a disk or a ring. These two example are

depicted on �gure 1. When available, these two contractors have complementary actions and

from the pair {Cin, Cout}, a separator [20] can be built. In this case the separator S associated

with the set X is an application such as:

S : IRn −→ IRn × IRn

[x] 7−→ {[xin], [xout]} = {Cin([x]), Cout([x])}

We de�ne the remainder δS of a separator S as δS = Cin([x]) ∩ Cout([x]). δS is a contractor on

the border of the set (see �gure 2).
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X = {(x, y) ∈ R2, x2 + y2 ≤ 1}
X = {(x, y) ∈ R2, x2 + y2 > 1}
δX = {(x, y) ∈ R2, x2 + y2 = 1}

X

X

δX

X

δX = X

{
X = {(x, y) ∈ R2, f(x, y) = 0}
X = {(x, y) ∈ R2, f(x, y) 6= 0}

Figure 1: The disk, described by an equality admits an inner contractor. On the contrary, only
an outer contractor can be build for the curve.

X
[x]

Cout([x])

[x]

Cin([x])

δS ([x])

Figure 2: Illustration of a separator on three di�erent initial intervals. The outer contractor
removed the blue dashed area and the red dashed area was removed by the inner contractor.
Their combined action leads to the yellow box.
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2.3 Set Inversion

Let f be a function from Rn to Rm (possibly non-linear) and let Y be a subset of Rm such

as for instance a sub-paving (�nite union of non-overlapping boxes). The Set Inversion is the

characterization of :

X = {x ∈ Rn|f (x) ∈ Y} = f−1 (Y) (10)

For any Y ⊂ Rm and for any function f admitting a convergent inclusion function [f ] (.), two

regular sub-pavings X− and X+ can be obtained with an arbitrary precision using the algorithm

SIVIA (Set Inversion Via Interval Analysis) [18] such that :

X− ⊂ X ⊂ X+ (11)

SIVIA is a branch-and-bound algorithm with several implementations. It takes an initial box

[x0] large enough to contain the solution, and applies on it contractors (or separators) to remove

parts which can be classi�ed into X or X. If the width of the resulting box is larger than a

threshold ε the box is bisected (cut into 2 sub-boxes) and the algorithm is run on each new box.

The complexity of the algorithm is exponential with respect to the dimension n of the initial

box, and terminate after less than (w([x0])
ε + 1)n iterations. A recursive version of the algorithm

is given in algorithm 1 using separators and, another using a list and only an outer contractors

is given in algorithm 2.

Algorithm 1: SIVIAS(in: [x],S, ε, InOut: X−,X+)

{[xin], [xout]} = S ([x]);1

Store [xin]\[x] into X− and also into X+ ;2

[x] = [xin] ∩ [xout];3

max← a1;4

if w ([x])) ≤ ε) then5

store [x] into X+
6

else7

bisect [x] into [x1] and [x2];8

SIVIAS([x1],S, ε,X−,X+);9

SIVIAS([x2],S, ε,X−,X+);10

Algorithm 2: SIVIA(in: [x0], Cout, ε; Out:X+)

L ← [x0];1

while L 6= ∅ do2

Pull [x] from L;3

[x] = Cout ([x]);4

if w ([x])) ≤ ε) then5

store [x] into X+
6

else7

bisect [x] and push into L the two resulting boxes8
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Figure 3: q-relaxed intersection of 6 sets for q=2 (red), q=3 (green), q= 4 (blue) , q= 5 (yellow)

2.4 Relaxed Intersection

Parameters estimation using interval analysis is more e�cient if the number of sets involved is

greater than the number of unknowns. However the presence of outliers will yield an empty

solution set. To solve this issue, the relaxed-intersection [15] has been introduced.

Consider N sets X1, . . . ,Xn of IRn. The q−relaxed intersection denoted by
{q}⋂

Xi is the set of

all x ∈ Rn which belong to all Xi's, except q at most. Figure 3 illustrates this notion for N = 6

and q = 2, 3, 4.

Since the relaxed-intersection can be written as a combination of unions and intersections, it

is monotonic with respect to Xi and q:

q1, q2 ∈ N∗, q1 ≤ q2 ⇒
{q1}⋂

Xi ⊆
{q2}⋂

Xi

(X1 ⊂ Y1, . . . ,XN ⊂ YN ) ⇒
{q}⋂

Xi ⊂
{q}⋂

Yi
(12)

Computing the exact q-intersection of p n-dimensional boxes has a complexity in O (pn). How-

ever, using the Marzullo's algorithm ([9]), an approximation can be computed in O (np log(p))

by calculating the intersection along each dimension independently. A study of the relaxed-

intersection can be found in [6] including a better approximation in O
(
np2
)
.

From a set of N contractors C1, . . . , CN associated with sets X1, . . . , XN , the contractor Cq is
de�ned by algorithm 3.

Algorithm 3: Cq(in: q, C1, . . . , CN , inout: [x])

for k from 1 to N do1

[xk] = Ck ([x]);2

[x] = [x] ∩
{q}⋂

i∈{0,...,N}
[xi];

3

Knowing q, the relaxed-intersection is mainly used inside the set inversion algorithm instead

of the classical intersection to take into account at most q outliers.
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3 Guaranteed Outlier Minimal Number Estimator

In actual cases, the percentage of outliers is not known and needs to be estimated concurrently

with the parameters. The Guaranteed Outlier Minimal Number Estimator (GOMNE ) algorithm,

introduced in [19] and [17], has been designed for this purpose.

3.1 GOMNE Algorithm

Let's take N sets (X1, . . . ,XN ) de�ned by constraints such as, for instance, fi (x) ∈ [yi]. Let j

be a cost function which returns the number of measurements inconsistent with x.

j : Rn −→ [[1, N ]]

x 7−→ card {i|fi (x) /∈ [yi]}
(13)

The GOMNE aims at characterizing the set S∗ of feasible parameters which minimizes the

number of outliers :

S∗ = arg min
x∈Rn

j (x) (14)

Using the relaxed intersection, the set of all parameters that are consistent with at least N − q
measurements can then be seen as a set inversion :

Sq = {x ∈ Rn|j(x) ≤ q} = j−1 ([0, q]) (15)

GOMNE runs a �nite sequence of set inversions with di�erent values of q in order to enclose

Sq∗ between two sub-pavings S−q∗ and S+q∗ in a guaranteed way. With an initial box [x0], it starts

with q = 0 and calculates S−q and S+q by running SIVIA([x0],Cq,ε). If the outer sub-paving S+q
is empty, there does not exist any solution consistent with at least N − q data. The number of
outliers q is incremented and SIVIA is run again. If S+q is not empty and S−q is, a smaller value of

ε is used to �nd a non empty inner set or an empty outer set. In the �rst case, the algorithm ends

and q∗ = q, otherwise SIVIA is run again with a greater value of q. The full GOMNE algorithm

is given in listing 4. A minimal value ε0 of ε has been introduced in order to avoid in�nite loop

when the interior of S∗ is empty which could happen when, for instance, S∗ is a singleton.

Algorithm 4: GOMNE(in: [x0] , ε0, εmin, out: q
∗, S−q∗ , S

+
q∗)

q = −1 ;1

repeat2

ε = ε0; q = q + 1;3

repeat4 [
S−q ,S+q

]
= SIV IA([x0],q,ε);5

ε = ε/2;6

until
(
S−q 6= ∅ or S+q = ∅ or ε < εmin

)
;7

until S−q 6= ∅ ;8

3.2 Illustration : Simple Map-Based Localization

A simple localization problem within an initial 2D map illustrates how GOMNE can be used and

its limitations. In order to build an inner and outer contractor, the map must divide the space
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into two complementary sets, with non-zero volume: M (gray in �gure 4a) andM. Measurements

will belong to the border of M. In our case, the map is composed of a non-convex polygon with

a hole, which for instance represents a room. The robot R is equipped with a laser sensor

which returns the distance di ∈ [d−i , d
+
i ] between R and the nearest obstacle in a given direction

(αi ∈ [αi − εα, αi + εα]). We also denote by ai ( resp. bi) the nearest (resp. furthest) impact

point associated with the distance d−i (resp. d+i ). The parametrization is shown in �gure 4b.

The goal of this problem is to estimate the position x = (px, py) of the robot on the map. Its

heading θ is assumed to be known and is not estimated in this example.

Let f(x, α, d) be the function which translates the point x by a distance d in the direction

given by α + θ. Let fi−(x) = f
(
x, αi, d

−
i

)
(resp. fi+(x) = f

(
x, αi, d

+
i

)
) be the function which

transforms the x into ai (resp. bi). The set Xi of feasible con�gurations consistent with the ith

measurement is the set of all x such that the point ai belongs to M and bi belongs to M given

by:

Xi = {x ∈ Rn|fi−(x) ∈M and fi+(x) /∈M}
ie. Xi = f−1

i− (M) ∩ f−1
i+

(
M
) (16)

The complementary set Xi is de�ned by :

Xi = f−1
i−

(
M
)
∪ f−1

i+
(M) (17)

With the contractor arithmetics it is possible to build the separator S = {Cin, Cout} such as

Cin ∼ Xi and Cout ∼ Xi. The GOMNE algorithm is then applied to �nd the solution set X∗

which minimizes the number of outliers:

X∗ =

{q∗}⋂

i

Xi (18)

Results of the set inversion are shown in �gure 5 with two values of bounds for αi. In the top

right sub-�gure, the value of αi is assumed to be precisely known (εα = 1e−4 rad.) and the

resulting solution set has an inner part. On the contrary, in the bottom right sub-�gure, the

interval for α is larger (εα = 1e−2 rad.) and the inner part disappears. This situation could

occur frequently if a sonar, which has a larger emission cone than a laser, is for instance used.

In this case, the GOMNE algorithm fails to �nd a non empty X− even if a smaller value of ε

is used. Maybe, the condition for x to belong to Xi is too restrictive because the equation (16)

must be satis�ed for all αi in [αi]. For that purpose the projection algorithm [8] should be used

to �nd the set X∩[αi]
i de�ned by:

X∩[αi]
i =

{
x ∈ Rn|∃αi ∈ [αi], f

−1
i− (M) ∩ f−1

i+

(
M
)}

(19)

But this requires additional bisections on αi and hence increases the complexity of the algorithm.

However, depending on the problem, it may be useless to precisely characterize the inner set. For

instance, with the localization problem, in order to ensure a guarantee on the solution, only X+

is taken into account. Finally, the inner contractor may not exist and the GOMNE algorithm

can not be used. This is main reason why a new method is introduced.
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(a) Initial situation (b) Modeling and parameters

Figure 4: Initial situation, the laser sensor returns 56 measurements with 15 outliers (dashed
lines)

Figure 5: Resulting sub-pavings of the set inversion for q = 11. Dark gray boxes belong to X−
and light gray boxes are in ∆X. The black circle is the theoretical position of the robot

12



4 Outer-GOMNE

4.1 Principle

With only an outer contractor, the classical GOMNE approach fails to �nd a guaranteed result

because the stopping condition (S− 6= ∅) can not be satis�ed. To cope this lack of constraint,

we propose to use the local information given by j (equation 13) to �nd the smallest majorant

of q∗ as possible. The outer contractor will remove inconsistent parts of the initial space while a

local method looks for q∗.

Let's take a set of N measurements, each of them de�ning a set Xi. Let Ciout be the outer

contractor associated with the set Xi. The method is based on the following propositions:

proposition 1:

Based on the de�nition of the outer contractor, we have :

∀[x] ∈ IRn, Ciout([x]) = ∅ ⇔ [x] /∈ Xi (20)

which means that if Ciout([x]) = ∅, [x] is not consistent with the ith measurement. In the special

case where [x] is a singleton denoted {x}, we de�ne the following function :

Rn → [0, 1]

x 7→ µi (x) =

{
1 if Ciout ({x}) = ∅
0 otherwise

(21)

proposition 2:

An explicit expression for j : Rn → [[0, N − 1]] is given by :

j (x) =
N∑

i=1

µi (x) (22)

remark 1: Punctual values are used in j instead of intervals in order to limit the pessimism

during the evaluation process.

remark 2: Instead of having additional information, properties of j such as continuity, variations,

monotonicity are unknown: j can only be evaluated at a given value.

Properties: Based on the construction of j and on the monotonicity of the relaxed intersection

we have :

S∗ 6= ∅ ⇔ ∃x ∈ Rn , j (x) = q∗ (23)

∀x ∈ Rn, Sq∗ ⊆ Sj(x) (24)

∀x /∈ S∗, j (x) > q∗ (25)

With equation (23), the minimum of j can always be found if the search algorithm has no time

limit. Otherwise, with the property (24), it can be stopped at any time and the guarantee is

preserved. With the last property, algorithms can be run safely with any x ∈ Rn. It is now

possible to de�ne a contractor for [q]. Given a subset A of Rn :

CjA ([q]) = [q] ∩ [0,min
x∈A

j(x)] (26)
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By construction CjA is monotonic, but not always minimal, depending on the result of the mini-

mization algorithm used. If the minimum is very hard to �nd, q∗ will be overestimated.

To minimize the function j several strategies can be used. A trivial way is to randomly test

N points in A and keep the minimal value. The probability of �nding the minimum increases

when N tend towards in�nity or when the volume of A approaches towards 0. A smarter way

is to consider j as a likelihood function and use the particle �lter framework to estimate S∗.
Alternatively, the issue of �nding the best value of j could be seen as a black-box optimization

problem because no information are available on j. We choose to use the NOMAD library [21, 1]

which is a C++ implementation of the Mesh Adaptive Direct Search (MADS) algorithm [2, 4]

designed for constrained optimization of black-box functions.

4.2 Algorithm

The initial GOMNE algorithm is modi�ed in order to take into account the new way to estimate

q∗. At the beginning, [q] = [q−, q+] is unknown and ranges between 0 and N − 1. Similarly to

the GOMNE algorithm a set inversion is performed. If the resulting sub-paving S+ is empty,

there are at least q outliers and q− = q+ 1 else the contractor CjS+ is called to �nd a better value

for q+. The algorithm stops when q− ≥ q+, and then q∗ = q+.

Remarks:

• The returned value is not always optimal and depends on the result of the minimization.

However, if S∗ is small, the initial search space is also small and an optimal value is found

quickly. So, after the optimization, if no improvement of the value of q is found (line 8),

a smaller accuracy (ε) is used to reduce the size of boxes which composed the S+. Then

SIVIA is called until S∗ becomes empty or ε < εlim where εlim is chosen by the user.

• When the number of outliers is greater than 50% testing each value of q could be very

slow. To solve this issue, when S∗ is empty, q can be incremented by ∆q and the best value

which satis�es q− >= q+ will be found quickly. However, this value will not always be

optimal, but satis�es q+ − q∗ ≤ ∆q.

• At any time, the algorithm could be stopped and the solution set S+
q+

will contain the

solution in a guaranteed way.

Algorithm 5: Outer-GOMNE(in: X0 , ε0, εlim, out: q
+)

q− = 0 , q+ = N − 1, ε = ε0;1

while (q+ > q−) do2

S+ = SIV IA([x0], Cq− , ε);3

if (S+ = ∅ or ε < εlim) then4

q− = q− + 1, ε = ε05

else6

q = min
x∈S+

j(x);
7

if (q < q+) then8

q+ = q9

else10

ε = ε/211

14



Results of this algorithm are shown in the next section. A compromise needs to be found

between the time allocated to set inversion and to optimization.

4.3 Test Case and Results

4.3.1 Introduction

Let's take a robot R in an environment composed of lines and circles, which could for instance

represent trees and buildings. An initial map containing only the border of obstacles is provided

but in this case, no inner and outer parts can be de�ned (the volume of M is null). To our

knowledge, no inner contractor has been found for this kind of situation and only an outer

contractor is available. The robot is equipped with a laser sensor which returns the distance di

between R and the nearest obstacle in a given direction (αi). Let yi = (di, αi) a measurement.

The pose x = (px, py, θ) of R must satisfy :

g (x,yi) ∈M (27)

where g is the function which translates the point (px, py) by a distance d in the direction given

by α+ θ de�ned by:

g : R3 × R2 −→ R2

(px, py, θ, di, αi) 7−→
(
qx

qy

)
= di.

(
cos (αi + θ)

sin (αi + θ)

)
+

(
px

py

)

To ease the reading, g(x,yi) is denoted by gi(x). The map is represented by a binary occupancy

grid and the constraint gi(x) ∈M is implemented with the image contractor (see 4.3.2 for a short

introduction), which is very e�cient for this kind of application. In addition, the localization

algorithm has to deal with erroneous measurements and detection of unmapped objects such as

people, trees or cars. The situation is depicted in �gure 6. The solution set X is then de�ned by:

X =

{q∗}⋂
g−1i (M) (28)

where q∗ = min
x∈R3

j(x).

4.3.2 Map contractor

Unstructured environments can be described by an occupancy grid represented as a binary image

i in which the value of each pixel is 1 if it is occupied, 0 otherwise. The image contractor

introduced in [26, 12] can then be used. This contractor is based on the summed area table (also

known as integral image), widely used in computer vision, de�ned by:

I (x, y) =
∑

x′≤x
y′≤y

i
(
x′, y′

)
(29)

Using the integral image, the number of 1-valued pixel contained in any rectangular region can

be computed in four operations. Let φ be the function which returns the number of occupied

cells in a given box [x] = [x−1 , x
+
1 ] × [x−2 , x

+
2 ] aligned on the grid. Let A(x−, y−), B(x+, y−),
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Figure 6: The map M , in black, is composed of lines and circles. The opened polygon does
not de�ne a closed area and consequently the map has an empty volume. Dashed red circles are
unmapped objects which generated false detection. Consistent measurements are in green, while
outliers are in red.

C(x+, y+), D(x−, y+) be the coordinates of the rectangle corners, we have :

IN2 −→ N
φ ([x]) 7−→ I(A) + I(C)− I(B)− I(D)

(30)

On �gure 7a the box contains two black pixel, so φ ([x]) = 2. From an initial box [x0], the image

contractor aims at �nding the smallest box [x] included in [x0] which contains exactly the same

number of 1-valued pixels, ie. φ([x0]) = φ([x]).

Denote by C the image contractor. Consider [x] ∈ IN2 and C([x]) = [y]. We have:





y−1 = max(x ∈ [x1], φ([x−1 ;x]× [x2]) = 0)

y+1 = min(x ∈ [x1], φ([x;x+1 ]× [x2]) = 0)

y−2 = max(x ∈ [x2], φ([x1]× [x−2 ;x]) = 0)

y+2 = min(x ∈ [x2], φ([x1]× [x;x+2 ]) = 0)

(31)

The min and max can be computed using a dichotomy, which has a logarithmic complexity.

4.3.3 Results

A trajectory of 20 con�gurations is generated, for each of which the number and the position of

unmapped objects changes (case of a very dynamic environment). All di�erent con�gurations are

shown in �gure 10b. The heading θth is assumed to be known with an accuracy of ± 30 degrees

while their position is completely unknown. The optimization procedure use MADS algorithm
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Figure 7: Image contractor

coupled with a Various Neighborhood Search (VNS) algorithm [3] to escape local minima. For

each box of the resulting sub-paving S+ an optimization is run with a maximum of 100 tries.

Finally the ε used in SIVIA is ε = (1m, 1m, 3◦). The algorithm is run on a Intel(R) Core(TM)

i5-2450M CPU at 2.50GHz and the computing time for each situation is shown in �gure 8a. The

width of the box which enclosed Sq∗ and the error between its center and xth are given in table 1.

Outer-GOMNE retrieves, in a guaranteed way, the set Sq∗ . Nevertheless, due to undetected
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(b) w([x]) = (5m, 5m, 4◦)

Figure 8: Computing time needed to �nd Sq∗ with di�erent initial estimates, sorted by the
percentage of outliers. The con�guration's number is in white. Resulting sub-pavings, which
does not contain the true solution, are marked with a red cross.

and spurious outliers, the true solution xth sometimes do not belong to the resulting solution

set Sq∗ . This is the case for the 4th con�guration in �gure 9a. To avoid this, like the original

GOMNE algorithm, an arbitrary number of undetected outliers r can be added to the returned

value q∗ to characterize the set Sq∗+r, which is more likely to contain xth. However, when the

proposition of outliers is higher than 50%, another con�guration consistent with a set of outliers

may exist in the initial box. This is the case of the 15th situation in �gure 9a, localized as shown

in �gure 9b. An additional constraint such as "a beam can not cross the map" can be added

to avoid this situation but, in the general case, without additional information, such situation
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#
w([x]) w([y]) w([θ]) errxy errθ
m m rad m rad

1 0.092 0.154 0.436 0.013 2.33e-02
2 0.106 0.131 0.432 0.018 2.44e-02
3 0.139 0.185 0.698 0.016 1.53e-02
4 0.129 0.095 0.428 0.033 1.33e-01

5 0.204 0.172 0.721 0.023 3.21e-02
6 0.172 0.197 0.800 0.035 1.59e-01
7 0.130 0.190 0.500 0.025 7.46e-02
8 0.099 0.192 0.439 0.014 7.10e-02
9 0.109 0.181 0.693 0.002 4.21e-02
10 0.093 0.166 0.545 0.015 1.46e-02
11 0.127 0.218 0.626 0.007 2.74e-02
12 0.178 0.236 0.702 0.012 9.57e-02
13 0.214 0.227 1.011 0.025 3.64e-02
14 0.231 0.199 0.950 0.016 1.89e-02
15 0.215 0.288 1.031 0.029 5.47e-02
16 5.358 0.407 37.885 21.959 4.99e+00

17 0.190 0.247 1.120 0.016 7.45e-02
18 0.228 0.197 1.040 0.015 3.15e-02
19 0.279 0.193 0.812 0.007 7.56e-02
20 0.258 0.204 1.123 0.020 2.35e-02

Table 1: Results of each con�guration. The size of the union of all boxes of the sub-paving is given
and the error between the theoretical position and the center of this union of the sub-paving.
Bold lines are con�guration inconsistent with the theoretical position.

can not be avoided. Results of the set inversion with a smaller initial box are shown in �gure 8b

with r = 1. Here the computing time is lower and the algorithm never fails.

During our tests, Outer-GOMNE was able to cope with more than 70% outliers. Its main

drawback, like its original version, is that it looks for the set which minimizes the number of

outliers and, if only static information are used, this set may not contain the true solution. To

address this issue, the fact that successive con�guration constitute a trajectory can be considered.
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(a) Actual position (green robot) and estimated po-
sition (red robot) of the 15th con�guration
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(b) Close-up of the estimated position

Figure 9: Result of the 15th ambiguous situation. In �gure 9a, the initial con�guration (green
robot) has 73 outliers. Outer-GOMNE �nds another con�guration (in yellow) with only 67
outliers (�gure 9b). The constraint used allows beams to cross the map and leads an erroneous
estimation.
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5 Extension to Trajectories

5.1 Principle and Algorithm

The previous method can be applied as contractor for tubes ( which is an interval of functions [5])

to retrieve the trajectory of the robot by using its dynamics or any independent relative motion

estimation measure such as provided by odometers or inertial navigation systems. Trajectories

contain much more information which can deal with symmetric and ambiguous situations, espe-

cially when the true solution does not belong to Sq∗+r. Let's take a system which provides Nk

outputs at each time step k described by :

{
xk = f (xk−1,uk) + wk

yk = gk (xk)
(32)

where yk = (y1
k, . . . ,y

Nk
k ) and gk (xk) =

(
g1
1(xk), . . . ,g

Nk
k (xk)

)
. A state noise wk is assumed

to belong to the box [w(k)]. Each output contains qk outliers. Let pk = (xk, qk), the vector of

parameters to be estimated for time k.

Constraint propagation can be used to estimate the trajectory z = (p0, . . . ,pNk
) of the

system. Let Cik be the outer contractor associated to the constraint gik(pk) ∈ [yik]. We de�ne

the contractor Ck which contract a box [pk] = [x]× [qk] :

Ck : IRn × IN −→ IRn × IN

([x], [q]) −→





[q] = [q] ∩ [0, min
x∈[x]

j(x)]

[x] = [x] ∩
q+⋂ Cik([x])

(33)

The algorithm 6 inspired from [14] contracts an unknown trajectory [z] = ([x0, . . . ,xN ]). For

each time step k, [xk] is predicted from the previous [xk−1] using equation (32). Then, Ck is

called to estimate the number of outliers and contract [xk] with this value. Using interval arith-

metic, a backward propagation is then done. This contractor procedure can be called several

times until it has no e�ect on [z] (the �xed point is then reached).

Algorithm 6: Ctraj(in: Ck, f inout :[z] = (p0 = [x0]× [q0], . . . ,pk = [xk]× [qk]))

for k from 1 to N do1

[xk] = f([xk−1]);2

Ck ([pk]) see equation 33;3

for k from N-1 to 0 do4

[xk] = [xk] ∩ f−1(xk+1)5

In the end, the trajectory can be retrieved only with contractions and optimizations. However,

if one step becomes inconsistent with the other the resulting trajectory will be empty. To avoid

this, the relaxed intersection can be used on the trajectory space. Let zi be the trajectory

corrected only with the output of the system at time k. The �nal trajectory is now de�ned by

z =

qz⋂
zi (34)
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w0([x])(m) w0([y])(m) w0([θ])(rad) number of run time(s)

20 20 0.35 500 165

10 10 0.035 500 120

10 10 0.035 100 33

5 5 0.035 50 20

Table 2: Computing time needed to retrieve the trajectory with di�erent parameters
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(a) Recovered trajectory with the dynamic algorithm (b) Projection on the (x,y) plan

5.2 Test Case

Consider the whole trajectory of the previous test case. The observation model remains the same

and the motion model is de�ned by:

xk = xk−1 + uk + wk (35)

where uk is the movement of the robot between time tk−1 and tk. An additive noise of more or

less 10% of the input vector value is used for the prediction : [wk] = [−0.1 ∗ uk, 0.1 ∗ uk]. We

allow also 10% of spurious states ( qz = 2). Table 2 shows the computing time needed to retrieve

a 65 meter trajectory long with di�erent sizes of the initial box, and di�erent numbers of run

used by the optimization algorithm. Figures 10a and 10b show the estimated trajectory. Last

steps are less accurate because less information constrains the position.

Instead of processing the whole trajectory in one run, it is possible to apply the algorithm

on a sliding temporal window and compute the trajectory while the robot is moving. With a

10 time steps window, and a small box containing the true position, the computing time is less

than 12 seconds. Outer-GOMNE can be used instead of Ck.
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6 Localization in a Digital Elevation Map

DEM's represent a surface z = f (x, y) on a regular Cartesian grid where each cell contains the

value of the elevation z. Depending on the data and algorithms used to build such a structure,

additional information such as a standard deviation and extrema values for z can be encoded

in each cell. DEM's are widely used, either in geographic data systems because they present

a good compromise between expressiveness, simplicity and compactness1, or in robotics, where

they are easily built from range data and exploited to assess traversability, to plan itineraries or

trajectories, or to assess visibilities between positions.

If a DEM is a nearly perfect structure to represent surfaces, it fails to represent verticals

and overhangs, and this has numerous consequences, especially when it comes to associate range

data acquired by the robot to the map. Furthermore, the presence of unmapped elements in the

environment, and the fact that some objects may only be partially mapped make the localization

challenging. This section presents how Outer-GOMNE can cope with these issues, using range

data acquired by the robot.

6.1 Initial Models

6.1.1 Map Structures

With a DEM, the space can be split into two sets: the one over the surface (z− f(x, y) > 0) and

the one below (z − f(x, y) < 0). In such cases, an inner and an outer contractor can be de�ned,

and the same formalism of section 3.2 can be applied to localize the robot using range data, using

the classical GNOME approach to cope with the presence of outliers. DEMs are particularly

adapted to open terrains for which a surfacic representation is well suited, or in more complex

(non-surfacic) terrains, in the case where the range data used to localize the robot are gathered

in conditions similar to the data from which the DTM has been built.

For instance, if a DEM is built from an Unmanned Aerial Vehicle (UAV) using a downwards

oriented sensor (see �gure 10b), range data acquired by other UAVs using a downwards oriented

sensor can be well matched with the DEM structure. But on the contrary, range data acquired

by a ground robot will hardly match such a map: e.g. the tree canopy is mapped by the UAV,

whereas the ground robot only perceives tree trunks and lower branches and leaves. From the

point of view of a UAV, the representation as a surface (convex world) is a good approximation.

However from the point of view of the ground robot, the elevation between two adjacent cells is

assumed to be continuous, which leads to a poor representation of verticals and overhangs.

As a compromise, the DEM can be voxelized, by �lling the gaps between two di�erent eleva-

tions of neighboring cells. The �gure 11 shows the resulting environment model after applying

this process to the DEM of �gure 10b. Note that this representation also allows the use of an

image contractor extended to the 3D case. But if this copes for verticals such as walls, it also

clearly introduces erroneous information: the extension to the ground of the tree canopy does

not �t the reality and hides the tree trunks for instance.

To better solve this issue, a volumetric representation using a three-dimensional voxel grid

can be used: non surfacic elements are then accurately represented. However, the building of

such models has a high computational cost and requires a lot of memory. And still, some objects

may not be entirely mapped in the model: e.g. sometimes only parts of buildings, cars, trees, are

1For instance, most commercial aerial mapping systems generate DEMs along with orthoimages
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(a) Aerial orthoimage of a test site (b) DEM

Figure 10: Aerial view of a 80m x 80m test site, and DEM built from a UAV with a downwards
looking Lidar. Note that buildings roofs and tree canopy are disconnected from the ground
surface.

Figure 11: View of the DEM of �gure 10b after its �voxelisation�.

modeled and the resulting model does not de�ne closed connected components, as can be seen

in the model of �gure 12, where only walls perceived by the robot are modeled � and not the

entire buildings. The hypothesis of a convex world then does not hold, and no inner contractor

are available: in such a situation, Outer-GOMNE needs to be used.

6.1.2 Test Maps

.

For our localisation tests, three di�erent models of the same area (training camp of Caylus,

�gure 10a) are used. The �rst model, denoted �atLaas�, is built from a set of 3D scans acquired

by a Velodyne Lidar mounted on a ground robot (see �gure 12). The second and third models

are built from data acquired by an UAV equipped with a camera (13a) and a Lidar (�gure 13b),

and are respectively denoted �UAV-Vision� and �UAV-Lidar�.

The voxelization is done by marking as occupied all cases such as z = f(x, y) and �lling gaps.
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Figure 12: The ground robot with a Velodyne Lidar in the site of �gure 10a, and the correspond-
ing �atLaas� DEM (0.1m resolution).

The formulation is :

i(xi, yi, zi) =





1 if zi ∈


 min
x∈xi−1,xi
y∈yi−1,yi

f(x, y), max
x∈xi−1,xi
y∈yi−1,yi

f(x, y)




0 otherwise

(36)

6.2 Data Pre-processing

Before using the Outer-GOMNE algorithm, the range data acquired by the ground robot Lidar

need to be preprocessed. Indeed, the complexity of the algorithm is linear with respect to the

number of measurements, and a 360◦ panoramic scan indeed contains up to 288.000 points. Also,

in the context of our localization problem where only px, py, ϕ need to be retrieved, measurements

which are likely to correspond to the ground are removed.

First, the density of the point cloud dramatically decreases with the distance to the sensor:

the initial point cloud (�gure 14a) is down-sampled to homogenize its spatial density (see �gure

14b). To select out the points corresponding to the ground, the normal vector of each point is

estimated using a circular neighborhood support. We assume that a point belongs to the ground

if the angle between the vertical ~z axis and the estimated normal vector is lower than a given

value (based on the analysis of histograms of normal vectors, the threshold is set to 30◦). The

resulting point cloud is shown in �gure 14c. Finally, based on the distance between points, an

euclidean clustering is performed to split the cloud onto spatially coherent sub-clouds (�gure

14d). Table 3 indicate the time required by these processes, which are implemented with the

Point Cloud Library [24].

6.3 Algorithm Extension to 3D Data

The algorithms presented in section 4 can readily be extended to the case of localization in the

3D world, as only the contractor on the DEM and the constraint g (equation 27) need to be

adapted.

Let yiBs
= (xi, yi, zi) be a point acquired by the sensor in its own frame (Bs). The goal is to

estimate parameters x = (px, py, pz, θ, ψ, φ)T of the transformation matrix TB0→Bs(x) between
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(a) �UAV-Vision� DEM built from images (0.04m
resolution)
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(b) �UAV-Lidar� DEM built from Lidar data (0.2m
resolution)

Figure 13: DEMs of the test area of �gure 10a generated by UAV data. Note that the DEM built
from images contains gross errors, due to the absence of visual features matches: the elevation
has been interpolated by the photogrametric algorithms to the ground elevation for most of the
trees.

(a) Original point cloud (b) Down sampled

(c) Filtered by normal direction (d) Euclidean clustering

Figure 14: Point cloud �ltering: The raw point cloud (14a) is �rst down-sampled (14b), and
based on the normal direction, points which are likely to belong to the ground are removed
(14c). Then, the remaining point cloud is split into smaller but spatially coherent subsets (14d).
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Step Name
Number of points

time used
initial �nal

Down-sampled 205 417 22 638 92 ms

Normal Estimation 22 638 22 638 239 ms

Thresholding 22 638 4 484 78 ms

Clustering 4 484 3 677 59 ms

Total 648 ms

Table 3: Computing time of the processes that segment the point cloud of �gure 14a.

the global frame B0 and the sensor frame Bs (ϕ, θ, ψ respectively denote the yaw, pitch and

roll).

Like in the 2D test cases, the point yiB0
must belong to the map, so the constraint g is now:

{
yiB0

= TB0→Bs(x).yiBs

yiB0
∈M

(37)

The localization problem is then formalized as a robust set inversion :

X =

{q∗}⋂
T −1B0→Bs

(M) (38)

where Outer-GOMNE can be used to concurrently determine x and q∗. Based on the gener-

alized notion of integral image in higher dimensional space (see [28]), the image contractor can

be used with a voxel grid which represent the map.

6.4 Results

The approach has been evaluated in di�erent con�gurations using two range data sets acquired

in two di�erent days, with ground truth positions provided by a centimeter accuracy RTK-GPS.

One data-set has been used to produce the �atLaas� DEM (�gure 12), while the second data-set is

used to test the localisation algorithm in this DEM and the two �UAV-Vision" and �UAV-Lidar"

DEMs derived from UAV data of the site.

Localisation results on the �atLaas� DEM for 8 robot con�gurations are shown in �gure 15a,

execution time with di�erent sizes of the initial box are given in �gure 15b (measured on a Intel(R)

Core(TM) i5-2450M CPU at 2.50GHz), and the characteristics of the resulting sub-paving are

given in table 4.

In each case, in accordance with the theory, the integrity of the result is satis�ed and the

precision of the retrieved position is smaller than one meter. Table 4 also shows the errors errxy

and errθ, which have been computed by comparing the ground truth with the center of the box

that bounds the resulting sub-paving.

Computing times are higher than for the 2D test case: on the one hand, the function involved

in the set inversion is more complex and introduces more pessimism: hence the contraction is

less e�cient and more bisections are made. To contraction process can be improved by using

more constraints on the pose of the robot. On the other hand, the complexity of the algorithm

is linear with respect to the number of measurements used. We use the point cloud given by

the segmentation algorithm which contains on average 1000 data points (see table 4 column 2).

Using less measurements would speed up the algorithm and especially the optimization part �
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yet a way to select relevant measurements has to be de�ned.
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Figure 15: Localisation results using the �atLaas� DEM as the initial map (here shown on the
�UAV-Vision� DEM), and execution times as a function of the size of the initial box. Light
colored bars correspond to the time needed by the set inversion algorithm.

#
Number of Number of w([x]) w([y]) w([θ]) errxy errθ

measurements outliers m m mrad m mrad

1 1174 105 (9%) 0.78 0.81 82.3 0.20 9.8
2 1154 34 (2%) 0.41 0.55 50.7 0.20 3.6
3 786 35 (4%) 0.56 0.55 53.9 0.16 18.2
4 738 85 (11%) 0.67 0.79 56.3 0.03 6.3
5 805 73 (9%) 0.80 0.75 67.0 0.09 1.0
6 912 89 (9%) 0.81 0.67 56.3 0.20 6.3
7 1038 84 (8%) 0.76 0.75 80.0 0.10 18.2
8 851 45 (5%) 0.63 0.68 67.0 0.28 24.8

Table 4: Characteristics of the resulting sub-paving (with an initial box of 50m x 50m x 60◦) for
the 8 position estimates shown �gure 15.

Table 5 and �gure 16 illustrate the localisation results of two other con�gurations A and B,

with the three initial DEMs considered. In �gure 16, the resulting sub-paving is displayed in

yellow, the red triangle is the estimated position of the robot, and the range data that match

the DEM in green, while the estimated outliers are in red. A straightforward observation is that

using the aerial DEMs, Outer-GNOME can deal with the numerous model errors, that generate

up to 59% outliers.

Figure 16a and 16b show the �nal situation when the �atLaas� DEM is used. As for the

former trajectory, the robot is very accurately localized: the range data are indeed acquired in

conditions close to the acquisition conditions to built the model, and contain less than 10% of

outliers.

With the �UAV-Lidar� DEM, Outer-GOMNE succeeds to �nd the pose with a much higher

proportion of outliers (�gure 16c and 16d).
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situation A situation B
414 measurements 293 measurements

atLaas UAV-Vision UAV-Lidar atLaas UAV-Vision UAV-Lidar

Noutliers 26 (6%) 245 (59%) 222 (53%) 10 (3%) 158 (54%) 102(34%)

time(s) 40.33 122 63.1 7.68 105 8.38

w([px]) m 0.72 0.80 1.11 0.36 3.67 0.81

w([py]) m 0.89 0.97 1.39 0.37 4.54 0.76

w([θ]) rad 0.071 0.064 0.200 0.060 0.04 0.035

Table 5: Results of Outer-GOMNE for two positions estimated on three di�erent DEMs.

The �UAV-Vision" DEM contains a scale error and it is nearly impossible for the scan to

match two parallel walls in the same time. As a result, the estimated sub-paving is made of

three disconnected components, which correspond to di�erent data pairing. Figure 16f show the

data points reprojected considering one of this component: they are well aligned with walls of the

building on the top, but other points are inside the middle building. Consequently, the number

of outliers increases. An other component of the sub-paving, for which the data points are shown

in �gure 16e, corresponds to an unfeasible pose because the constraint used allows scan to pass

through walls.

Outer-GOMNE seems to be robust to gross model errors and able to face complex situation.

Of course, the better the initial model is and the shorter the initial box is, the faster and more

accurate the localization is.
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(a) Situation A on atLaas DEM (b) Situation B on atLaas DEM

(c) Situation A on UAV-Lidar DEM (d) Situation A on UAV-Lidar DEM

(e) Situation B on UAV-Vision DEM � �rst
component of the sub-paving

(f) Situation B on UAV-Vision DEM � second
component of the sub-paving

Figure 16: Localisation results on the 3 di�erent DEMs considered.
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7 Discussion and Hints for Future Work

One of the main issue of map-based localization is the presence of outliers, that mainly come

from the dynamic elements of the scene and limitations of the map structure. Being robust with

respect to these outliers is of course essential: set membership approaches to this problem have

shown to have such a robustness, the GOMNE algorithm being able to estimate the position

parameters even in the case of an unknown bound on the outliers.

However GOMNE requires an inner contractor, which can not be provided when the initial

model is partial and exhibits non-closed components � which is the case in most operational

applications. To cope with this, we proposed Outer-GOMNE, that combines a set inversion

algorithm with an optimization method. With experimental results, we have shown that Outer-

GOMNE can be applied to the absolute localization problem with Digital Elevation Maps of a

3D environment as initial models, even though the DEM data structure is not well suited to

represent verticals and overhangs, and thus causes gross map errors.

Various improvements can be considered at the algorithmic level. In particular, monitoring

the bisection process can save considerable time: a too small value of ε indeed yields numerous

useless bisections in the SIVIA algorithm.

Yet Outer-GOMNE has similar drawbacks as GOMNE, as it and only looks for the solution

set which minimizes the number of outliers. Most of the time, this set is the good one, but in

scarce cases the true solution may not belong to this set. This is one of the main di�erence

with the Bayesian estimation framework, which, by using in�nite density of probability, is less

precise but never fails. An arbitrary number of undetected outliers can be used to cope with

this issue. But more interestingly, the incremental estimation of the whole trajectory will bring

higher robustness.

31



References

[1] M.A. Abramson, C. Audet, G. Couture, J.E. Dennis, Jr., S. Le Digabel, and C. Tribes. The

NOMAD project. Software available at http://www.gerad.ca/nomad.

[2] C. Audet and J. Dennis. A progressive barrier for derivative-free nonlinear programming.

SIAM Journal on Optimization, 20(1):445�472, 2009.

[3] Charles Audet, Vincent Béchard, and SébastienLe Digabel. Nonsmooth optimization

through mesh adaptive direct search and variable neighborhood search. Journal of Global

Optimization, 41(2):299�318, 2008.

[4] Charles Audet and J. E. Mesh adaptive direct search algorithms for constrained optimiza-

tion. SIAM Journal on optimization, 17:2006, 2004.

[5] A. Bethencourt and L. Jaulin. Solving non-linear constraint satisfation problems involving

time-dependant functions. Mathematics in Computer Science, 2014.

[6] Clement Carbonnel, Gilles Trombettoni, and Gilles Chabert. Q-intersection Algorithms for

Constraint-Based Robust Parameter Estimation. In Twenty-Eighth Conference on Arti�cial

Intelligence, 2014.

[7] Patrick J F Carle, Paul T Furgale, and Timothy D Barfoot. Long-Range Rover Localization

by Matching LIDAR Scans to Orbital Elevation Maps. Journal of Field Robotics, 27(3):344�

370, 2010.

[8] G. Chabert and L. Jaulin. Contractor Programming. Arti�cial Intelligence, 173:1079�1100,

2009.

[9] Paul Chew and K. Marzullo. Masking failures of multidimensional sensors. In Reliable

Distributed Systems, 1991. Proceedings., Tenth Symposium on, pages 32�41, Sep 1991.

[10] F.G. Cozman, E. Krotkov, and C. E. Guestrin. Outdoor visual position estimation for

planetary rovers. Autonomous Robots, 9:135�150, 2000.

[11] D. Fox, S. Thrun, F. Dellaert, and W. Burgard. Particle �lters for mobile robot localization.

In A. Doucet, N. de Freitas, and N. Gordon, editors, Sequential Monte Carlo Methods in

Practice. Springer Verlag, New York, 2000.

[12] Rémy Guyonneau. Méthodes ensemblistes pour la localisation en robotique mobile. PhD

thesis, Université d'angers, 2013.

[13] J. Hwangbo, Y. Chen, and R. Li. Integration of orbital and ground image networks for the

automation of rover localization. In ASPRS Annual Conference, San Diego, CA (USA),

April 2010.

[14] L. Jaulin. Nonlinear bounded-error state estimation of continuous-time systems. Automatica,

38:1079�1082, 2002.

[15] L. Jaulin. Robust set membership state estimation ; application to underwater robotics.

Automatica, 45(1):202�206, 2009.

32

http://www.gerad.ca/nomad


[16] L. Jaulin, M. Kie�er, O. Didrit, and E. Walter. Applied Interval Analysis. Springer, 2001.

[17] L. Jaulin, M. Kie�er, E. Walter, and D. Meizel. Guaranteed robust nonlinear estimation

with application to robot localization. IEEE Transactions on Systems, Man and Cybernetics,

Part C (Applications and Reviews), 32(4):374�381, November 2002.

[18] L. Jaulin and E. Walter. Set inversion via interval analysis for nonlinear bounded-error

estimation. Automatica, 29(4):1053�1064, 1993.

[19] L. Jaulin, Eric Walter, and Olivier Didrit. Guarateed Robust nonlinear parameter Bounding.

[20] Luc Jaulin and Benoît Desrochers. Introduction to the algebra of separators with application

to path planning. Engineering Applications of Arti�cial Intelligence, 33(0):141 � 147, 2014.

[21] S. Le Digabel. Algorithm 909: NOMAD: Nonlinear optimization with the MADS algorithm.

ACM Transactions on Mathematical Software, 37(4):1�15, 2011.

[22] Jesse Levinson, Michael Montemerlo, and Sebastian Thrun. Map-Based Precision Vehicle

Localization in Urban Environments. In Robotics: Science and Systems, 2007.

[23] Srikumar Ramalingam, So�en Bouaziz, Peter Sturm, and Matthew Brand. SKYLINE2GPS:

Localization in Urban Canyons using Omni-Skylines. In Proceedings of the IEEE/RSJ In-

ternational Conference on Intelligent Robots and Systems, Taipei, Taiwan, 2010.

[24] Radu Bogdan Rusu and Steve Cousins. 3D is here: Point Cloud Library (PCL). In IEEE

International Conference on Robotics and Automation (ICRA), Shanghai, China, May 9-13

2011.

[25] Aashish Sheshadri, Kevin Peterson, Heather Jones, and William (Red) L. Whittaker. Posi-

tion estimation by registration to planetary terrain. In International Conference on Multi-

sensor Fusion and Information Integration (MFI). IEEE, September 2012.

[26] Jan Sliwka. Using set membership methods for robust underwater robot localization. PhD

thesis, Ensta Bretagne, 2011.

[27] F. Stein and G. Medioni. Map-based localization using the panoramic horizon. Robotics

and Automation, IEEE Transactions on, 11(6):892 �896, dec 1995.

[28] Ernesto Tapia. A note on the computation of high-dimensional integral images. Pattern

Recognition Letters, 32(2):197 � 201, 2011.

[29] Nikolas Trawny, Anastasios I. Mourikis, Stergios I. Roumeliotis, Andrew E. Johnson, and

James Montgomery. Vision-aided inertial navigation for pin-point landing using observations

for mapped landmarks. Journal of Fields Robotics, 5:357 � 378, 2006.

[30] N Vandapel, R R Donamukkala, and M Hebert. Unmanned ground vehicle navigation using

aerial ladar data. The International Journal of Robotics Research, 25(1):31�51, 2006.

33


	Introduction
	Background On Interval Analysis For Estimation
	Interval Arithmetics
	Constraint Propagation
	Set Inversion
	Relaxed Intersection

	Guaranteed Outlier Minimal Number Estimator
	GOMNE Algorithm
	Illustration : Simple Map-Based Localization

	Outer-GOMNE
	Principle
	Algorithm
	Test Case and Results
	Introduction
	Map contractor
	Results


	Extension to Trajectories
	Principle and Algorithm
	Test Case

	Localization in a Digital Elevation Map
	Initial Models
	Map Structures
	Test Maps

	Data Pre-processing
	Algorithm Extension to 3D Data
	Results

	Discussion and Hints for Future Work

