
SYSTEM APPLICATION REPORT

SWARM SLAM

by:

Elouan Autret

Under the supervision of:

Luc Jaulin
Fabrice Le Bars



Abstract

During underwater missions, autonomous robots have not access to a GPS positioning
and must rely on other sensors to evaluate its position. The method used is a range
only (with landmarks) SLAM with Interval Analysis this method allow a guaranteed
estimation of the errors.

When sweeping an unknown and hazardous area it is important to known for sure
the position of the robot, to avoid obstacles or keep from damaging the environment.
The method used to control the robot is the potential field method which is adapted to
an unknown environment. The implementation uses the ROS framework for communi-
cation and visualization.

The SLAM and control show promising results but need more tests and some tweak-
ing for a more complete simulation.
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Introduction

In recent years the world has seen a multiplication of robots (we will consider a robot
as a machine which does not need human interactions during its runtime in the doing
of its task – for example an autonomous robot instead of a remotely operated vehicles-)
but they stay mainly in known places it is sure for robots that does not need to move but,
even for mobile robots such as factory robot that have to move products, they generally
do not go in unknown places. This is because a robot needs a good localization to carry
out its tasks. In outdoor and open environment this localization can be given by a GPS
(Global Positioning System) like for the Google Car, an autonomous vehicle that can
go into traffic. But in some environments this information is not available, underwater
and in covert environments (indoor, dense forest). In such places the robot has to ask
itself two questions:

- What is my environment?

- Where am I?

Those questions correspond to the SLAM problem, SLAM is an acronym for Si-
multaneous Localization and Mapping, this corresponds to the situation of the chicken
and the egg because to know where is the robot must know the map and to map the
environment it needs to know it.

The context of our problem is the localization of underwater vehicles in order to ex-
plore the environment (to detect mines for example), their localization would be done
with the help of beacons with unknown positions (dropped on the zone before the ma-
noeuvre). This problem can be considered as a SLAM problem.
More than one robot would be deployed, this means that they can collaborate in order
to be more efficient, for faster exploration and more adaptable. Using multiple robots
can be viewed as using a swarm of robots, and for the swarm to be efficient, it can be
useful for the robots to share the information and their mapping data (this can be used
to avoid robots exploring the same area) this initiates the problem of the map merging.

This report will explain different methods of SLAM and map merging with the
goal of choosing one that will be more appropriate for the task.Then it will present the
chosen method and its implementation.
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Chapter 1

Status Report

1.1 Representation
In general a slam output will give either a topological map or an Occupancy Grid

1.1.1 Topological Map
If the algorithm for the SLAM uses landmarks there is chance that it uses a topological
map. This type of map will put in relation different landmarks as a graph, the nodes will
be the landmarks and the arc can be the path, the distance between the landmarks, for
example an underground map is a topological map with stations such as the landmarks
and relations are the connections between the stations:

Figure 1.1: Example of a topological map.

This type of map will be made when sensors can distinguish features in the envi-
ronment. This type of map has a higher abstraction level, it does not know the metrics
of the environment but it can consider objects in it:
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Figure 1.2: Example of a SLAM topological map [1].

In figure 1.2 the landmarks are corners and intersections.

1.1.2 Occupancy Grid
An occupancy grid will represent the continuous space divided in a 2 or 3D grid where
each square or box contains the probability of being occupied, in figure 3 the squares
are in a trinary state (empty , occupied or unknown):

Figure 1.3: 2D Occupancy Grid of the Robotic Club in ENSTA Bretagne with Hector
Slam [2].

1.2 Classical methods for SLAM
In general when using a SLAM the state equation of the robot is known and helps the
localization problem, the state equation models the behaviour of the robot in function
of input parameters:

ẋ = v ∗ cos(θ) (1.1)
ẏ = v ∗ sin(θ) (1.2)

θ̇ = u1 (1.3)
v̇ = u2 (1.4)

Above is a state equation modelling a car (x and y are the position, θ is the heading
and v the speed), with input u1 and u2 which are known (the robot computes them).
They are the most used and studied method and many use probability and decision
theory to estimate the pose of the robots and the map such as the EKF Slam.
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1.2.1 EKF SLAM
An EKF SLAM is a slam algorithm that uses the Extended Kalman filter to accomplish
the problem, it is a features based slam.

Kalman Filter

The Kalman Filter is used to estimate the linear state equation variable over time keep-
ing track of the uncertainties of the variables, this filter permits data fusion:

Figure 1.4: Simple example of data fusion.

If we have two sensors that measure the same variable the Kalman filter will com-
bine them in function of their variances (a sensor with great variance means that it is
less precise so it is less trustworthy whereas a sensor with little variance will be more
precise), in figure 1.4 we combine two sensors with a Gaussian noise, this is a simple
example of what the Kalman filter can do, it can also combine information between the
state variables, (a state variable can be the position, the speed, angular speed ) and if
we have relations between those variables (position and speed) the Kalman filter will
be able to combine the estimates.

Therefore in what way is the Kalman filter used for the slam? The landmarks de-
tected are put in the state equation in order to estimate their position and use them to
improve the robot localisation:
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Figure 1.5: Estimate of position of an underwater vehicle without and with landmarks
using a Kalman Filter.

In figure 1.5 the Kalman filter only uses the model of the underwater vehicle to
estimate its position therefore the variance (represented by an ellipse) always increases
whereas when landmarks are available it can slow the uncertainty propagation. The ex-
tended Kalman filter is used to work on nonlinear problems such as the SLAM problem,
thus causing a bit of approximation.

1.2.2 FastSLAM
The FastSLAM algorithm [7] uses a particle filter and a Kalman filter to solve the
SLAM problem, so this is also a landmark based algorithm.
The FastSLAM algorithm creates many particles that represent hypothesis on the po-
sition of the robot, the particles are randomly placed over the possible position of the
robot. Then the landmarks are estimated for each particle using the Extended Kalman
filter (supposing the position of the robot known for the particle).

After that the likeliness of each particle being the right hypothesis is computed.
Some particles will be more likely to be right than others, therefore a resampling is
done near the most likely particles found just before, the particles are now with the
same likeliness (weight). The particles are kept through time and are updated (with
each particle having different movements and new weights depending of the movement
likeliness). Through time, the particles are supposed to regroup around the correct
position of the robot [8].

1.3 SLAM via Interval Analysis
The methods seen approach the problem from a probabilistic point of view but, are not
guaranteed, it relies on the probability of the robot to not be an outlier, and when we
need a sure position of the robot it could lead to a failure (in a harmful environment
or in interaction with humans it would be hazardous). The interval analysis means to
guarantee the result, and is not subject to approximation because it does not need to
linearise the problem. Interval Analysis has grown to be a competent alternative to the
probabilistic methods.
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1.3.1 Interval Analysis
In the Intervals theory a real number is replaced by an interval with an uncertainty
represented by its width that includes the right number, for a known x the corresponding
interval could be [x,−ε, x+ ε] with a width of 2ε.

Figure 1.6: Representation of an interval.

This representation has advantages, to easily manage uncertainties by enclosing
them in an interval, but the intervals can be contracted around the feasible value thus
reducing the uncertainty.

This representation have advantages, to easily manage uncertainties by enclosing
them in an interval, but the intervals can be contracted around the feasible value thus
reducing the uncertainty.
For example considering the sets X = [ 1, 7] and Y = [−1, 5] and if Y and X are
constraint by the equation y = x2 then we can contract the set Y :

Y = Y ∩X2 = [ 1, 5]

But X can also be contracted by going backwards:

X = X ∩
√
Y = [ 0,

√
5]

This operation is a forward-backward contractor [9] and [10].

Figure 1.7: Sub paving of a 2 dimensional set [3].

The set inversion [5], finding X such as f([X] ) is in S, is easy to compute with
interval arithmetic, if X is the solution set (see above, the red boxes are included in the
set, yellow boxes are on the border), the minimal size of the boxes correspond to the
precision for the set inversion.
One of the first papers to address the SLAM problem via interval analysis was in [4],
in this paper they proposed an algorithm for the mapping and localization using land-
marks.
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Figure 1.8: Algorithm process for the SLAM [4].

In their case, figure 7, they considered receiving bearing and distance of landmarks,
by using constraints propagation (contractors) we can refine the sets [11]

Figure 1.9: Error differences between EKF-SLAM and Interval SLAM in [4].

The interval method can be as precise as the EKF-SLAM but with having a guaran-
teed uncertainty.

1.4 With Multiple Robots
By using multiple robots the possibilities are expanded but under certain conditions,
such as, they do not interfere with each other and do not redo the work of others. For
exploration it means that they have to know where the others are or have been, in order
to do that the robots need to merge their map to identify their common or uncommon
environments.
This problem can be represented as a graph where the nodes are the positions of the
robots at a certain time and the arcs are the transformation matrix from a node to an-
other:
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Figure 1.10: Graph representation of the Multi-robot SLAM problem.

The goal of this problem is to make the link between robot 1 and robot 2 (with the
feature 3 in figure 9) of course in some contexts a sole link between the graphs would
not be sufficient (with sensors getting only range), and would need two or three links
two associate the graph. Another method would be to iterate over each feature from
the graph of a robot and try to match it to the features of another graph, it is the same
reasoning as the ICP (Iterative Closest Point) method use for matching frames for a 3D
mapping.

1.5 Direction
Considering the context of the mission, a swarm of underwater vehicles which can
communicate between themselves and can know their distances to beacons placed in
the water before, in order to do an area scanning. The interval method will be used as
it is easier to deal with non-linear problems with it. The map merging problem will
be easily dismissed by linking the graph at the start of the mission, it can assumed the
robot will have a GPS information when they are at the surface, so the robots will be
able to share their estimations in a same frame.
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Chapter 2

Theoretic

If the context of the mission is established, the property of the robots are not :
− The robots will have a maximum range of intercommunication;

− The robots will have a maximum range of beacons detection;

− The robots have access to their heading and speed;

− The beacons are recognizable;

− The beacons do not move during the mission;

− The beacons can ping themselves and send information to the robots;

− The distance information and communication are not available continuously.

2.1 SLAM
As seen in 1.3 the SLAM with recognizable landmarks can be done (and has been done)
with constraint propagation.

2.1.1 One robot
Contractors

For the SLAM two contractors are needed (see 1.3.1), a distance contractor between
the robot and a beacon position, for the beacons between themselves (as they can know
their distances), a robot state contractor to spread the constraint over the time.

Distance Contractor The Distance contractor is based on a simple function, the
Euclidean distance:

(Rx −Bx)
2 + (Ry −By)

2 = dRB (2.1)

Where R is the box containing the robot and B the box for the beacon and dRB

the interval of the measure. This contractor with the Euclidean distance is not very
efficient, indeed if the pose of the robot is known but the beacon has not been estimated
yet, the output will be the box containing the circle with the measured distance as a
rayon surrounding the robot.To improve the computation the contracted box can be cut
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into a grid and then the different cases would be fed to the contractor and the remaining
non-empty boxes would be kept.

Figure 2.1: Beacons Boxes com-
puted without paving.

Figure 2.2: Beacons Box com-
puted with paving with SIVIA [5].

In figure 2.1 the position will be difficult to improve and in 2.2 the estimates of the
beacons are better as the space between the robot and a beacon is not considered as a
possible position.

Robot State Contractor The interest of this contractor is to use a the contraction
made by a beacon a time t1 to improve the estimate the robot over the time which can
then improve the estimate of a beacon via a measure at a time t2.

The contractor is made by knowing how the robot can move therefore the state
equation of the robot is needed, for the report the state equation of a car is used:

ẋ = v ∗ cos(θ) (2.2)
ẏ = v ∗ sin(θ) (2.3)

θ̇ = u1 (2.4)
v̇ = u2 (2.5)

Then considering u the input of the robot, dt the incrementation duration, the time
t1 and the time t2 = t1 + dt and X(t) the state vector at the time t the contractor is
based on the following equation:

X0(t2) = X0(t1) +X3(t1) ∗ cos(X2(t1)) ∗ dt (2.6)
X1(t2) = X1(t1) +X3(t1) ∗ sin(X2(t1)) ∗ dt (2.7)
X2(t2) = X2(t1) + u1 ∗ dt (2.8)
X3(t2) = X3(t1) + u2 ∗ dt (2.9)

Combining the information

The slam is supposed to be online (done in real time) this mean as for the control of a
robot an estimate of the position is needed continuously ( > 10 Hz). At each iteration
the algorithm 1 is processed.
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Algorithm 1 Process information for an iteration

Require: v(t),θ(t),u(t)
X : (State vector from the precedent iteration)
[ dt] :(interval containing the duration from the last iteration)
measurebeacons: (set of measures between two iteration)
Past (vector recording of robot estimate and measure)
n(size of Past)
distC : contractor of distance
robotStateC : contractor of robot estimate
update: function which update the estimate of X by taking into account the propri-
oceptive data.
boxbeacons : Set of the estimate of the beacons

1: X ← update(X, [ dt] v(t), θ(t), u(t))
2: Past← Past+ {(X, [ dt] ,measurebeacons)}
3: n← n+ 1
4: if measurebeacons 6= ∅ then
5: for i = n− 1; i > 1; i−− do
6: (Xi, [ dt] i,measurebeacons,i)← Past(i)
7: (Xi+1, [ dt] i+1,measurebeacons,i+1)← Past(i+ 1)
8: for measurebeacon,i ∈ measurebeacons,i do
9: (Xi, boxbeacon,measurebeacon,i)← distC(Xi, boxbeacon,measurebeacon,i)

10: end for
11: (Xi, Xi+1, [ dt] i+1)← robotStateC(Xi, Xi+1, [ dt] i+1)
12: end for
13: for i = 0; i < n− 1; i++ do
14: (Xi, [ dt] i,measurebeacons,i)← Past(i)
15: (Xi+1, [ dt] i+1,measurebeacons,i+1)← Past(i+ 1)
16: for measurebeacon,i ∈ measurebeacons,i do
17: (Xi,measurebeacon,i)← distC(Xi,measurebeacon,i)
18: end for
19: (Xi, Xi+1, [ dt] i+1)← robotStateC(Xi, Xi+1, [ dt] i+1)
20: end for
21: end if

This algorithm does not use all the information available when using one robots
(distance between beacons) and does not use a paving for the estimation of the beacons:

When receiving data from a beacon a contractor over the distance between beacon
can be computed :

Algorithm 2 Process distance between beacons
Require: measurebeacons: (set of measures between two iteration)

boxbeacons : Set of the estimate of the beacons
Bsender : beacon which has transmitted the data

1: for measurebeacon ∈ measurebeacons do
2: (boxBsender, boxbeacon,measurebeacon)← distC(boxBsender, boxbeacon,measurebeacon)
3: end for
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But as written in 2.1.1 the estimate box for the beacons can be paved, that change
the precedents algorithms when treating with a beacon estimate (8,16,1). An algorithm
for the distance constraint between two set of boxes must be executed:

Algorithm 3 Distance Constraint Application on two set of boxes
Require: d: interval of the distance

B1 : A set of boxes
B2 : A second set of boxes

1: T1 ← Vector of empty boxes of the same size of B1

2: T2 ← Vector of empty boxes of the same size of B2

3: for box1 ∈ B1 do
4: for box2 ∈ B2 do
5: (box1t, box2t, d)← distC(box1, box2, d)
6: T1(box1)← T1(box1) ∪ box1t
7: T2(box1)← T2(box2) ∪ box2t
8: end for
9: end for

10: B1 ← T1 \ {box ∈ T1 | box = ∅}
11: B2 ← T2 \ {box ∈ T2 | box = ∅}

With the algorithms 1, 2, 3 it is possible to do a range only slam with a unique robot
(see chapter 4 for more details).

2.1.2 With more robots
When using multiple robots, each robot can get the estimations of the map from the
other robots (if there is transmission), in the context of the mission the first position
is known (the box for the pose estimate has a little width depending on the GPS data)
therefore the position of the boxes is sure between the robots. When receiving data
from another robots, one robot will fuse the estimates of the beacons from the other
robots with its own estimates:

Algorithm 4 Fusion of beacon estimate between robots
Require: b: a beacon

B1 : set of boxes estimating the beacon b by the robot receiving the data
B2 : set of boxes estimating the beacon b by the robot sending the data

1: T1 ← Vector of empty boxes of the same size of B1

2: for box1 ∈ B1 do
3: for box2 ∈ B2 do
4: T1(box1)← T1(box1) ∪ (box1 ∩ box2)
5: end for
6: end for
7: B1 ← T1 \ {box ∈ T1 | box = ∅}

This contraction will supposedly greatly improve the estimation of the beacons as
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the robots do not start the mission at the same position they will see the world differ-
ently, therefore the intersection of their vision will be efficient.

2.2 Controlling the robots
The mission followed by the robots is to scan an area, with multiple robots the area can
be divided between the robots (at least one robot by area).

2.2.1 Path Generation
The area is divided in a decided number of cases:

Figure 2.3: Paving of an area to scan.

A robot will be ordered to scan a chosen case, it will make a first pass to acquire the
positions of the beacons then a more thorough pass to make scan the case.

Figure 2.4: Path of the first pass to
detect beacons.

Figure 2.5: Path of the second
pass.
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This last pass is used very often in area scanning with underwater vehicles.

2.2.2 Following the path and considering the other robots
The method chosen to control the robots for the path following and the obstacles avoid-
ance is the potential field method. It has been chosen for its easy implementation and
manipulation as it permit to manage movable obstacles such as the other robots. The
robot is seen as an electric particle in an electric field and respond to it with the relation:

f = −grad(V (p)) (page 77, [12])

Where p is the position of the robot and V its potential and f the force applied to
the robot. If the robot need to go to a chosen point,the point will apply an attractive
force on the robot and if another robot is approaching it will apply a repulsive force.

Figure 2.6: Car following an attractive point with potential field method with presence
of a repulsive point
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Chapter 3

Implementation

3.1 ROS
ROS (Robotic Operating System) is an open source framework made toward robotic
application. The goal of ROS is to propose means to facilitate communication be-
tween processes,managing possibilities and make available working algorithms for ev-
eryone [13].

This framework will be use in this project for communication and visualisation.

3.1.1 How it works
ROS is functioning with nodes, a master and slaves,the master is a ROS process and
nodes can be programmed by anyone:
− The framework is available on many OS (operating system)such as Linux (CPU

architecture: ARM x86 x64), Android , Windows, OSX;

− The programming of the nodes can be done in multiple language : C++, Python,
Java, Lua, Lisp, C#, Go, R, Ruby (from the most supported to the least)

− Nodes written in different languages can function together.
The communication with ROS works with topics,subscriber, and publisher, a pub-

lishing node will announce to the master that it is publishing over a topic and the sub-
scribing node will say to the master that it want to listen to a topic. Then if the publisher
and the subscriber are on the same topic, the master will transfer data in order for the
two other node to communicate directly via TCP/IP or UDP (see figure 3.1).
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Figure 3.1: Connection of nodes and topics [6].

ROS also facilitate the serialization of messages (conversion of the message into
bytes):

std_msgs/Header header

uint32 seq
time stamp
string frame_id

geometry_msgs/Quaternion orientation

float64 x
float64 y
float64 z
float64 w

As it can be seen in the message example, a message can reference another message,
in order to create message capable of transmitting complex data (an image with all its
meta data). This functionality of ROS permits a big modularity for the programmer, an
easy passage from simulation to real via only changing topic names.

3.1.2 ROS in the project
For the simulation of the swarm slam project multiple nodes have been created in order
to represent accurate communication and sensing.
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IA_MSGS

ia_msgs is a utility package to regroup created message to help to the communication
of interval vector (in 2 and 3 dimension):

ia_msgs/StampedInterval
std_msgs/Header header

uint32 seq
time stamp
string frame_id

ia_msgs/IdInterval[] data

uint8 id
ia_msgs/Interv[] data

geometry_msgs/Point position
float64 x
float64 y
float64 z

float64 width
float64 height

The above message allows to send with a time stamp and a reference frame a list
of an identified list of two-dimensional boxes,it is used to send the estimates of the
beacons.

RVIZ_IA_PLUGIN

The rviz plug-in has been done to ease the visualization of the interval, rviz is on
openGL based graphic visualizer incorporated in ROS. rviz can receive message and
interpret them.

Figure 3.2: Example of rviz utilisation.

In figure 3.2 rviz interpret the StampedInterval message (the blue rectangle), two
frame, the real pose of the robot and the map frame seen as an ensemble of blue, green
and red arrow, the point cloud of beacons printed as spheres and the Interval message
for the pose estimate of the robot. What has been done is the interpretation of the
interval related messages.
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IA_SLAM

It is the core of the project this node receive the sensor data (distance from the beacons),
the information from other robots and the proprioceptive data such as the heading,speed
motors order, then it estimate the position of the robot and the beacons by using the
algorithm from the section 2.1.It has been implemented in C++ as it create an heavy
load on the CPU.

The arithmetic of intervals is done with the help of the IBEX library a C++ library
towards intervals applications [14]

ROBOT_SIMU

This node simulates the robot by using the state equation (a car model for the project)
its send the pose information to the beacon_simu node and the proprioceptive infor-
mation to the ia_slam node.This node and all the other simulation nodes have been
implemented in Python for easier manipulation.

BEACON_SIMU

This node simulates the sensor of the beacons,it knows the real pose of the beacons and
the pose of the robot and considering the distance from the beacons it send or not the
information every second (ia_slam received a beacon data every tenth of a second).

TALK_SIMU

This node works on the same principle as the beacon_simu node but for the discussion
between robots, if the robots are close enough data is transferred with a limitation in
time,a transfer can only happened three seconds after another to model the bandwidth
limitation with underwater modem, the time was chosen arbitrarily but can be quickly
changed.

IA_CONTROLLER

This node is receiving the position of the robot and the other robots, in order to compute
the motors orders to follow the path and avoid obstacles. The orders are then sent to
the robot_simu node.

Figure 3.3: Relation between nodes with one robot and no controller node.

In figure 3.3 is represented the relation between nodes with only one robots with
the help of rqt_graph, a ROS program. A similar graph can be found in the appendix
(figure 5.1).
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3.2 Computational problems

3.2.1 SLAM Heavy Load
The complexity of the algorithm 1 for an iteration is ∼ O(n.(nbDiv)) where n is the
number of iteration passed and nbDiv the maximum number of division of the estimate
of the beacons.

Therefore a such an algorithm is not practical for an online slam. The use of the
precedent algorithm generates increasing slow-downs over the time.

To prevent those slow-downs the number of iterations can be limited by using the
algorithm 1 on the last n_chosen iterations. It induces a loss of information but it is
absorbable.

To cut again the load, the propagation constraint can be done with a reduce rate,
not following the incoming sensor data. But the rate cannot be too reduce be can then
measure of distance would be forgotten without being processed.

3.2.2 Message Delay
A message may be received but with ROS, it can have a important delay depending
on the network and CPU load. Thus when receiving a distance to a beacon the robot
can have travel a few decimetre and then measure of distance will be wrong when
computed.

To address this issue the interval of the measure is inflated of the distance travelled
by the robots between the measure and the computation.
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Chapter 4

Results

For the tests the positions of beacons are fixed and the initial poses too.

Figure 4.1: Initial Poses of the robots.

4.1 One Robot
For the test, one robot is used with a sensor precision of 10cm and a precision for the
starting position of 10cm. A case is 1mx1m.

Figure 4.2: Visualization with one
robot scanning the area (start).

Figure 4.3: Visualization with one
robot scanning the area (end).
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The images 4.2 and 4.3 are obtained with the robot going directly to the scanning
without doing the first pass (see subsection 2.2.1).

The estimate of the beacons has not a good quality,and the estimate boxes for one
beacon are spread out around it therefore the estimate of the robot is bad and conse-
quently the controller can’t correctly handle the robot and in figure 4.2 the robot does
not follow exactly the path (green line) and has an offset.

4.2 Two Robots
For this test, one robot is used with a sensor precision of 10cm and a precision for the
starting position of 70cm. In this test the second robot follows the same path as the first
one.

Figure 4.4: Visualization of start
of the slam without discussion be-
tween robots.

Figure 4.5: Visualization of the
two robots following the scanning
path.

With two robots communicating the estimations become more precise and allow a
better path following(figure 4.5. From them the it could continue to more robots but
some errors have happened. Indeed sometime the estimation for a beacon is wrong, the
boxes do not include the beacon.

Figure 4.6: Error on the beacon estimate.

The interval method is supposed to give a guaranteed results therefore the prob-
lem has to come from the implementation,either there is wrong data in the input,delay
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in communication is too important(see subsection 3.2.2), or the state equation used is
wrong( but it is working for the robot alone). By repeating the test it can be seen that
the problem originates from the start of the test and there is wrong calculation on the
pose estimate.

The avoidance algorithm with potential field method is not working smoothly, the
position of the robot is supposed to be the middle of the box and the potential is compute
with the nearest corner of the other robot box. Then the distances are changing overtime
and the chosen point from the other box can also change thus creating an unstable
potential field. To address this problem the computation could do the sum of each
corner of the two boxes, which would then be the equivalent to compute the potential
with the positions being the middle of the box for both robots.
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Conclusion

The most needing part in this project was the programming of the slam node but the
theory behind is approachable , the state equation linking together the poses over the
time, and the measurement linking the beacon to the pose.The implemented version
of the algorithm is a bit different from the original, with some safeguards and with
limitations due to capacity of the current lining of PC (and embeddable PC).

The scan of an area can be done with the created product but not with a good pre-
cision for now due to the remaining errors (in programming), therefore the program is
more pessimist on the position of the robots and beacons to compensate those errors.

What could be done in this project in the future:
− The correction of the programming errors crippling the program;

− A re-factoring of the code for a better comprehension from other users

− An optimization of the code to allow remembering more iteration

− Consider three dimension

− Add more path to the controller

− Make experiment on real robot
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Chapter 5

Appendix 1

Figure 5.1: Relation between node with a simulation of three robots
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Chapter 6

Appendix 2
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Chapter 7

Appendix 3

How to run the code
Download the Ibex Library

Install ROS

Follow ROS tutorial on how to create packages

In your catkin source directories :

1 $ git clone https://github.com/Elessog/ia_ros.git
$ cd ..
$ catkin_make
$ source devel/setup.bash

If Ibex error set IBEX_ROOT in ia_ros/ia_slam/CMakeList.txt

To launch three robots (on different terminal):
1 $ roslaunch beacon\_simu ia\_simu\_control.launch

$ roslaunch ia\_slam ia\_slam\_triple.launch
$ rviz

Then set-up rviz via add/byTopic or via the rviz config file and run serviceRob.bash
to start the robots (files in ia_ros/).
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