
Combination of Stochastic Model
Predictive Control and Vision
System on a Donkey Car for

Circuit Following Task
Ambre Ricouard

ambre.ricouard@ensta-bretagne.org

October 1, 2024

Ensta Bretagne
2, rue François Verny
29806 Brest cedex

France
Tel +33 (0)2 98 34 88 00
www.ensta-bretagne.fr

www.ensta-bretagne.fr

Abstract

This project focuses on automating a small-scale model car to navigate a fixed circuit using
only a camera for guidance. The objective is for the car to follow a track centered between two
guiding lines. The circuit used in reality is also available in simulation, allowing for process
validation before testing in a real environment where significant visual noise may be present.

A crucial initial step is to examine the system specifications and camera limitations to
anticipate all possible scenarios, thereby ensuring that the developed controllers are robust.
Depending on the car’s position and orientation relative to the track, it may detect both lines,
only one line, or even none. Therefore, the system must be able to handle each of these situations
effectively.

The process begins with image processing, where the visible lines are detected to determine
the car’s orientation and desired future position. With this information in hand, the next step is
to address vehicle control. This requires establishing the car’s kinematic model, which involves
defining a projection frame and understanding how the system inputs relate to the vehicle’s
kinematics.

Initially, a simple Proportional-Integral-Derivative (PID) controller is implemented. While
this provides a good starting point, it is inherently limited as it only accounts for past positions. To
improve system robustness, a stochastic Model Predictive Control (MPC) algorithm is introduced,
enabling for the prediction of future trajectories and more effective decision-making.

Résumé

Ce projet se concentre sur l’automatisation d’une voiture miniature naviguant sur un circuit
fixe, en utilisant une caméra comme unique capteur. L’objectif est que la voiture suive une
piste délimitée par deux lignes continues. Le circuit réel est également disponible en simulation,
permettant de valider les traitements avant de les tester dans l’environnement réel, où le bruit
visuel est significatif.

La première étape consiste à examiner les spécifications du système et les limitations de la
caméra afin d’anticiper tous les scénarios possibles, assurant ainsi la robustesse des contrôleurs
développés. Selon la position et l’orientation de la voiture par rapport à la piste, celle-ci peut
détecter les deux lignes, une seule ligne, ou aucune. Le système doit donc être capable de gérer
efficacement chacune de ces situations.

Vient ensuite le traitement des images de la caméra pour identifier les lignes visibles, permet-
tant ainsi de déterminer la position et l’orientation futures de la voiture. Avec ces informations,
on aborde le contrôle du véhicule, ce qui nécessite d’établir le modèle cinématique de la voiture,
incluant la définition d’un repère de projection et la compréhension de la relation entre les entrées
et le mouvement du véhicule.

Initialement, un contrôleur Proportionnel-Intégral-Dérivé (PID) simple est mis en œuvre.
Bien que cela constitue un bon point de départ, il présente des limitations intrinsèques, car il ne
prend en compte que les positions passées de la voiture. Pour améliorer la robustesse du système,
un algorithme de contrôle prédictif basé sur une commande prédictive (MPC) est introduite,
permettant de prévoir les trajectoires futures et de prendre des décisions plus efficaces.

Keywords

Autonomous Car, Camera, Image Processing, Line Following, PID Control, MPC Control.

ii

Acknowledgements
I would like to express my deepest gratitude to Alexander Watcher and Gerald Ebmer for

their invaluable assistance in helping me initiate this project. Their unwavering support and
guidance have been instrumental in my progress, as they were always available to answer my
questions and provide clarity. I am also profoundly thankful to my internship supervisor, Minh
Nhat Vu, whose supervision and insightful advice have been pivotal to the successful completion
of this project. Thank you for your dedicated mentorship and continuous encouragement.

iii

Contents
1 System Overview 1

1.1 Description of the Car Components . 1
1.2 Environment and circuit . 2
1.3 Camera . 4

2 Image Processing 7
2.1 Two Lines Detected . 7
2.2 One Line Detected . 10

3 Kinematics Model 11
3.1 Rear Wheels Analysis and Throttle . 12
3.2 Front Wheel Analysis and Steering Angles . 12
3.3 System Modeling . 13

4 Controller 16
4.1 Proportional-Integral-Derivative (PID) Controller 16
4.2 Model Predictive Control (MPC) . 19

A Command and Control Architecture 24

B Depth of Field Calculation of the Camera 26

Internship Assessment 28

iv

Introduction

Automating vehicles holds the promise of significantly reducing human error, a major factor
in road accidents. According to the World Health Organization, approximately 90 % of road
traffic accidents are attributed to human error [1]. By eliminating these errors, autonomous
vehicles have the potential to save thousands of lives and reduce severe injuries.

However, ensuring that automated systems are truly effective requires them to be both robust
and reliable. Achieving this reliability is a complex challenge due to the diverse and variable
environments in which vehicles operate. Road conditions, the behavior of other road users, and
weather variations make the task particularly difficult.

Given these challenges, real-world testing of these systems is often costly and risky. To
address these issues, researchers are increasingly turning to reduced-scale model cars. These
smaller models enable safe and cost-effective experimentation while providing valuable insights
into the behavior and performance of autonomous driving technologies ([2]). By using scaled-down
versions, we can rigorously test and refine autonomous driving systems in a controlled setting,
accelerating their development while managing the financial and safety concerns associated with
full-scale testing.

The goal of this project is to make an existing reduced-scale model car autonomous, enabling
it to navigate a given track using only a camera. The system must be optimized to ensure
stability, achieving a smooth trajectory that is resilient to external noise and variations in lighting
conditions.

The first step in the process is to thoroughly understand the specific characteristics and
limitations of the existing model car system. Once this foundational knowledge is established,
the next phase involves processing the camera images to accurately detect the circuit lines. With
the track detection in place, a suitable controller must then be designed to effectively manage the
car’s movements and ensure stable navigation.

In this approach, a PID controller will be employed first, followed by a transition to using a
MPC. Starting with the PID controller ensures a simple and straightforward control mechanism.
The subsequent implementation of MPC will enhance the system’s performance by leveraging
predictive capabilities and optimization, allowing for more precise, efficient and robust control.
This phased approach provides a balance between simplicity and advanced functionality, ultimately
improving the overall system performance.

1 System Overview

1.1 Description of the Car Components

The model car system consists of several key components that work together to enable
autonomous navigation. Figure 1 provides a detailed description of each component and its role
in the system. All electronic components are controlled by the onboard Raspberry Pi 4 computer.

1

Figure 1 – General view of car.

Component Description
Chassis The main frame of the car, which supports all other components.

Driving motor Electronic Speed Controller (ESC), Rear-Wheel Drive
Servo motor Steering the front wheels with a range of 90°

Raspberry Pi 4 The onboard computer that processes sensor data and controls the car.
Pi Camera V2 Captures visual data of the track for navigation purposes.

Table 1 – Detailed description of the car’s components.

As indicated in Table 1, the system’s only sensor is the Pi Camera. Thus, image processing
is the only means of determining the car’s position relative to the track boundaries. Using the
onboard camera, the system captures real-time images that are then processed by the Raspberry
Pi.

The car is equipped with two types of motors for control: a servo motor and an ESC. The
servo motor is responsible for angular speed, allowing the front wheels to turn and steer the car.
The input command for the servo motor, which determines the steering angle, rannonges from
-1 to 1. A value of -1 corresponds to maximum left steering, 0 to a neutral position, and 1 to
maximum right steering.

The ESC controls the car’s linear speed. It also regulates the power sent to the rear wheels,
allowing the car to accelerate or decelerate. The input command ranges from 0 to 1, where 0
corresponds to a complete stop and 1 to maximum speed.

These two commands are essential for driving the car, and their combination allows for
effective navigation of the track, following the defined trajectory.

The circuit’s Command and Control (C2) Architecture, as shown in Appendix A, illustrates
the interactions between the car’s components and clearly distinguishes the hardware aspects
from the observation and control processes.

1.2 Environment and circuit
The real circuit is available in simulation, allowing for an initial focus on achieving the

objectives in a controlled environment. This helps mitigate environmental noise and facilitates

2

effective validation of image processing and control algorithms before applying them in the real
world.

(a) Real Circuit (b) Simulated Circuit

Figure 2 – Circuit the car must follow: (a) Real circuit, (b) Simulated circuit

Figure 2 shows that the track the car needs to follow consists of two straight sections
interrupted by two U-turns, bordered by two orange lines. A dashed white line runs down
the center, but due to the light gray background, the contrast between the white line and the
background is low, as seen in the real circuit image (Figure 2a). The contrast appears slightly
higher in the simulation (Figure 2b). Additionally, the discontinuity and curvature of the white
line make a Canny filter a less optimal choice for detection.

3

Figure 3 – Comparison of camera imagery between simulated and real environments

The images and histograms in Figure 3 compare the visual characteristics and pixel intensity
distributions of the real and simulated circuits as captured by the robot’s camera. The histogram
of the real circuit exhibits a smoother distribution with fewer distinct peaks, highlighting the
impact of real-world lighting variations and noise. In contrast, the histogram of the simulated
circuit features more distinct peaks, indicating controlled and consistent lighting in the virtual
environment. To ensure reliable performance in real-world conditions, incorporating filters into
the robot’s vision system is essential to reduce noise and enhance robustness against lighting
variations.

1.3 Camera
To establish a reliable and robust controller, it is crucial to understand all possible input data

scenarios. This knowledge ensures that the controller is designed to handle all cases effectively,
allowing us to anticipate potential issues and implement solutions that enhance its performance
and reliability under various conditions.

Characteristics Details
Resolution 8 Megapixels (3280 x 2464 pixels)
Sensor Sony IMX219
Horizontal Field of View (FOV) Approximately 62.2°
Vertical FOV Approximately 48.8°
Focal Length 3.04 mm
Aperture f/2.0
Lens Type Fixed
Connection Type MIPI CSI-2

4

Characteristics Details
Image Output Format RAW
Shutter type Rolling shutter
Camera Dimensions Approximately 25 x 24 x 9 mm
Weight Approximately 3 g

Table 2 – Technical specifications of the Pi Camera V2 used in the car system ([3]).

The camera employs rolling shutter technology, which captures images by scanning the sensor
line by line, in contrast to global shutter technology, which captures the entire image simultaneously.
In scenarios where the model is moving, the rolling shutter method can theoretically introduce
distortions, such as skew or wobble, particularly at high speeds due to the sequential nature
of image capture. However, for our small-scale model, the operational speed is relatively low,
which minimizes the risk of noticeable distortion. The time required to read out the entire sensor
is short enough relative to the model’s speed, resulting in negligible positional changes during
capture. Consequently, experimental tests have shown no significant image distortion under the
current operating conditions. Given the controlled environment and the moderate speed of the
model, the rolling shutter is sufficient for our application, balancing image quality, cost, and
system complexity effectively.

The camera on the car may not always capture both track lines due to the combined effects
of its FOV, the car’s position, and its orientation. With a horizontal FOV of 62.2°, as specified
in Table 2, the camera covers a limited angular range. When the car is centered and aligned
on the track, both lines fall within this range, as observed experimentally. However, if the car
deviates from the center or is angled, one line may fall outside the FOV. This issue is particularly
noticeable during turns or when the car is closer to one line.

Given the circuit’s U-turns, the focus must be on the car’s immediate surroundings without
anticipating the turns. Attention should be directed to the area between 3 cm and 10 cm in front
of the vehicle, based on on-site measurements. The perceivable width limits for the car are as
follows

Horizontal width at 3 cm = 2× (3 cm× tan
(

FOV
2

)
) ≈ 3.62 cm

Horizontal width at 10 cm = 2× (10 cm× tan
(

FOV
2

)
) ≈ 12.06 cm

Given that the field of view at 3 cm is relatively narrow, the car’s vision is restricted, making
it difficult to see both lines during turns or even on straight sections if the system tends to
oscillate. This limited visibility emphasizes the importance of focusing on the immediate area
directly in front of the vehicle, especially when navigating sharp bends like U-turns.

5

0-d d

T

Figure 4 – Definition of θ and the axis d with 0 corresponding to the centerline of the
circuit, −d the left line, and d the right line.

Based on Figure 4, let’s define θ as the orientation angle of the car relative to the track limits
and d as the distance from the center. With these definitions, the interdependence of θ and d can
be studied to understand the specific scenario, whether one or two lines are detected, depending
on their variations.

Figure 5 – θ = f(d) - Visibility of circuit lines as a function of the car’s distance from
the center and its orientation angle.

According to Figure 5, when positioned at the center (d = 0), there is a range of approximately

6

45.84◦ for consistently detecting both lines. This range decreases significantly as d moves from 0
to 20 cm, reducing to around 11.46◦, indicating a decrease of about 75%.

Therefore, it is crucial to have a controller with minimal oscillation to remain within the
detection zone of both lines on the straight portions of the circuit. Otherwise, the system
risks constantly switching between detecting one line and the other without ever detecting both
simultaneously, which would compromise the controller’s robustness. Additionally, it is important
to consider scenarios where only one line is detected (e.g., during U-turns) or no lines are detected
(e.g., when leaving the circuit).

2 Image Processing

2.1 Two Lines Detected

The first approach for detecting the circuit lines would be to use a line detection filter such
as the one provided by the Canny algorithm. This algorithm is effective at detecting edges by
highlighting sharp transitions between different pixel intensities. However, this method has several
drawbacks specific to our context. Firstly, the circuit includes U-turns, which complicates the
reliable detection of lines because the Canny algorithm might struggle to follow tight curves.
Secondly, the drivable surface of the circuit is rectangular, and the algorithm might mistakenly
detect the edges of this surface as relevant lines, which would be an error.

To overcome these issues, we will take advantage of the distinct color contrast between the
orange lines of the circuit and the light gray background. By applying a color filter, we can
effectively isolate the orange lines without being disturbed by the edges of the circuit or the tight
turns. This color-based approach is better suited to our specific situation and should provide
more reliable results.

7

(a) RGB original image (b) Conversion in HSV

(c) Mask filter (d) Blur filter

(e) Dilated image (f) Contours detected

(g) Determination of the angle θ

Figure 6 – Different steps in the image processing pipeline.

Figure 6 provides a detailed, step-by-step visual representation of the image processing
workflow. Each step in the figure illustrates a different stage of the process, showing how the
image is progressively transformed through various filtering, masking, and contour detection
techniques.

The RGB (Red, Green, Blue) image (Figure 6a) is first converted to the HSV (Hue, Saturation,
Value) color space (Figure 6b) to facilitate color segmentation. This transformation allows for
easier identification and isolation of specific colors within the image. A mask is then applied to
isolate the regions containing the orange lines that define the circuit boundaries (Figure 6c).

Subsequently, a blur filter is used to reduce noise and smooth out fine details in the Figure

8

6d. This step helps in minimizing minor variations and enhancing the prominence of significant
features. Following the blurring, the image is dilated to close gaps and unify disjointed regions
(Figure 6e). Even though these processing steps might not appear to dramatically alter the image,
they play crucial roles in ensuring the robustness and consistency of the subsequent analysis.

Contour detection is then performed on the processed image (Figure 6f). This step identifies
the edges of objects within the image, and the two largest contours are retained as the circuit
lines.

For each of these contours, the moment is calculated (blue points on Figure 6g). The average
of these two centroids determines the target point (red point). Finally, θ, defined as the angle
between the vertical line from the camera’s position (the bottom center of the image) to the target
point, is calculated. This angle is crucial for understanding the vehicle’s orientation relative to
the track.

9

2.2 One Line Detected

Figure 7 – Decision diagram for determining T based on line and white line detection.

The objective of the image processing is to determine the angle θ. Figure 7 illustrates the
process for determining this angle based on the configuration. When both lines are detected, θ
is calculated using two parameters: the vertical axis of the car and the target point. In cases
where only one line is detected, an additional data point is needed. To acquire this missing data,
the algorithm attempts to detect the white dashed line on image 8a (Figure 8). This involves
additional processing steps similar to the previous ones, including masking (8b), blurring (8c),
and dilation (8c). The white contours of the dashed line are then used to reconstruct the median
white line through linear regression (??). The second point is then determined by selecting the
point on the line that has the same ordinate as the centroid of the detected contour. If case
the white line is poorly detected, the algorithm defaults to using the white line detected in the
previous frame; if this is not available, it uses the midpoint of the image’s width. If the car

10

deviates and leaves the circuit to the extent that it no longer detects any lines, one solution is to
retain the last value of θ and increment it slightly to allow the car to find its way back. However,
given the narrowness of the circuit, two scenarios are common: either the car takes a considerable
amount of time to recalibrate and regain its trajectory, or it has already collided with an obstacle,
such as a wall or another surrounding object.

(a) RGB original image (b) Mask filter

(c) Blur filter (d) Dilated image

(e) Linear regression of white
contours.

(f) Determination of the angle θ

Figure 8 – Different steps in the image processing pipeline.

3 Kinematics Model

To determine the kinematic model of the system, it is essential to understand the roles of the
throttle input v and the steering angle ψ. Unlike differential drive robots, cars have four wheels,
with the two front wheels dedicated to steering and the two rear wheels to propulsion. We will
examine how these inputs influence the overall movement of the vehicle.

11

3.1 Rear Wheels Analysis and Throttle

v
Center of Rotation

Figure 9 – Diagram illustrating the kinematics of the rear wheels during a turn with
throttle engagement.

When the vehicle turns, each wheel follows a circular path around a center of rotation
(Figure 9). Since the rear wheels are mounted on the same axle, they share identical movement
characteristics relative to this center. The rear axle aligns with the radii of these concentric
circles. Consequently, the velocity of each rear wheel can be represented as a vector originating
from the center of the axle and directed perpendicular to it.

3.2 Front Wheel Analysis and Steering Angles

er

eθ

ψ2 ψ1

ICR
R

Figure 10 – Diagram illustrating the orientations of the front wheels in a polar system.

12

The polar coordinate system is centered at the front axle of the vehicle (shifted in Figure 10
for clarity). Thus, the velocities are ṙer + (r− R

2)ψ̇1eθ for the inner wheel and ṙer + (r+ R
2)ψ̇2eθ

for the outer wheel.
To avoid slipping while turning, the front wheels must be tangent to concentric circles centered

at a common point, known as the Instantaneous Center of Rotation (ICR). Thus, the angular
velocities ψ̇1 and ψ̇2 must satisfy:

(r − R

2)ψ̇1 = (r + R

2)ψ̇2

This equation shows that the inner wheel must turn at a sharper angle than the outer wheel.
This configuration allows the car to turn smoothly along a defined circular path without tire slip.

According to [4] the difference in front angles is known as the Ackermann angle. This can be
more easily modeled by introducing a virtual central wheel, positioned between the two front
wheels.

v

ψ

Figure 11 – Diagram illustrating the kinematics used in our model.

The commands for speed and steering angle are now clearly defined with respect to the car
(Figure 11). Thus, it is now possible to fully determine the kinematic model of the system.

Subsequently, the car will be illustrated with four wheels for better understanding, but the
modeling will remain as shown in Figure 11.

3.3 System Modeling

The control of the car is solely based on images from the camera, whose position (x, y)
corresponds to the middle of the front axle. The angle ψ represents the steering of the front
wheels, while θ measures the angle between the car’s chassis and the target point (xd, yd). The
distance r is defined as the separation between the target point and the car’s current position.

13

v
vwheel

vtan

Figure 12 – The car with its corresponding speed vectors.

Let L be the wheelbase. The lever arm equation is therefore given by

L · θ̇ = vtan,

knowing that, according to Figure 12,

{
vwheel cos(ψ) = v
vwheel sin(ψ) = vtan

Thus,

v · tan(ψ) = vtan.

Therefore,

θ̇ = v · tan(ψ)
L

.

Given that ψ belongs to the interval [−1, 1] (the control limits), we perform a first-order
Taylor expansion around ψ ≈ 0

θ̇ ≈ v · ψ
L

.

14

x

y

xd

yd

T ψ

Figure 13 – Schematic representation of the problem in a Cartesian coordinate system:
definition of the target point (xd, yd) and the angles θ and ψ.

Since the target point is to the left of the car, the angle θ is defined as negative (13). Thus,
the coordinates (x, y) (represented by the red point on the car) are given by{

x = −r sin(θ) + xd
y = r cos(θ) + yd

with:
r =

√
(x− xd)2 + (y − yd)2

x

y

xd

yd v

θ ψ

Figure 14 – Dependency diagram of state variables (in blue) and commands (in red).

The diagram of dependencies (Figure 14) demonstrates that x and y are directely linked to v
and indirectely linked to ψ.

The delay matrix is therefore:

R =
[
1 1
2 2

]

15

The minimum coefficients of each row in R appear in both columns. Therefore, the system is
controllable.

4 Controller

4.1 PID Controller
Let’s start with a PID controller, a logical first step in managing the vehicle’s dynamics.

Its simplicity and proven effectiveness make it an ideal choice for initial testing and fine-tuning
before moving on to more advanced control strategies. The PID controller, by adjusting the
proportional, integral, and derivative terms, offers a well-balanced approach to handling errors in
real-time. This enables precise control over the car’s speed and steering.

The structure of the delay matrix R indicates that some state variables have second-order

delays, requiring double differentiation to accurately express
(
x
y

)
in terms of the inputs v and ψ.

The derivatives of {x, y} are{
ẋ = −ṙ sin(θ)− rθ̇ cos(θ) + ẋd
ẏ = ṙ cos(θ)− rθ̇ sin(θ) + ẏd

Using the first-order approximation for θ̇,{
ẋ = −v sin(θ)− rvψ

L cos(θ) + ẋd
ẏ = v cos(θ)− rvψ

L sin(θ) + ẏd

Therefore,{
ẍ = −v̇ sin(θ)− vθ̇ cos(θ)− 1

L [ṙvψ cos(θ) + rv̇ψ cos(θ) + rvψ̇ cos(θ)− rvψθ̇ sin(θ)] + ẍd
ÿ = v̇ cos(θ)− vθ̇ sin(θ)− 1

L [ṙvψ sin(θ) + rv̇ψ sin(θ) + rvψ̇ sin(θ) + rvψθ̇ cos(θ)] + ÿd

Considering the second-order approximation where v̇ · ψ = 0 (implying that the speed varies

little and ψ is small), the second derivatives
(
ẍ
ÿ

)
can be expressed in terms of matrices and

vectors as follows,

(
ẍ
ÿ

)
=
(
− sin(θ) − rvL cos(θ)
cos(θ) − rvL sin(θ)

)
︸ ︷︷ ︸

A

·
(
v̇

ψ̇

)
︸ ︷︷ ︸
U

+
(

−2v2ψ cos(θ)
L + rv2ψ2 sin2(θ)

2 + ẍd
−2v2ψ sin(θ)

L − rv2ψ2 cos2(θ)
2 + ÿd

)
︸ ︷︷ ︸

B

Thus, let’s consider the following PID-based control with feedback linearization,

U = A−1(V −B)
V = Ẍ = ki(W −X) + kp(Ẇ − Ẋ) + kdẄ

where W =
(
xd
yd

)
and ki, kp, and kd are the integral, proportional, and derivative gain matrices

This controller is implemented in Python and tested within the simulation environment, with
the implementation details provided in Algorithm 1.

16

Figure 15 – Evolution of θ over time.

The desired position for the car is to always have its target point directly in front of the
camera, which means that θ should ideally be close to 0. However, if θ were constantly at 0, the
car would follow a straight path, which isn’t feasible given the circuit’s curves. As a result, θ will
inevitably deviate from 0 when navigating turns, but the goal is to keep these deviations as small
as possible.

It’s important to note that the controller is not 100% robust. There are instances where the
car deviates so far from the intended trajectory that it struggles to return to it. To mitigate
this, the steering is limited between -0.8 and 0.8, and the speed is capped at 0.02 (Figure 15).
These constraints are set to reduce oscillations and give the controller enough time to allow the
system to converge back to the desired path. Even with these adjustments, while the car usually
manages to complete at least one full lap, it can still deviate from its trajectory afterward.

17

Figure 16 – Evolution of steering and throttle over time.

The curved and straight segments in the graphical evolution of the steering (Figure 16) can
be readily distinguished: rapid and large oscillations correspond to the straight segments, while
the segments that exhibit nearly constant behavior indicate the curves. This pattern can also
be observed, though less distinctly, in the graph presented in Figure 15. The system exhibits
significant oscillatory behavior on straight sections of the path, leading to instability as speed
increases. Consequently, when the speed becomes too high, the system diverges entirely and loses
the track, especially given the tight and short nature of the circuit.

The error graph (Figure 17) suggests that the controller might be overreacting to small
deviations, possibly due to overly aggressive gain settings, particularly for the proportional term.
This overreaction leads to oscillations in the system rather than allowing it to smoothly converge
to the desired state. However, when the proportional gain is reduced, the system fails to complete
even a single lap before diverging. Additionally, while the system appears to be diverging based
on the error graph, this is not always the case in the simulation. It’s important to consider the
scale of the errors, which are measured in pixels (elements of the image’s numpy array). An error
range of 20 pixels, therefore, does not necessarily indicate that the system is completely diverging.

While PID controllers are well-suited for point tracking, they often struggle with dynamic
trajectories, particularly when the trajectory is unknown and evolves in real-time, frame by frame
and point by point. As the target changes, the system oscillates in its attempt to stabilize, only
to be disrupted by further trajectory adjustments. This continuous need for adaptation can result
in persistent oscillations and a tendency to diverge. To address these challenges, we turn to
MPC, which is specifically designed to handle such dynamic environments more effectively by
anticipating future trajectory changes and optimizing control actions accordingly.

18

Figure 17 – Horizontal error over time.

4.2 MPC

MPC is a sophisticated control strategy that optimizes a system’s trajectory over a specified
time horizon by predicting its future states. This prediction is crucial for achieving optimal control
performance, especially in scenarios that demand precise maneuvering. Therefore, accurately
knowing the near-future trajectory is essential.

In our case, the only sensor available is a camera. Therefore, the trajectory prediction
capability is constrained by the camera’s limitations. Given the vertical FOV of 48.8° (2), the
depth of field, or the distance the camera can see ahead on the ground, is estimated to be 11 cm
(as calculated in appendix Appendix B).

This means that the system can at best predict the trajectory over the next 11 cm. However,
this theoretical depth of field is actually reduced. To accurately predict the future trajectory, the
system needs a clear detection of the track boundaries, which becomes unreliable beyond 10 cm.

19

Figure 18 – Functional diagram of an NMPC controller

To address this limitation, the trajectory is projected into an external reference frame that
allows the system to generate and follow a predicted path over a greater distance. This longer
future trajectory is essential for MPC, as it enables the system to anticipate and smoothly navigate
upcoming path segments, whether they are straight or curved. By optimizing control actions over
a longer horizon, MPC can better manage speed, steering, and other variables, leading to more
stable and efficient vehicle behavior.

The external reference frame used in this approach is a global coordinate system that is
independent of the camera’s viewpoint. In this frame, the vehicle’s position is represented by its
coordinates (x, y) and orientation θ relative to a fixed origin, typically set at the start of the path.

Within this reference frame, a clear distinction is made between straight and curved path
segments. For straight segments, the trajectory is represented as a simple linear path, while for
curves, the trajectory follows a circular or otherwise appropriate curve based on the road geometry.

Let’s now delve into the workings of the MPC controller. At each time step, the controller
solves an optimization problem that minimizes a cost function while ensuring that the system
adheres to its dynamic constraints and input limitations.

The cost function plays a crucial role in determining the controller’s behavior. In our case,
we prioritize maintaining the vehicle’s position within the track boundaries and ensuring that the
steering angle remains within acceptable limits. Therefore, the cost associated with deviations in
position and steering is set high. On the other hand, the cost related to speed is deliberately kept
lower because controlling speed is not as critical for our primary objective. This approach allows
the MPC to concentrate more on accurately following the trajectory and making precise steering
adjustments, without being overly concerned with achieving a specific speed, which is less crucial
in our context.

The optimization problem is formulated as follows ([5])

min
U

J =
N−1∑
k=0

(
x⊤
k Qxk + u⊤

k Ruk
)

subject to

xk+1 = f(xk,uk)
and

x0 = x(t0)

20

— xk =

xkyk
θk

 is the state vector at time step k,

— uk =
(
vk
ψk

)
is the control input vector at time step k.

— Q and R are weighting matrices associated with the states and controls, respectively, and
are critical in defining the cost function’s sensitivity to deviations in states and control
efforts.

— N is the prediction horizon, which dictates how many future time steps the MPC will
consider in its optimization process.

Figure 19 – Evolution of steering and throttle over time.

The reference to the implementation of the controller is available in Algorithm 2.

Figure 19 the evolution of the steering angle (in red) and throttle (in blue) over time for a
vehicle controlled by an MPC controller. The throttle value remains relatively constant, which
indicates stable speed control throughout the maneuver. In contrast, the steering angle exhibits
rapid oscillations, frequently switching between positive and negative values and even reaching
its limits of -1 and 1.

These oscillations indicate that the MPC controller is making frequent, fine-tuned adjustments
to maintain the desired path. The high frequency of these adjustments suggests a highly responsive
system that continuously corrects itself to keep the vehicle centered. This responsiveness is a key
strength of MPC, allowing it to react quickly to deviations and ensure the vehicle remains on
track.

Although the graph shows significant oscillations, these are centered around zero, which
means that the vehicle consistently attempts to return to its intended path. Unlike the PID
controller, which may exhibit larger and slower adjustments that could lead to deviations or even
trajectory divergence, the MPC’s quick corrections indicate a robust and reliable control strategy.
Despite the increased oscillation rate, the system does not diverge, which demonstrates the MPC’s

21

effectiveness in maintaining stability and ensuring precise control of the vehicle, making it better
suited for dynamic and uncertain environments.

Conclusion
In the simulated environment, the single camera sensor demonstrates sufficient capability to

meet system requirements. Despite its average resolution, the high contrast between the track
and its boundaries within the simulation environment enables consistent and reliable detection.
This strong detection performance, when paired with an appropriate controller like the MPC,
delivers a highly robust outcome, although minor oscillations are present that could be dampened
with further optimization.

However, when transitioning to the real-world scenario, the sensitivity of the system to
environmental changes became apparent. Even slight variations, such as shadows, considerably
impacted the system’s ability to detect track boundaries effectively. Despite extensive parameter
tuning and filtering attempts, variations in ambient light, which could differ significantly from day
to day, compromised the robustness of the image processing pipeline. These challenges highlight
the significant difficulty in utilizing a single vision-based sensor as the exclusive source of infor-
mation in a real-world application where lighting and environmental factors vary unpredictably.

Addressing these challenges would require a more sophisticated approach. A potential im-
provement could involve integrating supervised learning techniques with the MPC controller.
Machine learning could help the system generalize across varying light conditions by enabling
it to produce appropriate control commands even when direct visual detection of boundaries
becomes unreliable. For instance, a trained model could leverage previous learned scenarios to
generate effective responses in ambiguous lighting conditions.

Moreover, integrating additional sensors such as GPS (Global Positioning System) or LIDAR
(Light Detection and Ranging) could further improve the reliability of the system. GPS data
could supplement the visual information, providing positional accuracy even when the visual
sensor is compromised. This would lead to a more robust multi-sensor fusion system capable of
coping with the dynamic real-world environment. While the camera remains a valuable sensor for
tasks such as obstacle detection, relying solely on vision for all navigation and control underlines
the inherent limitations, especially in a system where robustness is paramount. Thus, adding
redundancy with multiple types of sensors would not only mitigate the limitations of a camera
but also enhance overall system resilience and accuracy.

Acronyms
PID Proportional-Integral-Derivative
MPC Model Predictive Control
ESC Electronic Speed Controller
C2 Command and Control
FOV Field Of View
RGB Red, Green, Blue
HSV Hue, Saturation, Value
ICR Instantaneous Center of Rotation
NMPC Nonlinear Model Predictive Control

22

GPS Global Positioning System
LIDAR Light Detection and Ranging

23

A Command and Control Architecture

24

Figure 20 – C2 Architecture

25

B Depth of Field Calculation of the Camera

To determine the depth of field d, we use the camera’s mounting height h and the downward
angle of the field of view, which is half of the vertical FOV. The relevant angle θbottom is:

θbottom = 48.8◦

2 = 24.4◦

The distance d, that the camera can see ahead on the ground, can be calculated using the
following trigonometric relationship:

d = h

tan(θbottom)

Where h represents the camera’s height above the ground. Given that it is mounted at
h = 0.05 meters (5 cm), d ≈ 0.11m.

Algorithms

Algorithm 1: PID-based control with feedback linearization
Input: dt: Time step; L: Vehicle Length; θ, ψ, v: Initial states; r: Radius; X: Current

state; W : Desired position
[
xd
yd

]
; Wprev,Wprev2: Previous desired positions;

ki, kp, kd: PID gains
Result: Updated control inputs v, ψ

1 dW ← W−Wprev

2×dt ;
2 ddW ← W−2×Wprev+Wprev2

dt2 ;
3 Wprev2 ←Wprev;
4 Wprev ←W ;

5 f(X, θ, ψ, L, v, r, dW) M←

[
− sin(θ) − r·v·cos(θ)

L

cos(θ) − r·v·sin(θ)
L

]
;

6 dX ←M ·
[
v
ψ

]
+ dW ;

7 return dX;
8 dX ← f(X, θ, ψ, L, v, r, dW);
9 X ← X + dX × dt;

10 A←
[
− sin(θ) −r × v × cos(θ)/L
cos(θ) r × v × sin(θ)/L

]
;

11 B ←
[
−2× v2 × ψ × cos(θ)/L+ r × v2 × ψ2 × sin(θ)/L2 + ddW [1]
−2× v2 × ψ × sin(θ)/L− r × v2 × ψ2 × cos(θ)/L2 + ddW [2]

]
;

12 V ← ki × (W −X) + kp × (dW − dX) + kd × ddW ;
13 errors← ki × (W −X) + kp × (dW − dX) + kd × (ddW − V);
14 U ← A−1 × (V −B);
15 u1← U [1], u2← U [2];
16 v ← v + u1× dt;
17 ψ ← ψ + u2× dt;

26

Algorithm 2: CasADi-based MPC
Given : N : Prediction Horizon;

dt: Time step;
L: Vehicle Length;
Q,R: Cost Matrices;
max_steer,max_vel: Constraints on Steering and Velocity;
X0: Initial State;
Segment: Type of Circuit Segment (’straight’, ’curved_left’, ’curved_right’);
radius: Radius for Curved Trajectories (optional);

1 while task not completed do
2 ref ← GenerateReferenceTrajectory(X0, Segment, radius);
3 opti← InitializeOptimizationProblem();
4 X,U ← opti.variable(3, N+1), opti.variable(2, N);
5 cost← 0;
6 for k ← 0 to N − 1 do
7 state_error ← X[:, k]− ref [:, k];
8 control_input← U [:, k];
9 cost+ = state_errorT ×Q×state_error+ control_inputT ×R× control_input;

10 dynamics_output← Dynamics(X[:, k], U [:, k]);
11 opti.subject_to(X[:, k + 1] == X[:, k] + dt× dynamics_output);
12 opti.subject_to(X[:, 0] == X0);
13 opti.subject_to(−max_steer ≤ U [1, :] ≤ max_steer);
14 opti.subject_to(0 ≤ U [0, :] ≤ max_vel);
15 opti.minimize(cost);
16 sol← opti.solve();
17 if sol.failed then
18 DebugAndLogValues(opti);
19 RaiseError;
20 control_input← sol.value(U[:,0]);
21 X0 ← sol.value(X[:,1]);
22 SendToActuators(control_input);
23 UpdateInitialState(X0);

Bibliography

References
[1] World Health Organization. “Global status report on road safety 2023”. In: World Health

Organization (2023). 1
[2] Andrea Stocco, Brian Pulfer, and Paolo Tonella. “Mind the Gap! A Study on the

Transferability of Virtual vs Physical-world Testing of Autonomous Driving Systems”. In:
IEEE Transactions on Software Engineering XY.X (2022), pp. 1–XY. 1

[3] Raspberry Pi Foundation. “Camera”. In: Raspberry Pi Documentation, n.d. [Online]. Available:
https://www.raspberrypi.com/documentation/accessories/camera.html. [Accessed: Month,
Day, Year]. 5

[4] S. Liu. “Analysis of the Car Model and Ackermann?s Steering Geometry”. In: Highlights in
Science, Engineering and Technology 37 (2023), pp. 1–13. 13

27

https://www.raspberrypi.com/documentation/accessories/camera.html

[5] B. Takács, J. ?tevek, R. Valo, and M. Kvasnica. “Python code generation for explicit
MPC in MPT”. In: 2016 European Control Conference (ECC), Aalborg, Denmark, 2016, pp.
1328–1333, doi: 10.1109/ECC.2016.7810473. 20

28

29

30

31

	1 System Overview
	1.1 Description of the Car Components
	1.2 Environment and circuit
	1.3 Camera

	2 Image Processing
	2.1 Two Lines Detected
	2.2 One Line Detected

	3 Kinematics Model
	3.1 Rear Wheels Analysis and Throttle
	3.2 Front Wheel Analysis and Steering Angles
	3.3 System Modeling

	4 Controller
	4.1 PID Controller
	4.2 MPC

	A Command and Control Architecture
	B Depth of Field Calculation of the Camera
	Internship Assessment

