Non-planar slicing and Normal-to-Surface path
programming

Louis ROULLIER - louis.roullier@ensta-bretagne.org

Composite Material, Manufacture and Structures Laboratory - Colorado State University
tutor : Donald W. Radford - dradford@rams.colostate.edu

STICC coLoraDO STATE
UNIVERSITY

é@ ENSTA

BRETAGNE

Acknowledgements

Before starting this report, I would like to thank Dr Donald W Radford who is the head teacher

of the Composite Materials, Manufacture and Structures Laboratory (CMMS) from Colorado State
University (CSU). He enabled me to discover a new way of working and to apply my knowledge
in robotics engineering to a field which really interests me. He also helped and supported me in
my different approaches during the project.
I also would like to thank Dr Christian Jochum from ENSTA Bretagne. Indeed, he really trusted
and encouraged me during all this internship. He made sure that the ENSTA Bretagne students’
internship was as pleasant as possible : He helped us doing the administrative approaches and met
the administration of the university to improve our experience.

Résumé

Durant ce stage de 4 mois réalisé dans le laboratoire de matériaux composites (CMMS)
de l'université d’état du Colorado (CSU), j’ai du mener & bien un double objectif. Le but était de
développer une méthode de tranchage non-planaire pour impression 3D tout en faisant en sorte
que la buse reste normale a la surface d’impression. Pour ce faire, j'utilise un logiciel permettant de
générer des GCODES contenant des couches planaires et non-planaires. Grace aux commentaires
présents dans ce fichier, je peux calculer les vecteurs normaux relatifs a chaque point en faisant un
maillage de chaque couche. Par la suite, je transmets ces données a un logiciel nommé RoboDK par
le biais d’un fichier de type .CSV. Ce dernier logiciel génere alors un code en RAPID interprétable
par le robot et nous pouvons alors réaliser des tests d’impression.

Abstract

During this 4-month internship in the Composite Materials Laboratory (CMMS) at Colorado
State University (CSU), T had a dual objective. The aim was to develop a non-planar slicing
method for 3D printing, while ensuring that the nozzle remains normal to the printing surface.
To achieve this, I used software to generate GCODES containing planar and non-planar layers.
Thanks to the comments in this file, I can calculate the normal vectors for each point by meshing
each layer. Then, I transmit this data to a software program called RoboDK via a .CSV file. This
software then generates a RAPID code that can be interpreted by the robot, enabling us to carry
out print tests.

Contents

1 Contextualization L 3
2 Introduction 4
3 Generation of non-planar layers oL 5
3.1 Non-planar slicing L D
3.2 Fully three-dimensional toolpath generation D
3.3 How to mix planar and non-planar layers 6
3.4 Comparison of a piece with different types of slicing 6
4 Normal-to-surface path programming 8
4.1 Interpolation of the layers oL 8
4.2 Calculation of the normal vectors for the entire layers 11
4.3 generation of a mesh for each layer 12
4.4 Calculation of the normal vector of each triangle 13
4.5 Calculation of the normal vector of each point 13
4.6 Verification of the method L. 15
5) Simulation of the process 15
6 Implementation on the real robots 20
7 Summarizing of the global approach and prevision of the next steps 21
8 Conclusion L 22
List of figures L 22
Bibliographie 24

1 Contextualization

The current state-of-the-art in structural composites processing for wind blade manufac-

ture makes use of molds that define the shape of the finished composite component. Creating the
heated molds onto which the composite is formed is costly, adding significantly to the cost of the
final product and reducing the ability to make geometry-based design modifications during the
product life cycle. When using conventional material laydown techniques, design relies on global
ply orientations and current processes neither allow fibers to follow complex load paths in-plane
or out-of-plane, limiting the mechanical performance. Additionally, structural cores, added be-
tween layers of reinforcement to boost out-of-plane stiffness, can be costly to procure and difficult
to position and retain during shear web processing. Alternatively, additive manufacturing (AM)
approaches can form the basis for processes which accurately produce, position and retain com-
plex structural cores, resulting in reduced excess material, and substantial cost savings. Further,
through incorporation of continuous reinforcement fiber, AM can offer a technical opportunity to
develop composite structures which overcome limitations in fiber positioning, can enable innova-
tive composite designs that cannot be commercially manufactured by other means, can reduce the
process embodied energy, and can be manufactured with a significant reduction in the amount
of complex tooling, resulting reduced cost, reduced weight, and reduced Levelized cost of energy
(LCOE).
The main objective of this research project is additively manufacture the internal structure of a
wind turbine blade, which will be integrated with conventionally produced composite aecroshells.
This internal structure makes up almost 3,000 kg of the mass of a 60 m blade and uses molds
valued in the millions of dollars. AM approaches incorporating both discontinuous and contin-
uous fiber reinforcement will be applied, but the focus will be on concepts that enable design
innovation and result in cost, weight, and embodied energy reduction of the resulting composite.
The additive processes employed will include real-time consolidation and rigidization to overcome
the need for heated molds or ovens, reducing the energy requirements, and enabling positioning
of continuous fiber reinforcement out-of-plane without support tooling, overcoming current de-
sign limitations. The proposed activities build on two key areas of technology demonstrated at
the laboratory-scale at Colorado State University (CSU): (i) out-of-build plane continuous fiber
thermoplastic composite additive manufacture with radically reduced tooling; (ii) LASER-assisted
local thermal processing of thermosets tailored for extrusion, enabling unsupported out-of-build
plane processing.

2 Introduction

In the context of additive manufacturing of thermoplastics to design wind turbines, people

need to rethink the concept of 3D printing. This results in changes in the printing material, in
the machines used or in the path planning. Nowadays, classic 3D printers use a layer-by-layer
approach. These layers are all planar. That is why people speak more about 2.5D printing.
Within this project, I used a 6-axis robot in order to print non-planar layers and to implement
normal-to-surface path. The material I used to print the most was glass fiber.
The classic process which print planar layers provides undesirable consequences such as staircase
effect. This results in a reduction in the structure coherence and mechanical problems. This
staircase effect also provides bad consequences about aesthetics : People can find rough structures
due to striations. Other properties of an object can be affected because of staircase effect : friction,
fluid-dynamics, and aerodynamics can be different. A concrete picture about staircase effect is
given on figure 1.

e

Desired)
geometry //
»/
/ Individual
/ layers

|

Figure 1: Concrete example of the consequences of staircase effect

By the way, the stair-stepping is way worse on surfaces with a low ramp angle than on those
with a high ramp angle. A graph showing this phenomenon is available on [Alh18§].
Furthermore, I tried to stay normal to the printing surface with the robot. This will enable people
to have a better layer adhesion, to avoid collisions between the nozzle and the piece or to have
lower roughness on the surface (and so better aesthetics properties). To adapt to the laboratory
tools, I used Python, RoboDK and Slic3r to develop the process. These tools were very different
from those I used during my second year at ENSTA Bretagne (I used CoppeliaSim for simulation,
Cura for planar slicing...)
This work presents a slicer that is capable of generating a .CSV object which contains the position
and the normal vector for every point. I will also explain how people can use this file to print a
piece with RoboDK.

3 Generation of non-planar layers

To print a 3D object, people generally follow a three-steps approach. First, they design
their piece with CAD softwares such as Catia or Autodesk. Then, they transfer the piece to an
other software which is called a slicer. For example, at shcool, we are used to use Cura which is a
planar slicer. This step enables to convert a 3D piece into a GCODE. This kind of file is readable
by a 3D printer and contains the different points the nozzle should reach. Normally, software as
Cura just slice the piece into very thin layers according to the user parameters (layer thickness...).
In our context, to generate the non-planar layers, I use an open-source software called Slic3r. The
details about how to use it was found with [Sli]. First, I will explain the theoretical approach to
generate non-planar layers. I will particularly explain how to slice in a multidirectionnal way and
how to generate a toolpath for a complex piece. Then, I will give a brief tutorial which shows how
to use the software and why it will be useful for the rest of the process.

3.1 Non-planar slicing

The multi-direction toolpath is generated by slicing the model in different directions in
order not some layers to be horizontal and so planar. This process of multidirectionnal slicing uses
two main modules.

The first module takes the object and decomposes it by searching for closed concave loops. There-
fore, it slices the original object into sub-volumes. In other words, this module is designed to do
a mesh of the object. The second module is designed to calculate the best printing directions for
each sub-volumes. the software uses regular planar slicing algorithm to slice them. Nevertheless,
due to the sub-volumes sizes, people can still speak about non-planar slicing for the entire object.

3.2 Fully three-dimensional toolpath generation

Researchers Micali and Dornfeld (2016) devised a method to eliminate stair-stepping

artifacts resulting from the layer-based structure in 3D printing. This method was found in [Alh18].
Their approach involves generating a 3D toolpath capable of following a complex, free-form surface.
This approach was primarily designed for three-axis machines. It takes into consideration the
nozzle’s geometry to avoid collisions between the nozzle and the printed piece.
First, people need to generate the inverse toolpath offset to calculate the printability of a path.The
nozzle is conceptually flipped upside down, with its tip tracing the printing surface to define an
envelope shape using its body. This envelope surface serves as a printable and collision-free area.
Points above the printing surface on the envelope are defined as unreachable by the extrusion head,
rendering the current shape unprintable. A tolerance-based comparison between the envelope and
the object surface determines whether the envelope can replace the object surface for toolpath
generation. The toolpath is constructed by starting the process from one side of the surface and
progressively filling along an edge until the opposite side is reached. This filling process keeps
going with new starting points in unfilled areas until the entire surface is covered. By applying
this methodology to a single shell, a complete 3D toolpath without any collision is generated.

3.3 How to mix planar and non-planar layers

This process uses the method of Huang and Singameneni (also found thank to [Alh18§].
This method is based on a classification of the facets of an STL file. An STL (stereolithography)
file is a common file format used in 3D printing and computer-aided design (CAD) to represent
the geometry of a three-dimensional object. It defines the surface geometry of the object as a
collection of interconnected triangles, creating a mesh representation. Each triangle is defined by
its vertices (points in 3D space) and their corresponding normals (vectors indicating the direction
of the triangle’s surface).
The classification of each facet is based on the angle between the normal vector of the triangle
and the z-axis. After that, each piece of the mesh belong to top, bottom or side surface. Next,
all connected surfaces are defined as one single continuous top surface. The top surface is offset
downwards along their facet normals to get the number of desired shell surfaces. To get the planar
layers, the offset surfaces are subtracted from the original STL and a new one is created. The
planar layers are then generated from the new STL.

3.4 Comparison of a piece with different types of slicing

In order to understand the real difference between a planar slicer and a non-planar slicer as
Slic3r, I decided to visualize a piece using both types of slicer. In figure 2, the piece was sliced
with the planar version of Slic3r. The way it works is comparable to classic slicers as Cura. In
figure 3, the piece was sliced with the Slic3r non-planar version.

Figure 2: Slicing of the piece with a planar process Figure 3: Slicing of the piece with a non-planar pro-
cess

These following pictures show that the non-planar Slic3r functionality provide more coherent
pieces. Indeed, the mechanical structure and aesthetics is clearly better in the second case.

After having visualized the piece in both cases, I can generate the Gcode. To do that, I have
to put the ”verbose” option in the software functionalities. It enables to have comments on the

GCODE which are very helpful for the following of the process. The beginning of a GCODE
produced by Slic3r is given on the next page :

M109 S285 ; set temperature and wait for it to be reached
G21 ; set units to millimeters

G90 ; use absolute coordinates

M82 ; use absolute distances for extrusion

G92 EO ; reset extrusion distance

Gl Z0.300 F7800.000 ; move to next layer (0)

Gl E—2.00000 F2400.00000 ; retract extruder 0

G92 EO ; reset extrusion distance

Gl X234.607 Y225.055 Z0.300 F7800.000 ; move to first

Gl E2.00000 F2400.00000 ; unretract extruder 0

skirt point

G1 F1800

Gl X235.118 Y224.545 Z0.300 E2.01642 skirt
G1 X235.750 Y223.989 Z0.300 E2.03555 skirt
Gl X236.571 Y223.406 Z0.300 E2.05845 skirt
Gl X237.515 Y222.859 Z0.300 E2.08324 skirt
Gl X238.652 Y222.350 Z0.300 E2.11156 skirt
Gl X239.264 Y222.154 Z7Z0.300 E2.12617 skirt

calculate the normal vectors to each point.

Now, I have the different points of my different layers. The next step of the approach is to

4 Normal-to-surface path programming

The very first step consists in using the previous process with Slic3r. Indeed, I used the different
comments in the gcode to have a list of layers. If my program recognizes the words "END” and
"layers” in the same comment, I add a layer to the list. A layer is characterized by a list of points
belonging to it. For the process of finding the normal vectors to each points of the layers, I use
two methods : A first one based on interpolation and a second one which creates a mesh for the
layer. I will explain the both methods and compare them. For this example, I choose the piece
available on figure 3 because it has planar and non-planar layers.

4.1 Interpolation of the layers

The first step of the interpolation is creating x and y profile in the non-planar layers. In other
words, I cut my layer into slices of 0.3 mm according to x and y axis. The the value of 0.3 mm
was decided by an ex-master student from my lab called Isaac Morris. Because it is easier at
the beginning, I considered that my profiles are polynomial. To interpolate the curve, I used the
least-square method which consists in minimizing the sum of the squares of the deviations. To
reach this goal, I used Python classic library as Scipy which contains a module which implements
this method. The code I implemented is available here :

from scipy.linalg import lstsq
def least_squares_surface(x, y, z, degree):
X = np.array (x)

y = np.array (y)

z = np.array (z)

A = np.column_stack ([x *x i % y *x (degree — i) for i in range(
degree + 1)])

coefficients , residuals, _, _ = Istsq(A, z)

def surface_function(x, y):
return sum(coefficients[i] * x *x i % y *x (degree — i) for i
in range(degree + 1))

return surface_function , residuals , coefficients

This simple function consists in creating first a conception matrix with polynomial terms and
then doing the linear regression. Nevertheless, this function takes into argument the degree of the
expression. To determine it, I used the code on the next page :

def choose_degre(x,y,z):
residuals_list =[]
grid_x, grid_y = np.meshgrid(np.linspace (min(x), max(x), len(x)),
np.linspace (min(y), max(y), len(y)))
for i in range(15):

surface ,residuals , coefficients = least_squares_surface (x,y,z,
degree=i)
surface_z = surface(grid_x, grid_y)

residus .append(residuals)
ideal_deg=residuals_list.index(min(residuals_list))
final_surface ,residuals_finals ,coefficients =
least_squares_surface (x, y, z, degree=ideal_deg)
final _z=final _surface (grid_x, grid_y)
return ideal_deg ,final_z

In this function, I first create grids of points in XY plan by using Meshgrid function from numpy
module. Then, I calculate the least-square method residuals for a number of degrees that I choose
(I take 14 degrees in this example). I finally find what degrees has the best residuals values (I
want the less huge residuals) and I use it to calculate the best polynom associated to my surface.
Nevertheless, when I printed my profiles thanks to Matplotlib, I discovered that there were some
”problematic points” which perturbate the interpolation. An picture of these points are available
on figure 4 (they are surrounded by a black circle):

".ah-"‘.

=T VSR T]

HEREE

a0 =i] 100 110 120

Figure 4: An x-profile and its problematic points

To fix this problem, I chose to delete the problematic points of the profile to enhance my model.
To do that, I used the RANSAC algorithm which is a robust model estimation technique that is
mainly used to estimate a mathematical model from a data set that contains outliers (values that

fit the model) and outliers (values that don’t fit the model). My version of RANSAC algorithms
is given here :

def ransac(points, iterations, threshold ,ideal_deg):
points=points.tolist ()
best_model = None
best_inliers = []

for i in range(iterations):
sample = random.sample(points, ideal_deg+1) # S lection de
deg_ideal+1 points pour un polyn me de degr deg_ideal
ys = [point [1] for point in sample]
zs = [point [2] for point in sample]

model = np. polyfit(ys, zs, ideal_deg)

inliers = []
for point in points:
if abs(point[2] — np.polyval(model, point[1])) < threshold
and point[2]<max(z_first_x):
inliers .append(point)

if len(inliers) > len(best_inliers):
best_model = model

best_inliers = inliers

return best_model, best_inliers

First, I select random points (ideal degree+1 points for a polynom with an ideal degree). Then, I
find the inliers points with a distance below a certain threshold. Then, I update the best model
and the best inliers if the number of them is better than in the previous best model. People have
to adapt this algorithm in function of the nature of the profile : Here, I give an example for an
x-profile. To use the same program for a y-profile, people have to replace line 32 by the instruction
”xs = [point[0] for point in sample]” and line 35 by the instruction ”model=np.polyfit(xs,zs,ideal)”
The result of the interpolation for an x-profile is given on figure 5 (on the next page) :

10

. L]
o

o N B O @

¥

80 920 100 110 120

Figure 5: An x-profile and its interpolation

In this figure, people can see two colors : The blue curve is the real one and the orange is the
interpolated one. What is interesting is the little difference between these two curves. Nevertheless,
I am aware that the use of RANSAC algorithm here is a little bit approximative : I don’t know
the importance of the deleted points in the mechanical structure of the piece. I considered that
they were part of a transition between different profiles which could not be always true.

Nevertheless, I thought that the better way to verify the reliability of the method was to print
the piece and analyze the mechanical structure. Therefore, I kept going the approach by calculating
the normal vectors for the non-planar layers.

4.2 Calculation of the normal vectors for the entire layers

During this approach, I tried to calculate the normal vector for each point by calculating a
gradient : Each point belong to an x-profile and a y-profile. I calculate the gradient for both
profile by calculating the partial derivatives according to x and y. Then, I just evaluate the partial
derivatives in the point I want to calculate the normal vector. Thanks to that, I can establish a
gradient matrix (with a third row composed of 1) which I normalize after that. Then, I calculate
the sum of the x-profile gradient and the y-profile gradient. The result of this process is shown on
figure 6:

Thanks to this figure, people can see that there is absolutely no convergence in the vector field.
Indeed, that comes from the calculation of the normal vectors for each point (the sum of the two
gradients don’t really give a normal vector to the point) and from the deletion of some points
in RANSAC algorithms. That is why I had to develop an other method to calculate the normal
vectors for a non-planar layer.

11

Figure 6: Normal vectors of every points in the layer

4.3 generation of a mesh for each layer

After having generated a list of layers, I decided to mesh the layers. It enabled me to have a
plan that closed every point of them. I chose a Delaunay triangulation for my mesh. Indeed, the
triangles are quite small; so I can have a better precision. In addition to that, this is quite a fast
and easy process in Python : I just have to import the Delaunay section from the Scipy.spatial
library. The lines of Python codes which enable to have the mesh (a list of triangles) are given
there :

from scipy.spatial import Delaunay

def Delaunay(x,y,z)

surface_2d_points = np.column_stack ((x, y))
tri = Delaunay (surface_2d_points)
surface_3d_points = np.column_stack ((x, y, z))

surface_3d_triangles=surface_3d_points[tri.simplices]
return surface_3d_triangles

Here, x,y and z are the lists containing the coordinates of each point in the layer. You can have
them by searching for the elements in the layers list.

Nonetheless, it is important to explain the theoretical part about Delaunay triangulation. More
details are given on [CD] The first step is to create a Voronoi diagram. It consists in subdivising
the layer into n cells. This subdivision is based on this assertion comparaison: A point q belongs to
the p; cell if d(q,p;) is inferior to d(q,p;). Here, d(p,q) symbolizes the euclidian distance between
p and q. An example of Vornoi diagram can be shown on figure 7.

12

The next step is to create the triangulation : We just have to connect the points of all neighboring
Voronoi cells. The final mesh can be seen on figure 8.

Figure 7: Voronoi diagram

Figure 8: Delaunay mesh

4.4 Calculation of the normal vector of each triangle

Now that I have all of my triangles, I will try to calculate the normal vector to each of
them. There is two ways to do it. The first one is to consider that every triangle belongs to a
plan. The aim is to find a normal vector to this plan. We all know that a typical equation for a
plan is ax + by + cz +d = 0. In addition to that, we know that a,b and ¢ can be considered as the
coordinates of a normal vector. Therefore, if I have three points (with their coordinates), I can
just do an easy matrix calculation. An other method consists in calculating the cross product of
the vectors generated by the triangle vertices. If 51,52 and S3 are the three vertices of the triangle,
then the vector S152 x $253 is normal to the trlangle In order to make the following part steps
easier, I normalized the vectors.

4.5 Calculation of the normal vector of each point

I have the normal vector for each triangle thanks to the previous step. The next step is
to do the same for the points. Thanks to my mesh, every point is a vertice of several triangles.
Therefore, I can consider my normal-to-point vector as the mean of the normal vectors to the
triangles in which the point is involved. Moreover, this this average is weighted by the distances
between the points and the center of my triangles. Concretely, this approach is quite interesting

13

because it enables to have convergence with the normal vectors. The result of the method can
be shown on figure 10. I also added the result with the interpolation method (figure 9) in order
people to see the difference between the both process.

Figure 9: Interpolation method for the generation
of normal vectors Figure 10: Delaunay triangulation method for the

generation of normal vectors

From these two figures, people can see that there is a better convergence of the normal vectors
with the method using the Delaunay triangulation. The convergence will enable to make the
movements of the robot easier and to have a continuous path. With the following figures(figures
11 and 12), people can see the continuous path and orientation of the robot.

Figure 12: continuous path generated with Delau-
Figure 11: continuous path generated with Delau- nay triangulation method - version 2
nay triangulation method - version 1

14

4.6 Verification of the method

The next step of the process is to verify the method for each point of the path. The approach
consists in taking three points very closed together. I take the point from which I want to verify
the normal vector and I verify its abscissa and its ordinate. Then, I take the point which have
the closest abscissa and the closest ordinate. Thanks to these three points, I can generate two
vectors (the origin is the point from which I want to verify the normal vector). I can calculate the
dot product between the normal vector previously calculated and these two vectors. If the scalar
product is less than 0.15, I consider that the normal vector is correct for the point. Otherwise, I
search the points around my point I want to verify the normal vector (I use a Python code which
enables to automate this search by calculating distance). Then, I calculate the mean of the normal
vectors from these points. Nevertheless, I didn’t have to correct the normal vectors for a huge
amount of points. For a planar layer, I didn’t have no mistake for my points. For a non-planar
layer, I had a mistake for a very little amount of points (three percent of the layer). Indeed, for a
non-planar layer, I had 64 problematic points for more than 1800 tested points.

5 Simulation of the process

The next step is to simulate the process. This is very important because it enables to be aware
of the different behaviours of the robot. In order the simulation to be efficient, I have to recreate
the real work environment. That is why I decided to use a RoboDK scene created by Isaac Morris.
In this scene, people can find the two ABB robots, the turntable (which is equivalent to a printing
bed) and other elements from the real environment. A picture of the RoboDK scene is available
on figure 13.

=,

=,)

side b

_*;’\ AdisaR To
1600-45/2

) 05 B

TurntableZ Bass

2 |

Figure 13: Scene for simulation

15

The main difference between the two robots is the extrusion head they use : the robot on the
left is qualified as robot 1 and the one on the right is called robot 2. Thank to the previous steps,
I have a list of points which corresponds to the path of the robot and a list of normal vectors (for
every point of the path). Given that the simulation scene is on RoboDK, I decided to use the
RoboDK library of Python to predict the different behaviors of the robot. The first step of the
simulation process is to connect to the robot of the scene and to choose the frame I am interested
in (here I take the frame of the turntable which is my printing bed) and the robot speed. Then, I
establish my strategy :

- For the orientation of my tool, the main goal is to determine the good rotations : I have several
normal vectors and I know that the z-axis coordinates of my turntable frame are (0,0,1). I can
calculate the angle between the z-axis of my printing bed and my normal vector. To reach that
goal, I can just calculate a scalar product between these normalized vectors which gives me the
cosinus of the angle. The instruction I give to the robot is to do a rotation (with the angle I
previously found) around x-axis. For my situation, it is better to consider a rotation around an
only axis. I chose the x-axis from my different experiments. Moreover, I had to determine the
sign of my angle in function of the place the tool was on the piece. I calculate the cross product
between the z-axis of the printing bed frame and the normal-to-surface vector. Then, the sign of
the angle will be the one of the cross product x-coordinate.

- For the position of the tool, I just take the coordinates of the points my path and I add an offset.
This offset is just the position of the print bed center according to the scene main frame (which
is called datum). The results of the simulation can be seen in the following figures. They show
simulations for both robots in different cases : printing of a planar layer for robot 1 (figure 15),
printing of a planar layer for robot 2 (figure 14), printing of a non-planar layer for robot 1 (figures
16 and 17), printing of a non-planar layer for robot 2 (figures 18 and 19).

w " ABBIRB4. -
v 7 IRBaso... [[x ABB IRB 460...
*. PUL... IRB4600..

@ Target2
Pedestal . PULSA...

« Home e Target?2

w ' ABBIRBA.. & Pedestal
| w . IRB460gs & Home
Wl * . ABBIRB 460...
w /. IRB4600._...
*. robot_...
* nwec_A30..
e Target2
& Target3
TurntableR1
% Turntable
Turntable R...
% Turntable...

Figure 14: Printing of a planar layer

with robot 2 Figure 15: Printing of a planar layer

with robot 1

16

- ¢ TwrntableMR Base

oy -

i [umntablel Base

!'

jobot_dyzé 1 aluminums
+ [umntable2 Base

bc)tidyze 2_aluminum-
= [urntableAR Base

i R

Figure 18: Printing of a non-planar layer with robot

5 Figure 19: Printing of a planar layer with robot 2

On these figures, people can see that the planar and non-planar layers can be printed by the
robots. At the beginning, the robots could print only one side of the piece. Nevertheless, the
figure show that this problem was solved. The source of the mistake was that I did not change the
sign of the angle in function of the tool position on the piece. Some of the videos of the different
printings are available in the following link (I added an offset on z-axis in order to be clearer) :

- https://youtu.be/CWvhjipm5hA (printing of a non-planar layer with Robot 1)

However, some of the points of the path were not reachable by the robot. Indeed, their position
and the orientation of their normal vector were represented as an unreachable target. To identify
the positions of the unreachable targets, I plotted them in a graph which can be seen on figure 20.

17

Figure 20: Distribution of the unreachable targets on the piece

On the figure above, people can see that the unreachable targets are on the contour of the piece.
An unreachable target can come from two problems : the position of the point or the orientation of
its normal vector. First of all, I tried to adjust the position of my piece on the print bed. Indeed,

I put my piece in the very center of the turntable. It resulted in a reduction in the amount of
unreachable targets (which can be seen on figure 21)

b 51

- 47
- 46
- 45

80
30
100
110

-
N

Figure 21: Distribution of the unreachable targets on the piece after centering the piece on the turntable

18

On this figure, people can see that the problems stay on the contour of the piece. People can
guess that there could have been a bordure effect in the calculation of the normal vectors in the
precedent part. To fix the problem, I decided to filter the normal vectors in the outline of the piece
: I created a border zone in my piece (which encompasses all the normal vectors present between
my outline and 2 mm before it). Then, I calculate the mean normal vector of that zone. Then,
I replace every of the unreachable normal vectors by the mean normal vector of the zone. The
difference before and after the filtering is shown on the following figures (figures 22 and 23):

i

Figure 23: Distribution of the normal

Figure 22: Distribution of the normal i !
vectors on the piece after filtering

vectors on the piece before filtering

Here, people can see on figure 22 some surrounded normal vectors which represent unreachable
targets. After filtering, I still have a convergence in my vector field and all the targets are reachable.
That problem shows the importance of the simulation step because it would have been dangerous
to directly launch the program on the robot : Indeed, I could have reached singularities that could
have ultimately disrupted the robot’s operation.

19

6 Implementation on the real robots

For the tests on the real robots, I established several strategies. The first one was to connect
to the real robot and to apply my simulation codes directly. I tried to connect to the robot via
RoboDK with the official documentation. Nevertheless, I did not succeed in connecting one of the
robot because there was additional security on them. I also tried to write programs in the robot
language (which is called RAPID and is specific to ABB robots). Nevertheless, I did not have
much time to learn this language or to try to convert my Python codes in RAPID The strategy I
finally found is to use the software RoboDK. After a weekly meeting, one of my colleague explained
me how to use it : You just have to create a .CSV file which contains the position of every points
and their normal vectors. After that, you can create a curve on RoboDK and putting it under the
frame of the printing bed. The software will adapt to the coordinates of the points to the frame
and will automatically convert that into a RAPID program. Therefore, I just had to create a .CSV
file from my points and their normal vectors (which is quite easy with Python). Once I created
the RAPID code thanks to the previous step, I can transfer the code to the robot with a software
like Filezilla. Finally, I did some printing tests with this approach. Some videos of these tests are
available here :

- https://youtube.com/shorts/9q1EIVa05Zs

- https://youtube.com/shorts/ClkUaQ2uubg

The first link show a test without printing anything. The second test show a test which was
designed to print an airtruss (within the project of a colleague). The final result of the print is
shown on figure 24:

Figure 24: Printing test within the project of a colleague

In this figure, the part I printed is the white one. The blue support had already be done by
a 3D classic planar printer. From my point of view, the piece is interesting because the angles
are respected and the mechanical structure seems solid. Yet, it would have been interesting to do
additional mechanical tests (tensile strength test, flexural strength test...) to verify the efficiency
of the process.

20

7 Summarizing of the global approach and prevision of the next steps

During this four-month internship, I had to develop a method which combines a process of non-
planar slicing ans an approach of normal-to-surface path programming. For the first step, I use the
software Slic3r which enables to create Gcecodes mixing planar and non-planar layers. Moreover,
the comments in the file are very helpful for the following part : They enable to have the points in
every layer of the piece. The second step consists in calculating the normal vectors for each point
of the path. Once I have this data I can generate a .CSV file which is used by RoboDK to create
a curve. This is converted into a RAPID code understood by the robot. Finally, the RAPID code
can be transferred to the robot and the print test can start. In order to be more efficient and to
make the process easier, I created a graphic interface for converting the non-planar Gceode into a
.CSV file. This tool made with the Tkinter Python library can be seen on figure 25

Corverter goode o csv.

Welcome in this app designed to corvert a geode into a csv file

The geoede file could be generatied with Slic3r : You can do planar or non-planar slicing
Click here to access the github of SLic3r non-planar branch |

GCode to CSV Converter

Open GCode File

Progress: 56.72131147540583%

Thiis githulb will give you the way to use the non-planar branch of the slicer
I it is unclear, don't hesitate to contact Lows Roullier : louis roulliengensta-bretagne org

Figure 25: Graphical interface for converting the Gcode tothe .CSV file

on this interface, you can choose the Gcode you want by selecting it on your computer (I

included a button for that). Then, I included a link about the use of Slic3r : It is a Github which
gives details about the way to download the software and to use all the functionalities. The user
can find the .CSV file in the "downloads” section of his computer. Moreover, I also implemented a
virtual machine in collaboration with an ENSTA Bretagne student (Louis-Nam Gros). It enables
the lab to launch our different applications without downloading Ubuntu or even Python.
To continue the approach, people could do more printing tests using the process described here.
They can compare the structure of the piece if there with normal-to-surface path programming
and without. They can also automate the full process with middlewares as ROS (first version).
Indeed, the ABB robots have ROS packages which can be very useful. For example, the packages
enable to connect directly to the robot without generating the .CSV file.

21

8 Conclusion

As a conclusion, this internship was the occasion for me to discover how to work in a lab.

Indeed, I was confronted to a research topic and I had to develop my own approach to fulfil the
objective : I had to establish a global strategy and to decide what weeks would be dedicated to
what step. Thus, I developed organization and rigor skills. Moreover, my internship was in a lab
and my topic had not been treated by my colleague before I came. Therefore, I didn’t have much
advice on the methods to use to reach my goals. That is why I made some mistakes like calculating
the normal vectors of each layer through interpolations. Nevertheless, I learnt how to react and
to change my methods after making mistakes. Finally, as I said previously, I had to adapt to my
lab tools : All of my colleagues were used to these lab tools and I wanted them to use my process.
Therefore, I could not develop my codes, simulation on software like CoppeliaSim (that I used at
school). Thus, I also developed adaptation skills.
Furthermore, it was a very interesting human experience. Indeed, it was the first time I had to
go working in a foreign country. Therefore, it was the occasion for me to discover a new way of
working and to develop my skills in English. Finally, my internship tutor did not send us back the
evaluation sheet. That is why I don’t have it in the annexes.

22

List of Figures

0O 1 O U i Wi =

22
23
24
25

Concrete example of the consequences of staircase effect 4
Slicing of the piece with a planar process 6
Slicing of the piece with a non-planar process 6
An x-profile and its problematic points 9
An x-profile and its interpolation 11
Normal vectors of every points in the layer 12
Voronoi diagram 13
Delaunay mesh 13
Interpolation method for the generation of normal vectors 14
Delaunay triangulation method for the generation of normal vectors 14
continuous path generated with Delaunay triangulation method - version 1 14
continuous path generated with Delaunay triangulation method - version 2 14
Scene for simulation 15
Printing of a planar layer with robot 2 16
Printing of a planar layer with robot 1 16
Printing of a non-planar layer with robot 1 17
Printing of a planar layer with robot 1 17
Printing of a non-planar layer with robot 2 L. 17
Printing of a planar layer with robot 2 0oL 17
Distribution of the unreachable targets on the piece 18
Distribution of the unreachable targets on the piece after centering the piece on the

turntable L L 18
Distribution of the normal vectors on the piece before filtering 19
Distribution of the normal vectors on the piece after filtering 19
Printing test within the project of a colleague 20
Graphical interface for converting the Geode tothe .CSV file 21

23

Bibliography

[Alh18] Daniel Alhers. 3d printing of nonplanar layers for smooth surface generation. 2018.
[CD] Annabelle Collin and CECILE DOBRZYNSKI. Méthode de delaunay.
[Sli] Github of slic3r : https://github.com/zip-o-mat /slic3r/tree/nonplanar/.

24

