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Abstract

Traditional neural network models for complex dynamical systems lack explicit incor-
poration of structural engineering insights and the interconnectedness of various
subprocesses that are related to the multiphysics nature of such systems. Conse-
quently, these neural network models are often perceived as data-driven black boxes,
in contrast to physically inspired equation-based representations, where appropriate
parameters are identified in a more transparent manner. To bridge this gap, a new
approach involving physics-inspired structuring of neural networks has been devel-
oped. This approach aims to enhance the modeling capabilities and understanding
of complex systems by incorporating domain knowledge into the network's archi-
tecture without significant loss in terms of precision. This new approach has been
applied to the thermal and electrochemical behaviour of high-temperature fuel cells.
However, this initial model still requires human intervention to choose hyperpara-
meters in order to obtain a fully meaningful network. The goal here is to make
the system autonomous in determining appropriate hyperparameters.

Résumé

Les modèles traditionnels de réseaux de neurones pour les systèmes dynamiques com-
plexes manquent d'intégration explicite des connaissances qu'il peut y avoir entre
les différents sous-processus liés à la nature multiphysique de ces systèmes. Par con-
séquent, ces modèles de réseaux neuronaux sont souvent perçus comme des boîtes
noires pilotées par les données, contrairement aux représentations basées sur des
équations physiques où les paramètres appropriés sont identifiés de manière plus
transparente. Pour combler cette différence, une nouvelle approche impliquant une
structuration des réseaux de neurones inspirée de la physique a été développée. Cette
approche vise à améliorer les capacités de modélisation et la compréhension des sys-
tèmes complexes en incorporant les connaissances du domaine dans l'architecture du
réseau sans perte significative de précision. Cette nouvelle approche a été appliquée au
comportement thermique et électrochimique des piles à combustible à haute tempéra-
ture. Cependant, ce modèle initial nécessite encore l'intervention humaine pour choisir
les hyperparamètres afin d'obtenir un réseau entièrement interprétable. L'objectif est
de rendre le système autonome quant à la détermination des hyperparamètres.
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1 Introduction

Optimizing the performance of solid oxide fuel cells (SOFC) represents an essential effort
in the quest for increased energy efficiency and a reduction in battery production given
the pollution caused by the latter. SOFCs are known for their notable efficiency metrics.
They function in an ecologically responsible manner when the essential fuel, comprised of
hydrogen and/or hydrocarbons, is sourced from renewable origins.

The integration of artificial neural networks has emerged as a promising avenue to
model and control the intricate processes governing SOFC behavior. However, while it is
possible to attain relatively swift outcomes with these neural networks, extracting mean-
ingful physical information from them, especially in the case of multiphysical phenomena,
proves to be exceedingly challenging. For this reason, researchers commonly regard neural
networks as black-box models. Consequently, the motivation for physically inspired neural
network structuring to model SOFC system behavior has grown [RKF+21] in order to
increase the amount of information that can be extracted from the neural network.

Moreover the model obtained with a classic neural network may not be efficient enough
to allow continuous monitoring of the system, which is necessary for control purposes. This
can be accomplished through the application of nonlinear control methodologies, which are
crafted using low-order yet adequately precise descriptions of dynamic systems [RSA15b,
RSA15a, FRKA20]. Moreover given that these control approaches frequently require esti-
mations of unmeasurable system states and perturbation variables, encompassing both
transient heating phases and non-stationary high-temperature operations, researchers have
highlighted the quasi-linearity present in dynamic models expressed by ordinary differential
equations (ODEs), as well as the affine relationships linking control inputs and system
states, as noteworthy advantages.

The opening segment Section 2 of this report provides a concise overview of solid oxide
fuel cells and the intricacies associated with their modeling and control. We delve into the
foundational theoretical principles that underlie our work.

In Section 3, is described the design of neural networks. We shed light on the con-
ventional challenge posed by neural networks as "black-box" models, often difficult to
interpret. In contrast, the approach presented takes a novel route by structuring the neural
network to extract a tangible physical meaning.

In Section 4 is described how to take into account the different non-structural con-
straints, to adhere to physical considerations, ensuring a realistic depiction of system
interactions.

Section 5 and Section 6 delve into the details of the development of algorithms to
automate the search for optimal weights apparent in the cost function used during the
training of the neural network, as well as number of hidden neurons in some specific layers.
We introduce the application of simulated annealing for weights optimization, highlighting
its efficacy in producing high-performance solutions. Additionally, we outline a clustering-
based approach that aims to uncover sets of promising weight values, offering insights into
potentially optimal neural network configurations.

Finally, conclusions and an outlook are presented in Section 8

Introduction 1



2 Equation-based modelling of the thermal behaviour
of a SOFC stack

Generally, SOFCs are intricate systems composed of three primary components: the anode,
the cathode, and the electrolyte. As the performance of SOFCs is enhanced by intercon-
necting more cells, the complexity of the modeling task escalates, owing to the growing
number of distinct components, such as interconnections and seals [BA+17, Spi18].

SOFC systems and their constituent elements can be subject to modeling and analysis
with diverse objectives and intentions, including the exploration of cell materials [TMK+16],
examination of the impact of particle size in the anode microstructure [CX01], and the
optimization of electrode microstructures [CYS+18]. In essence, the overarching goal of
modeling a SOFC system is to enable its application in control and diagnostics.

2.1 Ordinary differential equation based model of the thermal
behaviour of a SOFC stack

It has been shown that an equation-based model for the thermal behaviour of an SOFC
system can be used to perform tasks including model-based parameter and state estima-
tion, as well as control design for the heating and high-temperature reaction phases of the
SOFC system [RSA15b, RSKA16]. The models for describing the thermal behaviour of a
SOFC consists of two elements. The first part corresponds to stack modules and the second
one corresponds to a preheater. The preheater is composed of an anode and a cathode as
well as associated mass flow controllers (Figure 2.1). In this paper the focus will be limited
to the stack.

Figure 2.1. Fuel stack module with gas preheaters for a parallel flow arrangement of cathode
and anode gases [RKF+21].

In order to control the system in real-time, finite-dimensional sets of ODEs are chosen as
a good compromise between modelling accuracy and computational complexity. Therefore,
the fuel cell stack module is divided into nx=LMN elements of equal dimension. If
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we denote LL; LM ; LN as the dimensions of the stack, each sub-cuboid has dimensions
lL=LL/L; lM =LM /M and lN =LN /N . To identify a sub-cuboid the indexing I 2 J1;
LK� J1; MK� J1; NK is used (Figure 2.2.a). Hence, the temperature of the sub-cuboid
indexed by I is given by

#_I=
1

cImI

 
Q_ HTI +

X
G2fAG;CGg

Q_
G;Ij

¡
I +Q_ ELI +Q_RI

!
(2.1)

where

¡ HT refers to heat tranfer

¡ G refers to enthalpy flow

¡ R refers to exothermic reaction enthalpy

¡ EL refers to omic losses

¡ see also Figure 2.2.b

(a) (b)

Figure 2.2. (a) Spatial semi-discretization of the fuel cell stack module (b) Local energy balance
of the semi-discretized fuel cell stack module [RKF+21]

2.2 Quasi-linear structure

According to [IRK+19, RKA18] the previous non linear ODEmodel for the thermal system
behaviour can be re-written into the quasi-linear, input-affine state equations. Let x be the
state vector containing all finite volume element temperatures and p a parameter vector.
The quasi-linear equation is then

x_ =A(x; p)x+B(x; p)u (2.2)

This results from assuming the linearity in the stack temperatures for the heat transfer
terms Q_ HT

I and by considering the heat capacities of all gases and reaction enthalpies in

Q_ G;Ij¡
I and Q_RI. Therefore, a multiplicative coupling between A(x; p) and x is obtained

and both A and the input matrix B depend on x and p. B(x; p) contains the ohmic
losses Q_ EL

I .

Equation-based modelling of the thermal behaviour of a SOFC stack 3



Considering that L=N =1 and M =3 as done in [RKF+21], the matrix turns into

A=

24 a11 a12 0
a21 a22 a23
0 a32 a33

35 B=

24 b11 b12 b13 b14
b21 0 0 b24
b31 0 0 b34

35 (2.3)

and

x=
�
#(1;1;1) #(1;2;1) #(1;3;1)

�
T

All inputs (control and disturbance variables, i.e., the ambient temperature, the anode and
cathode gas inlet temperatures and the electric current) are summarized in the vector

u=
�
#A #AG;in #CG;in

1
3
I

�
T

It is assumed that the current was homogeneous such as I(1;1;1)= I(1;2;1)= I(1;3;1)=
1

3
I.

With in-depth structural analysis of this system model few properties are needed to
reflect physically motivated stability properties [IRK+19, RKA18]

¡ all off-diagonal elements of the matrix A are positive (Metzler matrix)

¡ all diagonal elements of A are strictly negative

¡ all elements of B are positive

¡ from a thermal point of view #CG;in is the only control input and other entries in
u are disturbance inputs

3 Physically structured neural network modelling

It is desired to derive continuous-time network models. For this purpose, as mentionned
in [RKF+21] static mapping between the current system states

x= [x1; :::; xn]T (3.1)

as well as all measurable time-dependant control, input and disturbance variables

q= [q1; :::; qm]T (3.2)

in the input layer of the neural network and the outputs of the network

x_ = [x_1; :::; x_n] (3.3)

All of those vectors are low-pass filtered with the same time constant so undesirable phase
shifts between the input-ouput relations are avoided. The system is then represented by

x_ = fnet(x; q) (3.4)

4 Section 3



instead of (2.1) and (2.2). However, this model does not distinguish between the different
phenomena causing the temperature variations which is essential if we want to control the
system. Such control procedures usually intend to manipulate the enthalpy flow of the
cathode gas through adjustments in both the inlet temperature and the corresponding mass
flow of the cathode gas. Both these parameters are components of the vector q. By using
such a control procedure, temperature fluctuations brought about by exothermic reaction
enthalpies are mitigated.

3.1 Separation of heat transfer and exothermic reaction enthalpies

According to [RKF+21] the equation (3.4) can be divided into two parts, temperature
variations due to exothermic reaction enthalpies and heat transfer phenomena

x_ =x_R+x_th= fnet;R(x; q)+ fnet;th(x; q)

Moreover it has been shown that fnet;R(x; q)�0 for vanishing currents I�0. Therefore ,
it can be inferred that during the heating phase, the values of fnet;R represent directly
generated disturbance heat flows and these can be compensated by a control process to
keep the cell temperature within a certain range.

That leads to the following neural network structure

Figure 3.1. Network resulting from the separation of heat transfer and exothermic reaction
enthalpies [RKF+21]

The connections indicated by the empty arrowheads represent connections for which
the weights are determined a priori, as their configuration is known. They are therefore not
modified during the training. This is the case, for example, for the summation between x_R
and x_ th is given by ax_R+ bx_ th with a= b=1. Connections where training are possible
are indicated by filled arrowheads.

Physically structured neural network modelling 5



However, this structure has some issues, including overfitting that needs to be addressed.
The solution proposed here involves using a quasi-linear modeling [RKF+21]

x_ th=A(x; q)x+ b(x; q)#CG;in+d(x; q) (3.5)

Just like in the equation-based approach (2.2), a state-dependent system matrix A(x; q)
and a state-dependent input vector b(x; q) are introduced. The latter is linearly coupled
with the cathode gas inlet temperature #CG;in as a control variable. All terms that do not
fit into this structure, such as dependencies on the ambient temperature #A and the anode
gas inlet temperature #AG;in, are captured by the disturbance term d(x; q). The x_R bloc
remains the same [RKF+21].

To represents the matrix product A(x; q)x, the linear subnetwork output in Figure
3.2 encapsulates all matrix elements using a column-wise notation. The weights associated
with the subsequent layers of multiplication and addition are then set to either 1 or 0 in
order to achieve the desired product. The block performing the product b(x; q)#CG;in is
parameterized in a similar manner. All these weights are fixed during the training stage
[RKF+21].

Figure 3.2. Quasi-linear representation of the heat transfer subnetwork

In contrast to the analytical model of the system (2.3), no constraints are enforced on
A(x; q) and b(x; q) during the neural network training. From a modeling perspective, this
signifies a level of freedom that the training algorithm can exploit, allowing it to consider
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interactions not only among directly adjacent elements but also those originating from
more distant elements. This is similar to higher-order spatial discretization techniques,
commonly used for numerically solving partial differential equations [Gus07].

The Bayesian regularization backpropagation algorithm and mean squared error (MSE)
regarding the derivatives of the state variables MSEIN will be employed for training the
neural network.

MSEIN=
1
n

X
i=1

n

(xM¡x)i2=
1
n

X
i=1

n

(#_M;i¡#_ i)2 (3.6)

where the subscript M indicates that it is a measured value the absence of this subscript
indicates a predicted value.

Remark 3.1. The hidden layer H introduces nonlinearity into the calculation of the
coefficients of the matrix A(x; q) and the vectors b(x; q) and d(x; q), aiming to better
capture the physical phenomena.

4 Incorporating Physical Constraints into the Neural
Network

Throughout the rest of the paper, we will use either Tn or T (n) interchangeably to denote
the value of a variable T at the n-th iteration.

As mentionned in [Eil23] to truly have a physical meaning, several constraints must
be applied. The matrix A(x; q) must be Metzler, meaning that all diagonal coefficients
must be strictly negative and off-diagonal coefficients must be positive. The coefficients of
the vector b(x; q) must must be positive. Moreover high temperature variations within
the battery are not feasible. Thus, x_ must be bounded. The final condition concerns the
system stability, the system is asymptotically stable if all real parts of the eigenvalues of
A(x; q) are strictly negatives.

4.1 Constraints on signs

To implement the constraints on matrix A(x; q) within the neural network, new outputs
have been added [Eil23].

Let's revisit the neural network depicted in Figure 3.2 and focus on the subnetwork
corresponding to the product A(x; q)x. The first column consists of n2 summations that
calculate the n2 coefficients of matrix A(x; q) (these coefficients are circled in green in
Figure 4.1). In order to enforce the signs of these coefficients, they will be associated with

outputs
¡
xA
(i)�

16i6n2 (see Remark 4.1 for more details), as illustrated in Figure 4.1. The
weights of the new connections will be set to 1, and the activation function used for these
outputs will be the hyperbolic tangent

tanh : R ! ]¡1; 1[

x 7! 1¡ e¡2x
1+ e¡2x

Incorporating Physical Constraints into the Neural Network 7



This activation function will serve to determine the signs of the coefficients while avoiding
coefficients that are indeed with the correct sign but too close to 0. This could increase
the chances of these coefficients changing sign and taking on an unintended sign. In our
case A(x; q) must be Metzler. So, a matrix Ad such as

8(i; j)2 J1; nK2
8<: i= j) ad

(ij)
< 0

i=/ j) ad
(ij)> 0

is created and will be used as target values during the training.

Figure 4.1. Extension of the A(x; q)x subnetwork for Metzler character in matrix A

The error related to this new output block is defined by

MSEA=
1
n2

X
i=1

n X
i=j

n ¡
tanh(a(ij))¡ ad

(ij)�2 (4.1)

Remark 4.1. Let fc be the function that associates, for any matrix M of arbitrary size
(n;m)2 (N�)2, the vector vM such as

8(i; j)2 J1; nK� J1;mK m(ij)= vM
(m(i¡1)+j)

If m=1, M is a vector and fc= Id. In the neural network, the matrix A is represented
by the vecteur vA= fc(A). The outputs

¡
xA
(i)�

16i6n2 corresponds to
¡
tanh

¡
vA
(i)��

16i6n2
and the training data

¡
yA
(i)�

16i6n2 is equal to (fc(Ad)i)16i6n2 and MSEA is calculated as

MSEA=
1
n2

X
i=1

n2 ¡
xA
(i)¡ yA

(i)�2:
Similary vector b(x; q)must be positive. Therefore, we add a third output block related

to the first sum column (see Figure 4.2). These outputs again use the hyperbolic tangent
activation function, and the target vector is bd=(1)16i6n. The error related to this output
block is

MSEB=
1
n

X
i=1

n ¡
tanh(b(i))¡ bd

(i)�2 (4.2)

8 Section 4



Using the notation introduced in Remark 4.1 the relation become

MSEB=
1
n

X
i=1

n ¡
xb
(i)¡ yb

(i)�2 (4.3)

Just like with the case above, the weights of the new connections are set to 1.

Figure 4.2. Extension of the b(x; q)#CG;in subnetwork for the vector b positivity

4.2 Temporal variation rates of state variables constraint
In addition to the previous extensions, this section presents the extension that constrains
the variation of temperature over time is reasonable to prevent thermal stress and material
degradation [RKF+21].

Consider two variables (gTemp1; gTemp2)2 (R+
n )2 such as

8i2 J1; nK ¡ gTemp1
(i)

<x_ i< gTemp2
(i) (4.4)

To be considered, these variables will be linked to two new inputs in the neural network.

8i2 J1; nK

8<: x_ i¡ gTemp2
(i)

< 0

¡x_ i¡ gTemp1
(i)

< 0
(4.5)

The newly added ouputs
¡
xTemp1
(i) �

16i6n and
¡
xTemp2
(i) �

16i6n here correspond to

8i2 J1; nK

8<: xTemp1
(i) = tanh

¡
¡x_ i¡ gTemp1

(i) �
xTemp2
(i) = tanh

¡
x_ i¡ gTemp2

(i) � (4.6)

The target vectors used for training is the same for all these outputs and is yTemp=
(¡1)16i6n:

Hence, the errors related to this extension are given by

MSETemp1=
1
n

X
i=1

n ¡
xTemp1
(i) ¡ yTemp

(i) �
2

MSETemp2=
1
n

X
i=1

n ¡
xTemp2
(i) ¡ yTemp

(i) �
2

(4.7)

The weights of the connections introduced here are correctly set to 1 or -1.

Incorporating Physical Constraints into the Neural Network 9



Figure 4.3. Extension that bounds x_

4.3 Stability constraint
A final extension [Eil23] is added which achieves continuous asymptotic stability of the
system i.e. all eigenvalues of the matrix A(x; q) must have negative real parts. To impose
this, the Gershgorin theorem is used.

For i2 J1; nK let Ri be
Ri=

X
16j6n
j=/ i

jaij j

Let D(aii; Ri) be the disk defined by

D(aii; Ri)= fz 2C; jaii¡ z j6Rig

Theorem 4.1. (The Gershgorin circle theorem) Every eigenvalue of A belongs to at least
one of the Gershgorin disks.

Hence, if for all i belonging to J1; nK the inequality Re(aii) +Ri< 0 is respected then
we can ensure that all the eigenvalues of A(x; q) have negative real parts.

Let consider that the matrix A(x; q) is Metzler4.1. Therefore

Ri=
X
j=/ i

jaij j=
X
j=/ i

aij

and ai< 0. Hence
Re(aii)+Ri< 0,

X
16j6n

aij< 0

To implement this in the neural network, a new hidden layer is added to the Ax subnet-
work. it will calculate the sum

P
16j6n aij for each i belonging to J1; nK. The outputs

associated with these sums are

xSt
(i)= tanh

 X
16j6n

aij

!
(4.8)

and the target vector used for the training is ySt=(¡1)16i6n.

4.1. This condition is necessary in all cases so assuming this is not absurd
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4.4 Error correction of neural network
Let J =fA;B;Temp1;Temp2;Stg. As there are several output blocks, each block can be
assigned a weight so that the cost function used to train the neural network is given by

MSET =wINMSEIN+
X
j2J

wjMSEj (4.9)

Due to the fact that the arg min of the MSE function is what matters, the weight wIN can
be fixed to 1. Indeed

8�> 0 argmin (�MSET)= argmin (MSET)= argmin
�

1
wIN

MSET

�

5 Error weights
The purpose of this part is to determine the error weights (4.9) that will be used during
the training in order to robustly fulfill the conditions

¡ A(x; q) have to meet Metzler properties

¡ b(x; q) must be non-negative

¡ temperature change rate must be bounded (e.g. between ¡5K /s and +5K /s)
¡ All the eigenvalues of A(x; q) have negative real parts

5.1 General process
The method employed for the error weigths automation is simulated annealing. It is a
statistical method inspired by metallurgy that aims to find the global minimum of a
function. By analogy with the physical process, the function to minimize is called the
system's energy E. We also introduce a fictitious parameter, the system's temperature T .
The purpose of this variable will be explained later.

Starting from a given state of the system, by modifying it, another state is obtained.
Either this new state improves the criterion to optimize - that means the system's energy
has decreased - or it worsens the criterion. Accepting a state that improves the criterion
tends to search for the optimum in the vicinity of the initial state. Accepting a �bad� state
allows us to explore a larger part of the state space and tends to prevent from getting
trapped too quickly in the search for a local optimum.

This method has the advantage of not requiring various properties on the function to
be minimized (such as continuity, differentiability, etc.) and does not settle for the first
local minimum found.

Theoretical studies have shown that under certain conditions, simulated annealing can
converge to the global minimum; however, this will not be our case. Nevertheless, it will
manage to find an acceptable solution.

5.2 Algorithm
The initial state can be randomly selected from the set of all possible states. This state
is associated with an energy E=E0. Additionally, an initially high temperature T =T0 is
selected in a completely arbitrary manner.

At each iteration of the algorithm, the state is modified. This modification results
in a variation �E of the system's energy. If this variation is negative (i.e., it reduces
the system's energy), it is applied to the current state. Otherwise, it is accepted with

certain probability. For example, the probability can be e

�
¡�E

T

�
. The choice of using the

exponential function for the probability is known as the Metropolis rule.
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There are several ways to reduce the temperature. Here, we have chosen to decrease
the temperature at each iteration following the formula : Tn+1=�Tn where 0��< 1.

5.2.1 Pseudo-code

Let e be the energy associated with state x, and m be the minimum energy found, which
is associated with state g. Let E be the function such as e=E(x). Here is the pseudo-code
Algorithm 5.1
x:=x0
g :=x0
e: =E(x)
m :=E(g)
k : =0
while k <kmaxand e>emax

xn: =neighbor(x)
en :=E(xn)
dE : =en¡ e
if en<e or rand()<P(dE; T )

s: =sn
e: =en

end if
if e<m

g :=s
m:=e

end if
k=k+1
T =�T

end while

5.2.2 Modifications

In our case, the state is represented by the error weights ew=(1;wa;wb;wTemp1;wTemp2;wSt)
and the error is given by

E(ew)=
1
Ns
(MSEA+MSEB+MSETemp1+MSETemp2+MSESt)

r
(5.1)

where n is the dimension of x (3.5) and Ns the number of sampling.
The first element of ew is kept constant equal to 1 then the possible states belong

to f1g� (R+
� )5 but in order to increase the speed of the program the possible states are

restricted to the set Ew= f1g� [0.1; 10]5.
In the function E, the network is trained in the same way as in Algorithm 5.3. The

obtained outputs are compared with the desired outputs to calculate the errors used in
Equation (5.1).

The neighbor function depends on the iteration number k and returns a random vector
y such as : �

y1=1
8i2 J2; 6K yi2 [xi¡��(k); xi+�(k) ]\Ew

(5.2)

more precisely �(k)=A
�
kmax¡ k
kmax

+ b
�
where A2R+, b2R+ and 1<v� 2. As result,

the function neighbor slightly tends to descrease x rather than increase it. This is explained
by the fact that we want the temperature inside the stack to be predicted accurately.
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Therefore, the weight of the error associated with temperature variation should not be
too low compared to the other error weights that provide physical meaning to the neural
network.

Other modifications were made so that the algorithm could adapt to the code. Let a fixed
neural network be given. The termination condition becomes k >kmax= 50 orE(ew)<
emax and the first two conditions have been met at least n 0 times for n0 different train-
ings starting from the exactly the same neural network5.1. This is done with the aim
of making the error weight given by the simulated annealing function more robust. For this
purpose, the function E(xn) will actually return a boolean �success� in addition to the error
en. This boolean indicates whether or not the conditions have been met throughout the

operating period. Then the probability P mentionned in Section 5.2 is defined by e¡
en¡e
T .

The function returns the state ew, the temperature T but also the trained neural network.
Finally, here is the pseudo-code of the simulated annealing used.

Algorithm 5.2
Entries : (x; neighbor; net0; kmax; T0; X; Y )
(g; T )= (x; T0)
e; success=E(x; net0; X; Y )
m= e
k=0
count=0
while k <kmaxand (e> emaxor count<n0)

if success= false
xn= neighbor(x)

end if
en; success=E(xn; net; X; Y )
if success

count= count+1
else

count=0
end if
if en<e or rand()<P(en¡ e; T )

s= sn
e= en

end if
if e<mor count>n0

g= s
m= e

end if
k=k+1
T =�T

end while

5.3 Implementation
It is recalled that the neural network trains on data retrieved from the stack through 8
hours of operation. In the initial code, Ntr trainings were performed to obtain the best
neural network among the Ntr networks. When the error given by the simulation is low

5.1. Due to the stochastic nature of the trainings, the results obtained after the different trainings will be
different, even when starting from the same initial network.
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enough, the program can be stopped before the Ntr simulations. Now, we want this code
to fulfill the first two mentioned criteria. For this purpose, whenever these conditions are
not met simulated annealing function will be called, which will return a trained network
that should satisfy the required conditions.

Thereby a certain fraction of the Ntr simulations meet the required conditions, and
then we can choose the best among this subset.

5.3.1 Main loop

Note that in all the subsequent pseudo-codes, along with their accompanying explanations,
may not precisely match the actual code. Some lines have been omitted, and others have
been simplified. However, the code's principle remains the same. This has been done to
make the explanation as clear as possible.

Firstly, the Xsim vector used here is not the state vector as described in the previous
sections but the input vector of the neural network

Xsim=
¡
xsim
(i) �

16i6n+m= [x1; :::; xn; q1; :::; qm]T (5.3)

Using this vector enables us to analyze the neural network's performance more easily.

At the beginning of each iteration, a simulation5.2 is conducted using a random trained
network (Algorithm 5.3). The simulation function has been modified to be able to return
two errors

¡ errorRate corresponds to the period during which one of the two conditions in A
and B has not been met divided by the total duration of the simulation

¡ perfErrorRate corresponds to the period during which any of the criteria has not
been met divided by the total duration of the simulation

If the errorRate given by the initial training is strictly positive, simulated annealing func-
tion will be used. Then, the accuracy of the simulation is calculated by determining the
Root Mean Square Error (RMSE) between the predicted state vector x, which corresponds
to
¡
xsim
(i) �

16i6n and actual state vector.

At the end of each iteration, this final neural network is saved, along with the various
errors and the simulation.

T0 corresponds to the initial temperature given to the simulated annealing function
and Tsim the current temperature. To take into account the previous calls to the simulated
annealing function, tis function returns ew and the temperature Tsim, which will be passed
as parameters in the next call to it. But before that, in the next iteration, the temperature
Tsim will be modified as follows

Tsim
(n+1) = min

¡
Tsim
(n)(0.9+ errorRate); T0

�
(5.4)

This way, the more consecutive good results we achieve with the same ew vector (errorRate<
0.1), the more reliable it becomes. Consequently, there is a higher chance of converging
towards a minimum around ew as Tsim decreases. The minimal error found by the function
is not returned, as it varies significantly with the provided neural network. With each new
iteration, this error is highly modified, making the previous error no longer representative.

5.2. See [RKF+21] for more details.
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Algorithm 5.3
init ew; ewmaxT0
Tsim=T0
while true

runs= runs+1
net= init(net)
net0=net
net; tr= train(net;X; Y ; ew)
Xsim; errorRate; perfErrorRate= simulation()
Tsim=Tsim(0.9+errorRate)
Tsim=min (Tsim; T0)

if errorRate> 0
ew; Tsim; net; tr= simannealing(ew; neighbor; net0; Nmax; Tsim;X ; Y )
Xsim; errorRate; perfErrorRate= simulation()

end if
errorRateall= concatenate(errorRateall; errorRate)
perfErrorRateall= concatenate(perfErrorRateall; perfErrorRate)
netall[runs] = concatenate(netall; net)
simall[runs]=Xsim
guetesim[runs]=RMSE(Xsim(1:n))

ifmin (guetesim)< 3 or runs>Ntr
break

end if
end while

At the very end of the code, we select the neural network that achieved the best result,
meaning the one with the least error in predicting the temperatures within the stack, and
for which the conditions on A and b were met throughout the simulation, and the other
conditions were met 99.9% of the time.

5.4 Silhouette coefficient

Given the results obtained in Section 7 it is likely that multiple satisfactory ew vectors
can be determined. Therefore, clustering is being considered to identify these vectors.
Clustering is a data analysis technique that involves grouping similar data points together
into clusters or subsets while keeping dissimilar points in separate clusters. The goal is to
identify patterns, relationships, or structures within the data without any prior knowledge
of specific groupings. It is achieved by measuring the similarity or dissimilarity between
data points, often using distance metrics, and then assigning data points to clusters based
on these measurements. The clustering algorithm that is used is the k-means algorithm.
In order to evaluate the clustering, the silhouette coefficient is introduced.

Consider that the k-means algorithm has been applied to a set of points in E. We
denote Ck as the k-th cluster, nk as the number of points in Ck, and d as the function that
calculates the Euclidean distance between two points. Let k be an interger and x (which
corresponds here to ew) be a point in Ck. We define the functions

¡ a(x) corresponds to the average distance between a data point and all other data
points within the same cluster. Essentially, it quantifies how similar a data point
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is to its fellow members within its assigned cluster.

a(x)= 1
nk¡ 1

X
u2Ck;u=/x

d(x;u)

¡ b(x) corresponds to the smallest average distance between the data point and all
data points belonging to different clusters. It assesses how dissimilar a data point
is to data points within neighboring clusters.

b(x)=min
l=/ k

1
nl¡ 1

X
u2Cl

d(x;u)

The silhouette score of x is calculated as

s(x)= b(x)¡ a(x)
max (a(x); b(x))

The silhouette score ranges from -1 to 1, where

¡ A high value indicates that the data point is well matched to its own cluster and
poorly matched to neighboring clusters.

¡ A value near 0 indicates that the data point is on or very close to the decision
boundary between two neighboring clusters.

¡ A low value indicates that the data point may have been assigned to the wrong
cluster.

The silhouette plot (Figure 5.1) displays these silhouette scores for each data point in a
cluster. Each bar corresponds to a point. The y-axis indicates which cluster the bar belongs
to. The length of each bar represents the silhouette score of the corresponding data point.

Figure 5.1. Silhouette plot
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Depending on the total number of clusters, the outcomes can vary significantly between
different runs of the k-means algorithm. Highly unstable results for the same total number
of clusters indicate that this number is not suitable for our data. For example, when
considering 2 clusters for the set of points shown in Figure 5.2, we can obtain the two
displayed configurations. Because there are two, or even three, possible clustering scenarios,
the result is unstable. This means that different runs of the k-means algorithm can yield
different cluster assignments.

Figure 5.2. Instability of k-means with 2 clusters

6 Hidden layers neurons
In this section, we attempt to find an automatic way of determining the numbers of neurons
L1 and L2 in the hidden layers R and H . To achieve this, the method used will be very
similar to simulated annealing. These hidden layers are the only ones that can be modified
since the other layers serve specific calculations. The goal is to find the optimal number of
hidden neurons within these layers. Therefore, to avoid overfitting and reduce computation
time when using the trained network, the number of hidden neurons should be kept low
but still high enough not to compromise prediction quality.

6.1 General process
The state vector in this case is no longer ew but rather nv =(L1; L2). The objective
function for this second simulated annealing function is the median prediction error given
over the last ncount simulations with the same nv. However, if for the same pair (L1; L2)
the failure rate exceeds a certain percentage, i.e., the conditions on A and b are not met
for a certain percentage of simulations, then this pair is rejected. Since the conditions on
A and b depend only on L2, if the failure rate is too high, it implies that the number of
neurons in the hidden layer H is too low. Therefore, we can set a minimum value for L2,
which will be the last value of L2 for which a failure occurred.

6.2 Algorithm
First, let's focus on Algorithm 6.1. This algorithm is placed at the beginning of the while
loop of Algorithm 5.3. The first if statement is used to check the failure rate mentioned ear-
lier. If it exceeds 20%, we redefine the new minimum value for L2. Initially, the minimums
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for L1 and L2 were set to 0. If Env is the set of all possible states for nv, the neigbhor
function returns a vector y such as

8i2 J1; 2K yi2 [xi¡�nv�nv(k); xi+�nv(k) ]\Env

After modifying the number of hidden neurons Tsim is reset to T0 and the counters are reset
to 0. The variables count and failcount are used to calculate the failure rate, such that

failrate= failcount/count

The second if statement is used when the failure rate is below 20%. This indicates a
successful attempt. The median of the last ncount errors is calculated and stored in an array
that records all the median errors. The subsequent �if en < e or rand()<P(en¡ e; T )�
statement is explained in Section 5.1. Following this, similar to the first if statement, a
new state for L1 and L2 are modified, Tsim and the counters are reset to their initial values.

Algorithm 6.1
if count<ncount and failcount> 0.2ncount

nvmin[2] =nvn[2]
nvn=neigbhor(nv)
nvn=max (nvn; nvmin)
(L1; L2)=nvn
Tsim=T0
count=0
failcount=0

end if
if count>ncount

n= size(guetesim)
M = guetesim[n¡ncount+1; n]
en=median(M)
medianall= concatenate(medianall; en)
if en<e or rand()<P(en¡ e; Tnv)

e= en
nv=nvn

end if
nvn=neigbhor(nv)
nvn=max (nvn; nvmin)
(L1; L2)=nvn
Tsim=T0
count=0
failcount=0

end if

The second algorithm of this section is placed juste after the first if statement in
Algorithm 5.3. This algorithm is responsible for incrementing the counters.

Algorithm 6.2
if errorRate> 0

failcount= failcount+1
end if
count= count+1
Tnv= 0.95Tnv
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7 Training and results

7.1 Training
The training and subsequent numerical assessment of all networks were grounded in the
collection of actual data obtained from a SOFC testing facility at the University of Rostock.
This data collection spanned slightly over eight hours, encompassing the phase of high-
temperature reaction during the final 1.5 hours. The utilization of these training datasets,
which include a considerable number of data points even during electrochemically inactive
phases, offers the distinct advantage of accurately characterizing the impact of cathode
gas enthalpy fluxes. This detailed understanding paves the way for the development of
precise temperature control strategies, aligning with the objectives outlined in introduction
of Section 3. The experimental data employed in this section, encompassing details about
all segment temperatures, gas mass flow rates, stack inlet temperatures, as well as current
and voltage at the terminals, were sampled at a temporal resolution of 100 ms, resulting
in approximatively 300,000 data points. Subsequently, the data is filtered using a first
order low-pass filter with a edge frequency of 1Hz. This frequency is also employed for a
low-pass filtered derivative estimation after its automatic numerical discretization using
the FixedStepAuto option in SIMULINK R2019b. The training of neural networks was
preceded by a data aggregation step. Here, one-minute averages of all measurements were
formed [RKF+21].

The neural network training was conducted using Matlab, utilizing the standard back-
propagation algorithm with Bayesian regularization, parallelized on 6 CPU cores with
10,000 epochs. The data are randomly divided into three data sets : training (70%), vali-
dation (15%) and test (15%).

The inputs used are obtained by principal component analysis based on the singular
value decomposition [RKF+21] :

¡ The stack temperatures #(1;1;1); #(1;2;1); #(1;3;1) and the inlet temperatures #CG;in
and #AG;in

¡ The voltage U and electric current I

¡ The nitrogen and hydrogen mass flows m_N2, m_H2 at the anode

¡ The mass flows m_ CG
Plus the two outputs gTemp1; gTemp2 mentionned in Section 4.2. They are set to 5K /s.

The values of the different constants used in the algorithms are also summarized here
for reference :

¡ Tn+1=�Tn , �= 0.95 and T0=4 (see Algorithm 5.2)

¡ kmax= 50, emax=1, n0=17.1 (see Algorithm 5.2)

¡ �(k)=A
�
kmax¡ k
kmax

+ b
�
, A= ewmax

4
and b= 0.05 (see Algorithm 5.2)

¡ Ntr= 50 (see Algorithm 5.3)

Due to the low computational efficiency, the results of the algorithm presented in Section
6 will not be presented here. Tests were conducted for ncount=10, but the results are quite
random due to the limited number of points to extract a realistic median. This slowness
is explained by the quasi-systematic search for a new ew vector at each iteration. That's
why clustering is performed later (see Section 7.3) to determine a finite set of suitable
vectors in order to limit the search for ew vectors to this set, that should greatly increase
execution speed.

7.1. A few quick tests were conducted, and the value of n' does not seem to significantly affect the robustness
of the found ew but significantly slows down the code
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7.2 Results and analysis

The results presented in Table 7.1 are derived from neural network trainings for which
L1 and L2 are 15 and 20, respectively. The first row, labeled as GR, corresponds to the
case where none of the imposed conditions apply, and only the accuracy of temperature
prediction matters. The second row, labeled as GER, represents the case where the ew
vector is set to (1; 2.5; 7.4; :5; :5; 1)7.2. And the last row GS represents the performance
results obtained from the code with simulated annealing. The statistics are based on filtered
runs which means :

¡ The prediction error on temperature must not be a nan value.

¡ The prediction error on temperature must be less than 104

The number of these runs is indicated in the �filtered runs� column. The first column
indicates the median error. The second column shows the proportion of simulations that
satisfied the conditions on A and b throughout its entire duration. The third column
displays the proportion of simulations that met the conditions on A and b during its
entire duration and fulfilled the other conditions for 99.9% of the time. The fourth column
indicates whether or not simulated annealing was used. The RMS column displays the
prediction error returned by the best simulation. Finally, the last column indicates whether
this best simulation adheres to the criteria defined for the third column.

median Conditions All Simulated Filtered Total RMS All
error on A;B conditions Annealing runs runs conditions

GR 7.39 0% 0 No 82 102 2.82 No
GER 60.43 40.82% 32.65% No 98 102 2.82 No

6.31 Yes
GS 44.89 81.25% 56.25% Yes 48 51 3.4 Yes

Table 7.1. L1 and L2 set to 15 and 20 respectively

In the first row, the median error is much lower than in the other rows. However, none
of the conditions necessary for physical interpretation are met. In contrast, in the other
two codes, the conditions are met to a certain extent. With the simulated annealing, the
criteria on A and b are met more than 4 out of 5 times, and all conditions are met more
than half the time. These proportions are twice as high as in the case where the ew vector
was manually determined, demonstrating the utility of simulated annealing not only from a
practical perspective but also in terms of performance. Furthermore, although the median
error in the first case is much lower, the errors resulting from the best simulation for each
of the codes are comparable. The advantage for the simulated annealing is that it achieved
a good result with all conditions met.

A more detailed analysis of the code with simulated annealing is presented in Table 7.2.
On the left are the statistics regarding the best 15 simulations in terms of RMSE, and on the
right are the other simulations. The first column represents the mean of the corresponding
variable, the second column represents its standard deviation, and finally, the last column
represents the ratio of the standard deviation to the mean of the same variable.

7.2. These values were manually determined by the previous student who worked on this project [Eil23]
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mean std std/mean
wA 3.87 1.16 0.30
wB 4.76 3.45 0.72
wTemp1 8.22 2.13 0.26
wTemp2 6.61 2.07 0.31
wSt 5.94 1.84 0.31
errorRate 0
perfErrorRate 0.057

mean std std/mean
wA 3.93 1.73 0.44
wB 5.10 3.16 0.62
wTemp1 7.47 2.60 0.35
wTemp2 6.18 2.74 0.44
wSt 5.58 2.57 0.46
errorRate 0.087
perfErrorRate 0.190

Table 7.2. On the left, statistics for the top 15 simulations in terms of RMSE; on the right,
statistics for the other simulations.

It can be observed that the standard deviations in the left table are relatively lower
than those on the right. This suggests the presence of a better solution ew for the system.
However, even though the standard deviations are lower, they are still substantial, ranging
around 30% of their mean values for the most part, and even reaching up to 72% of the
mean value for wB. This element will likely need to be studied more deeply in order to
achieve convergence of ew (see Section 7.3), which would enable us to reduce the code's
execution time.

Additionally, a significant observation emerges. In the left table, the mean of errors
are significantly lower than those in the right table. This underscores that for non-zero
weights7.3, the accuracy of predictions increases with physical relevance.

It can also be observed that the weights of the best simulations are not lower than those
of the others. The sum of the average values of the components of the ew vectors from
Table 7.2 is 29.4 on the left side and 28.26 on the right side, which are very close. This
means that the variable v defined in equation (5.2) is not necessary. There is no posterior
relationship between prediction accuracy and the amplitude of error weights.

7.3 Values of ew
Given the inability to ascertain a single precise value for ew using simulated annealing (see
Table 7.2), the focus shifts to determining whether a set of promising ew values exists. To
achieve this, the application of a clustering algorithm, the k-means, is intended, followed
by the evaluation of results using the silhouette coefficient.

To achieve this, Algorithm 5.3 was executed six times - five times withNtr=50 and once
with Ntr=100. Subsequently, the ew values associated with low prediction errors (RMS
< 15) were saved. This yielded a total of 69 ew vectors, which will be subjected to the k-
means algorithm. This algorithm aims to identify k clusters, with k being predetermined.
We apply the k-means algorithm for 2 to 10 clusters and subsequently analyze these results
using the silhouette score.

Figures 7.1, 7.2, and 7.3 display silhouette coefficients with different numbers of clusters.
The y-axis indicates the cluster number of a set of points, while the x-axis represents the
silhouette coefficient. The red vertical line denotes the mean value of silhouette coefficients.
According to the figures below, it is unlikely to have 5, 6 and 7 clusters, as there are
clusters in these cases where the silhouette scores are all lower than the mean [PVG+11].
For instance, in the case of 5 clusters, this is observed in cluster number 5. The cases with
8, 9 and 10 clusters are not shown here but are not good either.

7.3. When all the weights are zero except for the prediction weight which has been fixed to 1, this is equivalent
to the case GR

Training and results 21



Figure 7.1. (a) Silhouette coefficients with 2 clusters (b) Silhouette coefficients with 3 clusters

Figure 7.2. (a) Silhouette coefficients with 4 clusters (b) Silhouette coefficients with 5 clusters

Figure 7.3. (a) Silhouette coefficients with 6 clusters (b) Silhouette coefficients with 7 clusters

As mentionned in Section 5.4 significant instability in clustering, i.e., if the silhouette
plot associated with the same total number of clusters changes drastically from one call of
k-means to another, then it indicates that the total number of clusters is not suitable for
our data. Then in order to analyze the stability of the results, the process was repeated 20
times on the same set of ew vectors. Table 7.3 presents the number of times good results
were obtained
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Number of clusters 2 3 4 5 6 7 8 9 10
Good results rate 17 18 12 8 4 3 3 3 2

Table 7.3. Stability of k-means on the set of ew

These results confirm that for a number of clusters k greater than 5, the results are not
satisfactory. We can further reject the value 4. Therefore, we are left with a choice between
2 and 3 clusters. Table 7.4 provides statistics on the entire set of 69 ew vectors. Table 7.5
presents statistics on the clusters with a total of 2 clusters. Table 7.6 offers statistics on the
clusters with a total of 3 clusters. According to the results, the clustering does not really
distinguish optimal ew values. The ratio of standard deviation to mean is not significantly
lower within the clusters compared to the case described in Table 7.4.

mean std std/mean
wA 5.02 2.13 0.43
wB 5.9 3.01 0.51
wTemp1 4.36 3.22 0.74
wTemp2 4.29 2.93 0.68
wSt 5.09 2.4 0.47

Table 7.4. Statistics on the entire set of ew

mean std std/mean
wA 3.71 1.75 0.47
wB 1.82 1.97 1.08
wTemp1 8.24 2.59 0.31
wTemp2 7.99 1.46 0.18
wSt 6.01 2.12 0.35

mean std std/mean
wA 5.39 2.10 0.39
wB 7.03 2.14 0.31
wTemp1 3.28 2.46 0.75
wTemp2 3.27 2.35 0.72
wSt 4.84 2.43 0.50

Table 7.5. Statistics with two clusters : on the left, statistics for the cluster 1; on the right,
statistics for the cluster 2.

mean std std/
mean

wA 4.41 1.67 0.38
wB 7.24 2.23 0.31
wTemp1 0.51 1.06 2.08
wTemp2 6.78 2.14 0.32
wSt 8.54 0.76 0.09

mean std std/
mean

wA 5.55 2.17 0.39
wB 6.81 2.31 0.34
wTemp1 4 2.15 0.54
wTemp2 2.55 1.74 0.68
wSt 4.02 1.86 0.46

mean std std/
mean

wA 3.8 1.85 0.49
wB 1.56 1.58 1.01
wTemp1 9.12 1.1 0.12
wTemp2 7.89 1.54 0.20
wSt 5.53 1.82 0.33

Table 7.6. Statistics with three clusters : on the left, statistics for the cluster 1; on the middle,
statistics for the cluster 2; on the right, statistics for the cluster 3.

Training and results 23



8 Conclusion

In this study, we have tackled the challenge of optimizing neural networks for modeling
complex physical systems, focusing on solid oxide fuel cells. These high-temperature fuel
cells hold immense potential in revolutionizing energy conversion, but their complex mul-
tiphysics nature has often posed hurdles in achieving accurate and efficient modeling.

Traditional neural networks are often regarded as black-box models due to their opaque
internal workings, making it challenging to extract meaningful physical insights, partic-
ularly in the context of multiphysics phenomena. However, our approach has taken a
distinctive direction, emphasizing the necessity of structured neural networks that adhere to
physical constraints. By doing so, we aim to bring about transparency and interpretability
to neural network models, enabling us to bridge the gap between predictive power and
comprehensible insights.

By structuring the network architecture and incorporating physical constraints, we've
aimed to maintain prediction accuracy while maintaining a link to underlying physics.
We've explored automated methods to find optimal weight configurations and hidden layer
dimensions. This offers computational efficiency and uncovers valid solutions adhering to
physical principles.

There are possibilities for improvement, particularly concerning the determination of
the optimal number of hidden neurons for layers H and L. One could continue with
the previously described approach or explore alternative methods, like the automated
application of Principal Component Analysis. This approach has the potential to enhance
data understanding and facilitate a more precise selection of relevant features for modeling.
These improvements could result in neural networks that are even more efficient and better
aligned with the physical constraints of the systems under study.
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