Ecole Nationale Supérieure des Techniques Avancées
2011-2012

INDUSTRIAL PROJECT

APPLYING PARALLEL DISTRIBUTED COMPUTING TO SWARM ROBOTICS

Lieutenant DELAUNAY Benoit

Class 2012, IASE

16 March 2012

Remerciements / Acknowledgments

Je remercie en premier lieu Monsieur Luc Jaulin, professeur a I’ENSTA-Bretagne, pour m’avoir
permis de travailler sur ce projet qui me tenait particulierement a ceeur, ainsi que pour l’ensemble de ses
remarques et suggestions.

Je tiens €galement a remercier mes camarades de la promotion 2012, et notamment tous ceux qui
auront partagé mon quotidien au cours de ces trois années passées a I’ENSTA-Bretagne.

Je tiens a remercier tout particulierement Monsieur Olivier Debant, camarade de promotion et
également ami, qui m’aura accompagné durant la plupart des projets et autres travauzx j’ai pu mener
durant ces trois ans a ’ENSTA-Bretagne.

I would like to thank Mr. Luc Jaulin, professor at ENSTA-Bretagne, for having allowed me to
work on that project, that did really interest me, as well as for his remarks and suggestions.

I would also like to thank my classmates, in particular those who shared my daily life for these
three years at ENSTA-Bretagne.

I would like to thank especially Mr. Olivier Debant, classmate and friend, who worked with me
for most of the projects and other works for these three years at ENSTA-Bretagne.

Contents

Remerciements / Acknowledgments

Introduction

1 Investigations

1.1 Starting point: an example of centralized swarm 0oL,
1.2 Towards decentralization L
1.3 Forkand Joino
1.4 Distributed state machines Lo oL

1.4.1 Leader election L

1.4.2 State machine replicationo
1.5 Limits of centralized algorithm distribution
1.6 Potential energy and Forces Lo L

2 Implementation

2.1 Means and Objectives
2.2 Network communications e
2.3 Comnsensus protocols
2.4 Fork-Joim e e e e e
2.5 Swarm simulation L L e
2.5.1 Overview e e
2.5.2 Parameters and Objectives L L
2.5.3 Choice of a potential function L
2.5.4 Robots’ state equation o
2.5.5 Global Swarm Management
2.6 Perspectives
2.6.1 Software structure e
2.6.2 Realism e e
2.6.3 Swarm management e e e e e
2.6.4 Distributed intelligence?
Conclusion

12
12
12
13
13
14
14
15
16
18
19
19
19
20
20
20

21

Introduction

Swarm robotics is an approach that emerged few years ago. It consists of a large set of robots, that
are individually very basic and can only perform trivial tasks, but that are also able to communicate,
and thus, with suited behavioural algorithms, that may cooperate in order to achieve a common goal.
The principle of swarm robotics is the same than that of animal societies: alone, an ant or even a human
being is meaningless, unable to achieve something more complex than finding food or ensuring its own
safety but, when they form societies with fellows, they become able to perform greater deeds.

Swarm management algorithms are surely the most challenging point in swarm robotics. Indeed,
whether a swarm will be able to do what is expected from it, or not, relies utterly on them. Conventional
approaches are based on a centralized structure: each ounce of intelligence of the system is held by a
particular element, a server to whom each robot is connected. This server retrieves all the data about
the robots, especially the measurements of their sensors, then computes them in order to determine
what should be done at the moment by each robot to achieve the objectives, and finally sends each
individual the corresponding instructions (e.g. to move in a certain direction, to reach a certain area...).
This kind of centralized approach is quite easy to implement, but lacks robustness. Indeed, shall the
server experience a problem, the swarm is literally decapitated. In addition, it requires a large network
bandwidth, at least at the level of the server. For large swarms, this bandwidth as well as the computing
capabilities that the server must have in order to manage the entire swarm well, may be hard to obtain
with the current technology and therefore be very expensive.

Hence, two axes of progress appear: on one hand, the robustness of the system and, on the other
hand, the computation and communication capabilities. In this project, solutions based on parallel
distributed computing have been investigated, and some of them have been eventually implemented.
They rely all on the same idea. Nowadays, on-board electronics offer more and more possibilities,
especially in terms of computing capabilities. Therefore, distributing the workload between all the
robots appears as an interesting and feasible solution. It would have several virtues, in particular to
take advantage of the individual computing capabilities of the robots, as well as to make the swarm less
subject to individual failures, mostly network malfunctions.

1 Investigations

1.1 Starting point: an example of centralized swarm

Last year, an industrial project entitled Buggies Game ' dealt with cooperation problems in cen-
tralized swarm robotics. The swarm, that consisted in several little autonomous robots, the so-called
buggies, was entrusted with surrounding a human player on a soccer field. Each robot was equipped
with a smartphone, that was meant to perform some measurements, mostly positioning using GPS, as
well as to make the robots able to communicate with other devices through Wi-Fi. The motors of the
buggies were, as for them, commanded by an Arduino card that was also connected to the same Wi-F%
network than the smartphones.

This swarm was ruled by an identified machine, a laptop, that retrieved all the data measured by
the smartphones, then computed them in order to determine how each buggy should move, and lastly
sent each buggy its instructions. The intelligence embedded on the buggies was quite limited: knowing
its position and its orientation, each buggy should only be able to move in a certain direction or to a
certain position.

Moving on to the swarm’s behavioural algorithm, it relied on linear programming 2. On one hand,
there was a quantity to minimize: the distances between the buggies and the player . On the other
hand, several constraints had to be observed: every buggy shall remain within the limits of the field, two
buggies cannot get too close to one another, and any buggy cannot be told to move to a certain place
unless it can reach it before the player. To make the problem fully linear 4, the Manhattan distance ® has
been used instead of the conventional Euclidean distance , and circles that were used for determining
where a buggy could arrive before the player 7 have been approximated by polygons. The problem
posed by the absolute value introduced by the Manhattan distance has eventually been gotten around
by subdividing the original problem into subproblems in which additional constraints made known the
sign of what was within the absolute value expressions. Finally, a set of linear problems was obtained.
They were all solved and the best solution ® was selected. It gave the position each buggy should reach,
and that the laptop sent to each robot of the swarm.

The following figure (1.1) is meant to give an overview of the swarm behaviour. The position of
the player (in red) assumed to be known, the buggies (in blue) try to surround him/her. The problem
consists actually in finding the lowest positive real p such that the buggies may arrange themselves in a
regular way around the circle of center the player with radius p, before the player may escape from this
area. In Buggies Game’s approach, the target positions of the buggies are calculated in a local polar
basis, whose reference point is the player. To make the problem linear, the polar angle 6 of each target
position is initially fixed. However, to ensure that the buggies will circle the player as much as possible,
several configurations (i.e. values of # for each buggy) are considered.

! Jeu des Buggys, by DEBANT Olivier and DELAUNAY Benoit, ENSI 2 students at ENSTA-Bretagne, 2011

2To put it simply, an optimization (4.e. minimization or maximization) of a linear function subjected to linear constraints
(i.e. inequalities)

3These distances were computed in a certain way in order to obtain a single function to be minimized

4And avoid the resolution of an NP-hard problem...

®The L; distance between two points A(za,ya) and B(zp,ys) is defined by di(A, B) = |z — xa| + |ys — ya|

5The Ly distance between two points A(za,ya) and B(xp,yg) is defined by d2(A, B) = \/(:03 —z4)?+ (yp —ya)?

If we consider a buggy B, a player P and some point M of the field, and if we set down vp the velocity of the buggy and vp

= =2

B _ |PM]|

that of the player, then the buggy may reach the point M before the player if and only ; it may be shown

B
that there is a point I(x7,yr) and a positive real R such as this relation is equivalent to (za — x1)2 + (ym — y[)2 —R%2 <0,
which defines a disk of center I with radius R
8That is the one that makes the buggies advance the closest possible from the player, assuming he/she does not move

Figure 1.1: Overview of Buggies Game’s surrounding algorithm

1.2 Towards decentralization

In this project, the initial idea was to decentralize Buggies Game behavioural algorithm. As ex-
plained in the introduction, two axes of evolution had to be explored: the distribution of the computation,
and the swarm’s robustness against individual failures.

1.3 Fork and Join

Buggies Game behavioural algorithm presents a clear parallelism: the most significant part of the
computation consists in solving independent subproblems. In other words, the solving of a subproblem
does not rely at all on that of another. It may therefore be imagined that, in the swarm, different robots
could perform the computations concomitantly. Even more than that, it might also be imagined that a
single buggy with a multi-core processor ? could process several solving at once. Hence, the idea would be
to introduce an abstract layer between the set of data to be processed and the hardware that may be used
to perform the computation. Basically, there would be on one hand a set of linear problems to be solved,
and on the other hand a pool of processor cores, the additional layer making the link between them.
In this way, assuming the network latent period negligible in comparison to the computation time of a
single subproblem, the total duration of the global problem solving may become significantly swifter.
Figure 1.2 shows how the fork-join approach might be used to enhance Buggies Game’s behavioural
algorithm without changing it that much.

9Smartphones’ processors are most of the time multi-core processor - i.e. they are meant to execute tasks in parallel

Data gathering

\ J

Linear systems generation
/ \& \ Fork

Solving | | Solving | | Solving | | Solving

A e

Selection

\ J

Instructions sending

Figure 1.2: Possible Fork-join integration in Buggies Game behavioural algorithm

1.4 Distributed state machines

The Fork and Join approach makes it possible to take advantage of the swarm’s parallel computing
capabilities. However, this solution does not bring anything in terms of robustness. Indeed, if any device
involved in the computation crashes along the way, the system cannot recover. In addition, provided
there is a way to choose one, an identified leader is still required to gather all the data needed for the
computation, prepare the linear systems to be solved, distribute them, and eventually compute the final
results and transmit them. In a way, this leader would play the role of the laptop of the centralized
approach. The objective for the swarm is therefore to be able to choose a leader, to distribute the
computation, and to recover if and when any robot involved in it fails.

1.4.1 Leader election

Leader election in a network is an issue that has been studied for a few decades. Some distributed
algorithm have been proposed to solve it, the most famous being probably the Pazos and Chandra-Toueg
consensus algorithms. I actually focused on Leslie Lamport’s © Pazos algorithm for a few reasons.
Firstly, it is well-suited to the network formed by the robots: a network of unreliable processors !
communicating through asynchronous messages '2 13 4. Secondly, it was widely studied in the scientific
literature, at least much more than Chandra-Toueg algorithm. Thirdly, it admits some extensions that
enhance some aspects of the algorithm. Among them, the Byzantine Pazos, that makes the system
robust against byzantine failures '®, has especially caught my attention. Indeed, as a future engineer of
the French Defence Procurement Agency, I cannot utterly elide this security issue even though it is not
really the purpose of this project.

107 eslie Lamport (born in 1941) is an American computer scientist best known for his work in distributed systems

1 That are processors that may fail during a computation for whatever reason, delivering no result

12 Asynchronous means that no acknowledgement is delivered at the reception of a message

1ByDP (asynchronous protocol) has been preferred to TCP (synchronous protocol) because it allows multicast diffusion

11 Some consensus algorithms work only with synchronous communications

15 Byzantine failures are intentional failures meant to sabotage the system, e.g. a malicious intruder that would have been
accepted in the network as a normal and trusted element, and that would actually deliberately issue mistaken results

The Pazos protocol distinguishes different kinds of “logical” actors '®, which are usually 17 :

e The client, that solicits a consensus in order to access a distributed resource, and waits for a
response

e The proposer(s), contacted by the client, that advocate(s) the client’s request to the acceptors
e The acceptors, that choose the value that will be eventually retained

e The learners, that will perform the action requested by the client (e.g. to create or modify a shared
resource) and that will eventually report it to it

The fail-safety of this protocol relies on the multiplicity of the actors. One of its prerequisite is
that any message sent to a particular actor must be sent to every actor of the same kind, which may
be simply achieved by using multicast diffusion '®. In this way, if and when an isolated actor crashes,
its team-mates continue to perform their tasks and send their results, as planned. The receiver of these
messages will consider only the results of a majority: for instance, if only three out of a pool of five
acceptors answer to a proposer, this proposer will not consider any problem occurred in the process,
no matter what the results of the two remaining acceptors, even if they are missing. The principle is
similar in the case byzantine failures are also considered. Moreover, in the Pazos approach, once a value
has been accepted, i.e. when the consensus has been found, it does not change any more. Figure 1.3
illustrates how the consensus is found between the proposer(s) and the acceptors.

Proposer Acceptor
n=20 highest_ promise = -1
value = proposed_ value accepted _value = null

Nack ‘

value = accepted _value

unless (accepted_value == null)

Accept(n, value)

n < highest promise ?
- no
accepted_value = value

Accepted (accepted _value)

I

Figure 1.3: Consensus process in the Paxos approach

16 A “physical” actor may play several “logical” roles, which is moreover generally the case
Y7 Pagzos variants may introduce other actors
18This is why UDP has been preferred to TCP

1.4.2 State machine replication

One application of such consensus algorithms is state machine replication, which consists in exe-
cuting a same state machine, jointly, on different computers. Basically, a state machine is a succession
of states and transitions, which may require some entries as well as generate some outputs. Thus, in
order to make any replication self-consistent, the different computers must agree on the entries, which
may be performed by using the Pazxos algorithm, for instance. Provided they receive exactly the same
entries in the same order, identical state machines will arrive at the same state having generated the
same outputs, even if they are executed independently on different computers. In addition, such state
machine replication benefits from the fail-safety of consensus algorithms, which implies that isolated
failures have no serious impact on the system unless they concern a majority of the performers.

State machine replication may also offer some extra features, for instance the possibility for a
computer to join the pool of performers or to quit it. Joining may be achieved through a “state transfer”
functionality, which allows an outsider to get, at a given time, all the parameters about the execution
of the distributed state machine. The performers being independent in their work between consensus
phases, “state transfer” is typically implemented using checkpoints, that correspond to coordination
steps. When a performer joins or quits the pool, every actor involved in the replication shall know about
it in order to update its notion of “majority”.

1.5 Limits of centralized algorithm distribution

Well, as explained in the two previous sections, Buggies Game behavioural algorithm may be
adapted in order to achieve two objectives: using the number of robots to achieve both a high degree of
parallelism in the computation and some robustness against individual failures.

An interesting point in the combination between fork-join and state machine replication is that it
requires no major modification in the behavioural algorithm: most of the improvements are only visible
at the implementation level. However, it does not solve all the issues. In particular, the problem posed
by the gathering of some data about all the robots, which is needed to work out the linear problems to
be solved, still remains. It has even become more problematic since the devices used to perform this,
typically smartphones, have not the computing capabilities of laptops, which implies that they may not
process as many requests as standard computers in the same amount of time. As a result, the size of
the swarm may be limited not only because of the network bandwidth, but also because of the data
processors. Actually, this problem may be partially solved by lowering the responsiveness of the swarm,
which would give more time for processing the requests and performing the computation. However,
this leeway is rather limited since the replication of the state machines used for the computation slows
already the system 7.

In any case, robustness has a cost in terms of velocity, even though its impact may be minified by
the parallelization of the computation. Assuming the system well parametrized 2° and not subjected to
too many failures, this is nevertheless a viable solution.

YDepending on the network load, consensus protocols may take some time
20Regarding the size of the swarm, the size of the pools of actors in the consensus protocol, the timeouts...

1.6 Potential energy and Forces

Well, the major sticking point of Buggies Game’s approach is that knowing everything about the
entire swarm is needed prior to determining the best suited behaviour for the singlest robot. Actually,
if the behaviour of that singlest robot could be calculated with only a partial knowledge of the swarm,
for instance the robots in its close neighbourhood, then the swarm could become very large without
increasing too much the need for network bandwidth and the workload of the robots. In practice, it may
be imagined that each robot knows the relative position of its neighbours 2!. This may be achieved, with
an ad-hoc Wi-Fi network, by flooding one’s neighbours with one’s GPS coordinates. Without GPS, a
solution involving UWB 22 beacons might also be considered.

Physics may be a source of inspiration. In particle physics, the motion of a particle is governed
by the forces to which it is subjected, these forces being exerted by every particle of the space. By
doing some approximations, it is possible to model these forces, or the potential energy they are deriving
from 22. For instance, the interaction between a pair of neutral atoms or molecules may be approached
by the Lennard-Jones potential. Figure 1.4 gives the form of this potential, which depends solely on
the distance r between the atoms or molecules. A potential curve is easily interpretable: anything
subjected to a potential energy tries to minimize it. In the case of the Lennard-Jones potential, it means
that two particles will always try to be and remain at a precise distance from each other, this distance
corresponding to the value of r for which the value of the potential is minimal.

0.5 T T T T T T

04r Repulsive force Attractive force Negligible force

031]

0.27]

Stable equilibrium
1 ! ! ! !

-0.3 '
0 0.5 1 1.5 2 2.5 3

12 6
Figure 1.4: Lennard-Jones potential: Vi ;(r) =4- Ey - ((TO> - <—>)

r
(above, 4- Ey = 1 and rg = 1)

21That is their distance from it as well as the direction in which they are

22(ltra-Wide Band, a radio technology that can be used for short-range high-bandwidth communications, one of its
application being positioning systems

A force F is said to derive from a potential V if and only if ? = —?V

The Lennard-Jones potential might be used for our problem. In particular, the strong repulsion
force exerted between particles that are too close from each other is a simple way to avoid collisions
between robots. However, the force deriving from this potential is not attractive enough beyond a
certain distance. As a result, if a robot moves too far away from the swarm, because of an inertia effect
or whatever reason, it may become utterly disconnected from the other robots, unable to return to the
swarm again. Such a scenario would be made easier by the fact that a robot has a limited visibility of its
neighbourhood: whatever the potential function may be, any robot that is too far away does not exert
any force at all. Thus, it might be considered to choose a potential that will guarantee a strong attractive
force for high values of r. In this way, any robot that would move too far away from its neighbours would
be immediately called back before becoming out of range. This would ensure the cohesion of the swarm.
Figure 1.5 shows an example of such a potential.

2.5 T T T T T T T T T
Repulsive force Attractive force
ot i
1.5]
1+ i
0.5]
Stable equilibrium

0 | | | | | | | | |
0 02 04 06 08 1 1.2 1.4 1.6 1.8 2

A
Figure 1.5: A potential that might be used for our problem: V(r) = T In(r)

With this approach, robots that are within range of each other exert a reciprocal attractive or
repulsive force, so that two close neighbours will eventually remain at an arbitrary distance, depending
on the way the potential is calculated. Figure 1.6 illustrates the way forces are exerted between robots.

A definite asset of this method is the natural distribution and robustness of the behavioural algo-
rithm: each robot decides of its behaviour on its own, so should a robot fail, there is almost no impact
on the swarm, and even no risk of collision provided each robot detects its neighbours trough a radar.
However, fork-join and state machine replication have not become useless. Indeed, fork-join is still an
interesting mean to take advantage of the multi-core processors that equip present electronic boards and
smartphones. State machine replication may also be used for controlling the swarm, at a high level, for
instance by introducing an external potential that would make the swarm move to a certain location, or
make it take a certain shape. All this will be discussed more precisely in the next part.

10

Figure 1.6: Overview of the behavioural algorithm using potentials
(above, only the forces exerted by the red robot on the blue ones have been represented)

11

2 Implementation

2.1 Means and Objectives

The previous part of this study dealt with theoretical concepts that might be used to achieve our
goal: managing a swarm of robots in an utterly decentralized way. This is a part of this project. The
other part consists in implementing these approaches, at least partially, in order to determine whether
they are viable, and to what extent their results may match our expectations.

The purpose of this project being mostly related to algorithmics, the implementation has been
performed on a simulated swarm of robots. A more advanced implementation involving real robots
could be considered, using the communication and command routines worked out as part of Buggies
Game project. However, since developing on smartphones is nowadays much more time-consuming than
developing on traditional computers !, this extension will not be studied here.

The implementation will therefore be carried out using the Java programming language. In this
way, it may be ported on Android smartphones without any modification but, if any, regarding the
graphical interface.

This implementation part has been performed in parallel with the theoretical investigation part.
As a result, it comprises several parts that are not clearly connected with each other. Generally, every
point presented below corresponds to a point tackled in the investigations part.

2.2 Network communications

In swarm robotics, communication is naturally one of the first issues that has to be considered.
In Buggies Game project, communications between the robots and the server rely on a synchronous
network protocol, TCP. However, this solution is not really suited to this project. Indeed, when it comes
to consensus protocols 2 or even simply to joining a swarm whose IP addresses (i.e. those of the robots
constituting it) are not precisely known 2, multicast is needed. Some experimentations involving UDP
have therefore been conducted #, in order to obtain very basics UDP server and UDP client able to
exchange messages. Unicasting and broadcasting transmissions have been tested, with success.

As pointed out in Buggies Game report, UDP is not currently supported by the WiFly library,
used for communicating with an Arduino card through Wi-Fi. Several solutions may be considered to
get around this issue: wait for the WiFly library supporting UDP, develop a driver to use UDP with a
WiFly module, use an other Wi-Fi module for Arduino (if any), or do not use Arduino cards at all 5.

On this basis, an embryo of Kademlia servant has been implemented. Kademlia is a distributed
hash table, initially designed for decentralized peer-to-peer computer networks. Within the scope of this
project, I thought it might be a good idea to use it to store and retrieve pieces of information in an
utterly distributed way all over the network 8. Moreover, the induced complexity is logarithmic, which
means that just one additional iteration is needed for storing or retrieving something when the size of
the network doubles. This shall be seen as a tool for creating a unique shared and distributed memory
for the entire swarm.

IThis is at least what was noticed during Buggies Game project

2That require that any message sent to an actor has to be sent at the same time to the entire pool of actors

3Typically, only the IP address of the LAN dedicated to the swarm will be known

4Sources may be found in the package network.ezample

5Since Arduino cards are only used for generating PWM signals (to command the motors), they may be avoided provided
this functionality is performed by an other device, for instance an Android smartphone equipped with a IOIO board

5T already simulated a Kademlia network as part of an other project, in 2008

12

2.3 Consensus protocols

Even on a single machine, accessing safely to a shared resource requires synchronization. This
rule shall therefore be naturally applied to distributed systems as well. Consensus protocols are a mean
that may be used for implementing distributed synchronisation mechanisms. For instance, Google has
developed a distributed lock mechanism, Chubby, that relies on the Pazos algorithm.

Distributed synchronisation mechanisms may also be used for coordinating the execution of a
distributed algorithm. State machine replication is an example of application.

As I explained it in the previous part, I chose to focus on the Pazxos algorithm. From various
descriptions I read about it, I undertook to implement and integrate it within my simulator. Actually,
I was unsure about my correct comprehension of the protocol. In particular, I did not see very well
how the system worked when several proposers advocated different values, especially when some of them
failed and rejoined the protocol during the process. This is why I used Rational Rhapsody Developer for
Java to carry out a first implementation, before considering integrating it into the simulation. Indeed,
even though I never had any intention to use it for code generation purposes *, Rhapsody is a well-suited
tool for implementing algorithms using state machines. In particular, its animated sequence diagrams
give a clear view of the system, and especially of the exchanges of messages between actors. This was
precisely what I was looking for.

In this simulation, whose operating principle is given by figure 1.3 (see page 7), there is a pool of
five proposers dealing with a pool of five acceptors 8. At the beginning of the process, each proposer
is given a different number, which is its initial proposal. When the process is launched, the different
proposers try concurrently to make their value accepted by the acceptors ?. As soon as the proposal
of a proposer has been accepted, both the number of the proposer and its final proposal are printed on
the console, and the proposer stops its execution. The consensus ends when every proposer has made a
proposal that has been accepted. To give spice to the process, I also made every proposer fail between
the reception of enough promises and the sending of accept requests with a certain probability (20 %).
In any case, after many replicas, using the information printed on the console, I noticed that the five
proposers always agreed on the same value.

2.4 Fork-Join

As it will be presented a bit later, the simulated swarm of robots has been managed using the
potentials method, that was presented in the previous part of this report. In this approach, each robots
performs its own computations for determining its own behaviour. Hence, the computation is distributed
but, strictly speaking, not shared between different robots. However, as it has already been explained,
this does not make the fork-join method useless, since the computation may still be parallelized between
the different cores of mutli-core processors used in smartphones or whatever electronic board equipping
the robots.

Since 2009, two particular packages may be found on the fringes of the Java 6 standard library:
jsr166y, that contains a fine-grained parallel computation framework using fork-join processing, and
extral 66y, that proposes an array-like structure supporting parallel operations called ParallelArray.

"In this case, because the integration of the generated code within my hand-written project would have raise too many
issues, that is I would probably have to rework few parts of the generated code; in addition, I am not really fond of default
code generation templates, especially when I have to rework a code generated using any of them

8These numbers may be changed

9This value may change during the process; it is besides the principle of the Pazos algorithm when different proposers
do not initially agree on a same value

13

Parallel computation is performed using a pool of threads, called a ForkJoinPool (package jsr166y).
To put it simply, a ForkJoinPool is a set of threads, called workers, that are used for performing any
operation required on a ParallelArray. When it is created, any ParallelArray is associated with a
ForkJoinPool. Different ParallelArray may rely on the same pool of workers. This is usually the case.
Indeed, the purpose of a ForkJoinPool is to provide a set of workers offering the best parallelism for
performing computations, on ParallelArray or whatever structure that uses such a pool. The number
of workers is automatically adjusted depending on the context, that is initially the number of available
cores, but may increase if a worker is blocked, because of a synchronization mechanism for instance,
and decrease when there are too many threads running regarding the number of available cores. This
adjustment is internal to the pool: at the level of a ParallelArray, the number of workers does not matter
at all. This is what makes ParallelArray especially interesting: provided they may be performed element
by element independently, parallel operations may be considered on a entire set of data without having
to think precisely about it at the implementation time.

Unfortunately, jsri66y ForkJoinPool experiences an awkward issue with recent versions of Java 6
and 7: the size of the pool still increases, no thread being destroyed at any time as it should be.
Originally, both packages jsr166y and extral66y were planned to be integrated in the Java 7 standard
library. Actually, only jsri66y has been and, surprisingly, the version contained in the new standard
library works fine. So I solved the issue by reworking the source code of every extral66y’s class, in order
to make them use the fine Java 7’s ForkJoinPool instead of jsr166y’s bugged one.

For the simulation, an additional kind of ParallelArray has been implemented: ParallelVector,
which allows parallel operations on vectors of real numbers. Within the scope of the simulation, the size
of these vectors is generally limited to two, so using a complex structure for trying to take advantage of
parallelism is unlikely to offer better computation performances, than just using a mere for each loop
on a conventional structure. This should therefore be seen more as an experimentation. However, Par-
allelArray used for performing the computations needed for moving the robots, during each elementary
time interval, are very likely to do a much more interesting job, especially when the swarm is large. A
great quality of ForkJoinPool and ParallelArray is that they allow to perform computations with the
highest possible degree of parallelism with the most suited number of threads '°.

2.5 Swarm simulation

2.5.1 Overview

The simulation is aimed at representing the behaviour of a swarm of robots managed using a
certain process, in this case a distributed algorithm relying on potentials, as it was presented in the first
part of this report.

The simulation software is quite simple. It simulates a set of robots, that are points that may move
in an unbounded two-dimension-virtual-space. Every robot is registered within the virtual environment,
that makes the link between all the robots, especially regarding the neighbours detection. So, for an
elemental time interval '!, depending on what is detected in its neighbourhood 2, a robot will move (or
not at all) in a certain direction at a certain velocity during the elemental time interval. Once a robot
has moved, the view is updated. Figure 2.1 gives a snapshot example taken during a simulation.

10NMulti-threading for achieving parallelism rely on two basic and antagonist principles: too few threads do not make it
possible to give work to all the available cores, while too many threads slow the system down

1 That is a fixed parameter of the simulation

12That is inside a circle of center the position of the robot, with a given and fixed radius corresponding to its visibility

14

Figure 2.1: Overview of the simulation output
(above, the swarm encircles the point in cyan, at the center of the screen)

2.5.2 Parameters and Objectives

The simulation has several parameters that influence the swarm’s behaviour:

The way potentials are calculated

The way robots determine their move from their potential

The visibility range of the robots

The existence of an external potential

The swarm’s size

Different configurations have been considered. At the beginning, one hundred robots ! are located
randomly on the field. In every case, the purpose was to obtain eventually a coherent swarm, that is a
unique swarm, occupying a given shape, approximately constant over time. Within the swarm, robots
may move, or not, this does not really matter. Experimentations have also been performed to control
the swarm in a global way, for moving it or modify its shape.

130ther replicas have also been performed with two hundreds robots, but the animation was significantly slowed down

15

2.5.3 Choice of a potential function

Figure 1.5 (see page 10) shows the kind of potential functions that has been considered. It depends
only on the distance between the robots, r, and has the following characteristics:

e V(r) — 4o
r—0

e V decreases until it reaches a global minimum, in a € RY.
e V increases on [a; +00]

° V(’I”) _>—+> +00

As explained in the theoretical part, choosing such a potential has the following consequences,
regarding the interaction force F' exerted between two robots:

° ? is the more repulsive, the lower r is
° ? is the weaker, the closer r stands from a

. ? is the more attractive, the higher r is

Actually, the robots having a limited perception of their neighbours, V becomes constant and
therefore ? becomes null, when r becomes greater than a certain distance. In the simulation, this limit
is a fixed parameter, b, comprised between 0 and +o0o. To make the algorithm work properly, b shall
obviously be greater than a ; 2 - a should be a minimum.

Several functions have been tested. Among them, two are proposed in the simulation. Switching
from one to the other may be performed by pressing on the keys “A” /“Q” and “Z”/“S” 4. Setting down
r the reduced distance between two robots (r > 0), which is equal to the real distance divided by the
target distance between robots, these functions are the following:

4
T 1
o Vi(r) = T In(r), so Fi(r) = <7’ - 7’3> er
8
T —3 1
[} ‘/vz(r)zg—ln(’r),so FQ(= (T—T7> 6—7”>
25 14
Repulsive force Attractive force 12 Repulsive force Attractive force i

1.5

0.5

Stable equilibrium
Stable equilibrium

0 ! ! ! ! ! ! ! ! !

0 02 04 06 08 1 1.2 1.4 1.6 1.8 2

Figure 2.2: Available potentials (V3 on the left, V5 on the right)

MProjection on X et Y axes are independent for experimentation purposes

16

10 10
8[7 8[b
6[7 6[b
47 Repulsive force] 4r Repulsive force b
21 7 21 h
Stable equilibrium Stable equilibrium
of 7 (g
—2f 1 —2f 1
471 Attractive force 471 Attractive force 7
-6[-6[b
—8 Il Il Il Il Il Il Il Il Il _8 Il Il Il Il 1 Il Il Il Il
0 02 04 06 08 1 1.2 14 1.6 1.8 2 0 02 04 06 08 1 1.2 14 1.6 1.8 2

Figure 2.3: Available forces (F} on the left, 5 on the right)

As illustrated by figure 2.2, the difference between these potentials is the attractive term, which is
much stronger for the second potential, when r is great enough. In any swarm gathering simulation '°,

two main phases may be observed: a transient state, and a steady-state (or a nearly steady-state).

The choice of a potential has a significant effect on the steady-state. In particular, regarding the
two functions considered here, both potential functions result in a swarm with a circular shape. However,
as shown by Figure 2.4, there is a difference in the robot distribution within the swarm. In the first case,
it is rather uniform throughout the swarm area, while in the second case, robots desert the center of the
zone to make up outlying concentric circles. This may be explained quite simply. Indeed, the attractive
force (see figure 2.3) when r > 1 is greater for V5 than for V; so, since the repulsive force is almost
the same when r < 1, distant robots are subjected to more significant attractive interactions, while
close robots are subjected to the same repulsive interactions. Hence, outlying robots attract more those
located somewhere around the center of the swarm, without being able to move that much themselves
because of their close neighbours. As a result, the robots position themselves closer from the swarm’s
periphery.

Figure 2.4: Steady-state according to the chosen potential (V; on the left, V5 on the right)

5That is a basic simulation: robots are initially located randomly on the field and, due to the interactions they exert
between each other, they move and eventually form a structured swarm (at least when the simulation successes)

17

2.5.4 Robots’ state equation

In particle physics, the particles move in accordance with Newton’s second law of motion: setting

down F' the force acting on the particle and d the particle’s acceleration, ? =m-d.

Following this approach, it may be considered here that ? corresponds to the interaction exerted
between the robots, plus possibly an external force deriving from an external potential. Doing this way,
the system hugely oscillates, without converging towards an equilibrium. This may be easily explained
by the fact that, since is a conservative force 6, the mechanical energy of the system is constant.
So, given that the mechanical energy is equal to the potential energy plus the kinetic energy, and that
the system tries to minimize its potential energy, as a result, the kinetic energy of the system will raise.
Hence, the robots will move.

In order to avoid these annoying oscillations, a (non-conservative) friction force may be added to

. With a friction strong enough, the robots do not oscillate at all any more. In addition, since the
swarm’s mechanical energy may only decrease over time, the swarm is guaranteed to reach an equilibrium.
However, this process may be quite slow. Moreover, since the robots have an inertia, because of the mass
m intervening in Newton’s second law of motion, it may be observed that, with a not so strong enough
friction force, even if the swarm do not oscillate at all, robots may get too close from each other due to
inertia effects 7. A compromise has therefore to be found regarding this friction’s intensity: a weaker
friction may make collisions possible, while a stronger friction slows down the swarm’s evolution.

Well, even though using Newton’s second law of motion for simulating the swarm dynamic gives
interesting results, it is not that suited to determine the behaviour of robots. Indeed, robots are not
commanded by acceleration, but rather by velocity, and have a bound velocity, which cannot be ensured
by this method. So, it would be interesting to calculate the robots’ motion with a greater control over
the velocities.

Thus, a proportional command of the velocity of the robots according to their potential gradient,
with saturation when it would be higher than their maximal speed, may be considered. In this approach,
there is no inertia any more, and robots never collide with each other, unless the simulation is poorly
parametrized, since they cannot approach too much from a neighbour without being repelled immediately.
The absence of inertia and friction makes the swarm’s reactivity extremely good, maybe too much. As a
result, the transient state lasts a quite short period, and the steady-state comes quickly, but may oscillate
in a perceptible yet not embarrassing way. With this new process, the notion of mechanical energy has
no meaning any more, and there is therefore no theoretical guarantee that the system will reach a stable
equilibrium. Actually, oscillation phenomena seem to occur rather with V5 than Vi, rather when the
robots’ detection radius is limited, and rather when the swarm is dense. This situation is finally quite
the same as it was when Newton’s second law was used without frictions strong enough. In both cases,
the order of magnitude of the simulation parameters shall be consistent, especially the ability of the
robots to move (velocity and reactivity '®), that shall remain reasonable in comparison with the desired
dimensions of the swarm.

16Because ? derives from a potential energy

7The inertia of a robot makes it able to move up against a strong repulsive force for a short time, that may be enough
to cause a collision with another robot

8The inertia and the frictions for the approach by acceleration (Newton’s second law of motion), the maximal velocity
and the proportional command constant for the approach by velocity

18

2.5.5 Global Swarm Management

On the fringes of swarm cohesion simulations, experimentations have been led to control the swarm
in a global way, especially regarding its position and its shape. This has been performed by introducing
an external potential, to whom every robot is subjected.

Let us consider a position My(xg,1yo) we want to be the central point of the swarm. If we take
4

an external potential of the form ' V. (r) = %, where r = d(M, My) = \/(x — 20)2 + (y — y0)2, then

— MoM
every robot located in a point M (z,y) will be subjected to a force Fp (M) = —r3 - e = —13. H()jn,
MyM

that will attract the robots towards My. So, if the location of My is changed, for instance by moving My
according to the currently pressed arrow keys, the entire swarm will be displaced. This feature works
well in the simulation software. Binding the swarm to adopt a certain non-circular shape has also been
experimented by using non-spherical potentials, but the results were not that convincing. Future work
might consider this point.

WA
i,
i

i
N
i

\“}&&‘\“\ A 7

-0 e
W00 iy
NN L1
~““§§¥§§§§?ﬁﬁéﬁﬁ@¢%¢hma

K AL]

_2 _2

Figure 2.5: An example of external potential

2.6 Perspectives

2.6.1 Software structure

Since it has been developed throughout the project, following all the different approaches that have
been considered, the source code comprises two different parts that are disconnected from each other:

e An embryo of an implementation related to the beginning of the project (decentralization of Buggies
Game behavioural algorithm), launched wvia main.MainV1, and that uses the packages graphics
(graphical interface), network (socket-related utilities), communication (Kademlia servant), and
partitioning (polygon mesh of the field meant to avoid collisions between robots)

e The implementation of the potentials method, launched via main. Main V2, and that uses mainly the
packages graphics (graphical interface), entry (keyboard inputs), sensors (neighbours localization),
simulation (virtual objects and environment), utils (utility classes), and extral66z (copy of the
official package extral66y, modified to use JDK 7’s ForkJoinPool instead that of jsri166y)

Future work might include a restructuring of the code. If closures and ParallelArray are finally
added to Java 8 standard library 2°, a significant cleaning of the code could also be performed.

19Gee figure 2.5 for a representation
20Both were originally planned to be introduced in Java 7

19

2.6.2 Realism

The way robots are modelled is extremely simple. In practise, even without speaking of acceleration
and velocity, robots cannot change completely their course easily, especially when it requires a right-
angled bend or a turn-back 2'. Future work might therefore consider more realistic state equations for
the robots.

In addition, some errors could also be considered at the sensors level, especially the neighbours
detection. This might deal with inaccuracy as well as non-detection phenomena, for instance when the
sensor fails.

2.6.3 Swarm management

As shown by various figures in this report, a stabilized swarm may only take a circular shape. It
is true that playing with the inter-robots potential makes it possible to change the internal structure
of the swarm. However, its global shape remains circular. In some cases, it might be useful to give an
other shape to the swarm. For instance, if the robots have to surround a player, like in Buggies Game,
then a curved line seems more appropriate.

Two axes of refinement may be considered, at different levels:

e Micromanagement: the way robots interact with each other; in particular, making the potential
dependent not only on the distance between robots, but also on the angle between them 22

e Macromanagement: the way the swarm is globally managed; a process relying on an external
potential has been successfully tested for basic purposes, and may be refined, or other approaches
may be followed

2.6.4 Distributed intelligence?

Originally, the purpose of this project was to reproduce Buggies Game’s swarm intelligence. Well,
at least regarding the potentials method, this is a point that has not been really handled. Yet it might not
be that difficult, this problem seems quite tricky to solve, since it would require the swarms’ objectives
to be put under the form of a more or less complex external potential.

In addition, to ensure that the entire swarm pursues the same goal 22, and therefore uses the
same external potential, a solution relying on a consensus protocol might be considered. And if the
objective may change over time, a replicated state machine might deal with periodically determining the
corresponding potential function, and spread it to every robot. This would make a link between the two
distributed approaches presented in this project.

21Unless the robot has the ability to move forwards and backwards without any difference, which is the case for the
buggies used in Buggies Game

22This notion of “angle” is voluntarily vague and needs to be clarified

23 And to prevent the swarm for having a globally inconsistent behaviour

20

Conclusion

This industrial project was meant to develop a parallel and distributed behavioural algorithm
that may be used for managing a swarm of robots. To reach this objective, a first approach was led
from an existing project, Buggies Game, which proposes such a swarm management but performed in
a centralized way. To distribute this swarm management and make it more robust against individual
failures, the idea was simple: to use all the robots composing the swarm in order to parallelize and
replicate the computation, which would make it more effective and more robust. However, this method
kept one of the drawbacks of the centralized approach: the gathering of some data concerning all the
robots. Hence, beyond a certain threshold, the number of robots would not have made the process more
effective or more robust, but would have rather been likely to overload it.

While this first approach was running out of steam, a second has been considered. Inspired by
particle physics, the principle was to manage the swarm of robots in the same way atoms permanently
manage themselves, all around us. From this point forward, the simulation has been focused around a
simple problem: being initially located in random places, the robots have to gather and form a structured
swarm. With judiciously chosen parameters, the results are rather convincing. An arbitrary control has
even been performed on the swarm, making it move as wished.

These two approaches are very different, especially regarding the way intelligence is implemented.
Swarm intelligence is quite easy to design in the first case, since the behavioural algorithm has a global
view of the system. The robots are therefore mere pawns, mere limbs of a common body. In the
second case, however, the situation is utterly different, since each robot decides on its own of its own
actions according to its close neighbourhood. The robots are not limbs of a same body any more, but
individuals setting up a society. Intelligence is harder to design. The purpose is not to create a mere
collective behaviour any more, but a unique individual behaviour that, in interaction with itself (i.e.
with other robots), becomes a consistent collective behaviour.

21

