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Abstract

As a part of my robotics engineering training at ENSTA Bretagne, I undertook a sixteen-week internship
(from April 24–2023 to August 11–2023) in the Mechanical, Biomedical and Design Engineering Department
of the College of Engineering and Physical Sciences at Aston University, Birmingham UK. During these
four months, I performed a plethora of tasks revolving around the control of an autonomous sailboat,
ranging from writing and testing sensor drivers to developing a dynamic simulation in python for the
boat. The main mission I was assigned was to allow the boat to pass by every waypoint in a given list of
arbitrary length.

In this report, the context is firstly established through a brief introduction on ENSTA Bretagne, Aston
University and my motivations for undertaking this internship. The stakes and coherence of the latter as
a part of my training are also discussed. Secondly, an in-depth presentation of the hardware and software
used in the final version of the system is given, followed by a thorough review of the work done during
the sixteen weeks which lead to the completion and testing of this final prototype. Thirdly, the results
attained are analysed and discussed, along with the unfinished tasks and the potential improvements.
Lastly, a summary of all the aforementioned key points is made and used to put my personal gains from
this experience into perspective.

Résumé

Dans le cadre de ma formation d’ingénieur à l’ENSTA Bretagne, j’ai réalisé un stage de seize semaines
(du 24 avril 2023 au 11 août 2023), dans le département d’Ingéniérie Mécanique, Biomédicale et de
Conception du Collège d’Ingéniérie et de Sciences Physiques de l’Université d’Aston, à Birmingham, au
Royaume-Uni. Pendant ces quatre mois, j’ai réalisé de nombreuses tâches ayant à trait au contrôle d’un
voilier autonome, allant de l’écriture et du test de pilotes pour des capteurs, au développement d’une
simulation dynamique sous python pour le bateau. La mission principale qui m’a été attribuée était de
permettre au bateau de passer par toutes les balises fictives d’une liste donnée de taille arbitraire.

Ce rapport vise dans un premier temps à établir le contexte par une brève introduction sur l’ENSTA
Bretagne, l’Université d’Aston et les motivations qui m’ont amenées à faire ce stage. Les enjeux et la
cohérence de ce dernier dans le cadre de ma formation seront aussi traités. Dans un second temps, un
portrait matériel et logiciel détaillé du système final est dressé, suivi d’un passage en revue minutieux du
travail réalisé pendant les seizes semaines ayant conduit à la réalisation et aux test du prototype final.
Dans un troisième temps, les résultats obtenus sont présentés et analysés, tout comme le travail restant et
les pistes d’améliorations possibles. Enfin, un résumé de l’ensemble des points clés mentionnés ci-dessus
est utilisé pour mettre en perspective les gains que j’ai pu tirer de cette expérience.

Keywords

Autonomous sailboat, Control algorithms, Kalman Filter, Python, Simulation, Hardware in the loop,
Raspberry Pi 4, Navio2, Education, Internship
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1 Introduction

1.1 Context

The robotics engineering training at ENSTA Bretagne is fundamentally multidisciplinary and covers
a wide spectrum of application fields for autonomous mobile robotics. It relies on a balanced mix of
theoretical and practical teachings, by combining regular theoretical classes with numerous practical team
projects. These projects can range from programming an autonomous rover to working on a humanoid
bipedal robots, as illustrated in Figure 1.

Figure 1: Example of robots used in projects

The school specialises in marine robotics. As a result, one of the major activities of the curriculum is
the DDboat project, at the Guerlédan naval base. This project focuses on the implementation of control
algorithms for model boats like the one seen in Figure 2. The goal for every group of students is to ensure,
in just under a week, that their boat is capable of fulfilling a set of missions. These missions can range
from simply making the boat follow a given heading for a given amount of time, to following a complex
track, defined by GNSS waypoints, with an imposed deferred start from certain waypoints.

Figure 2: A DDboat on the Guerlédan lake

Despite specialising in marine robotics, sailboats are only briefly studied in the curriculum. This partially
explains why my curiosity was peaked when I was presented with an opportunity to work on one, that and
the great impression left by the DDboat project. The internship description mentioning machine learning
also got me interested, as it is the field of robotics that I am the most interested in and one that we do
not get to explore much until our last year of training. This is why I ended up choosing to go to Aston
University to work on Dr. WAN ’s autonomous sailboat project, along with Catherine RIZK and
Ludovic MUSTIÈRE, two other students from ENSTA Bretagne.

Assistant Engineer Internship Report 6



Aston University, located in the city of Birmingham, United Kingdom, is a prestigious institution
renowned for its commitment to excellence in education and research. Founded in 1966, Aston has since
established itself as a leading university, ranking 446th in the 2024 QS World University Ranking, placing
the University in the top 30% of global institutions, and 46th place nationally [1]. It offers a wide range of
courses, particularly in business, engineering, and applied sciences [2] and supports cutting edge research
activities in these same fields [3]. Research at Aston is spread across multiple Colleges and Schools [3].
The autonomous sailboat project I worked on, being supervised by Dr. WAN, is associated with the
Mechanical, Biomedical and Design Engineering Department of the College of Engineering and Physical
Sciences.

Figure 3: Aston University, main building

1.2 Goals and stakes

I had many goals with this project. First and foremost, it was my assistant engineer internship. As
such, it had to allow me to confront my knowledge with the reality of a globalised research community
and to put them in perspective in anticipation of my final year of training at ENSTA Bretagne
It ultimately achieved that goal by providing me with an opportunity to put my knowledge into practice
in a foreign country with a different work culture than the one I had always been used to up until then.

Moreover, it is a part of my career project, similarly to the rest of my training, it had to allow me to
broaden my knowledge of robotics either by working on an aspect of robotics which I had not touched upon
yet or by significantly deepening my knowledge on an aspect I was already familiar with. The reason for
this goal is the same that motivated my choice of a future career in robotics, i.e. to become as polyvalent
of an engineer as possible.
It managed to meet this criterion by allowing me to manipulate a type of robot I had no prior experience
with, that is USV s, and to experience all the difficulties that come with the design of such robots.

In addition, this project also has stakes for Dr. WAN who has been doing research on USV s and on
multi-agent systems involving USV s and UAV s since 2016. Indeed, my internship was only a contribution
to the autonomous sailboat project. For instance, the boat I worked on had already been modified the
previous year to be able to complete the same objective I was tasked with ensuring it could achieve. In
that sense, my goal was primarily to verify the reproducibility of the results obtained by the previous
team of students.
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This is probably the part I had the hardest time with, as much of the earlier work done on the boat was
not readily reusable. This in turn led me to spend most my internship re-writing low-level code for the
boat from scratch rather than being able to focus on the implementation of control algorithms, despite the
latter being closest to the intended purpose of the platform. As a matter of fact, the autonomous sailboat
project aims at developing an easy-to-build and easy-to-use open platform that could be used widely in
education or in research. For example, it could be used as a means to teach students how to program
USV s or as a quickly deployable platform to run basic tests of novel control algorithms. I like to think
that I helped to get closer to this goal by making sure to produce readable, documented and ready-to-use
code, that will undoubtedly help, if not future users, at least the next group of students that will play a
part in this project.

2 Activities

2.1 System description

2.1.1 Hardware

The sailboat used is the “Raggaza™ 1-Meter Sailboat RTR”, shown in Figure 4. It features a double
rip-stop nylon sail connected via a winch, a single rudder, a fiberglass main hull, and a keel to improve the
stability of the vessel.

Figure 4: Raggaza™ 1-Meter Sailboat RTR

Two positional high torque servomotors, shown in Figure 5, are used to control the sails and rudder
separately. The Hitec HS-785HB is used to pilot the winch connected to the sails and the Hitec HS-
5645MG is used to pilot the rudder. Operating under a 6V input voltage, they are capable of delivering a
maximum torques 13.2 kg.cm and 12.1 kg.cm and reaching maximum speeds of 1.38s@60° and 0.18s@60°
respectively [4, 5]

Figure 5: Hitec HS-785HB (left) and Hitec HS-5645MG (right)
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Radio control is used to pilot the boat manually. The emitter used is a Hobbyking HK-T4A V2 2.4GHz
and the receiver is a Hobbyking HK-TR6A V2 2.4GHz, both shown Figure 6. Communication between
the transmitter and the Navio2 is established via PPM signals.

Figure 6: Hobbyking HK-T4A transmitter and HK-TR6A V2 receiver

The on-board computer is composed of a Raspberry Pi 4 Model B and a Navio2, shown in Figure 7. The
Raspberry pi 4 is a highly performant and polyvalent microprocessor. It features a BCM2711 chip based
on ARMv8 architecture and capable of top clock speeds of 1.5GHz [6]. The Navio2 board is a raspberry pi
autopilot HAT . Compatible with ArduPilot and ROS, it features two IMU s, a GNSS , and a barometer. It
can also handle RC inputs and PWM outputs [7].

Figure 7: Raspberry Pi 4 Model B (left) and Navio2 (right)

The observation process is enabled by multiple sensors, all shown in Figure 8. First, the state of the boat
(see section 2.3.2. Model and simulation) is determined using the Navio2 embedded sensors. The GNSS , a
NEO M8N from ublox, is used to get the general position of the boat with a precision ranging from 2m to
4m, depending on the constellation used by the sensor [8]. The MPU9250 and LSM9DS1 IMU s, all-in-one
accelerometer, gyro, and magnetometer, are used to provide the heading of the boat. Moreover, a Calypso
ULTRASONIC Portable wind sensor is used to measure the wind direction and wind speed.

Figure 8: NEO M8N (left), dual IMU (center), Calypso anemometer (right)
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The system was initially powered by a single 11.1V 3s 2200mAh or 14.8V 4s 1800mAh LiPo battery,
combined with a BEC to power the servomotors and a step-down converter to power the onboard electronics.
However, the use of separate batteries for the onboard computer and servomotors was seriously considered
.

Figure 9: LiPo batteries used (left), voltage regulation unit (right)

An simple diagram of the hardware architecture of the system is presented in Figure 10 for the sake of
clarity.

Figure 10: Diagram of the on-board electronics

2.1.2 Software

The OS used for the Raspberry Pi is a modified 32-bit version of the Raspberry Pi OS (formerly
Raspbian), a debian based operating system maintained by Raspberry Pi Ltd. A modified system image
containing significant adjustments to ensure full compatibility between the Raspberry Pi and Navio2 is
provided by Emlid, the constructors of the Navio2 board. For instance, some changes were made to the
SPI and I2C bus configurations, to enable the communication between the Raspberry Pi and the Navio2
sensors.
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The main programs are all written using Python 3.11 with additional libraries listed in Table 1. A
multithreading-based approach was used to design the architecture of the code. Bash and scripts were
added to facilitate the launch of missions and to automate certain tasks like sensor calibration. These
scripts are meant to be launched remotely on the on-board computer via a SSH connection. I used a SSH
key pair to facilitate the connection process to the remote session hosted on the on-board computer.

Library Version Description
calypso-anemometer 0.6.0 Calypso anemometer driver and API

dill 0.3.7 Python’s pickle module extension
matplotlib 3.7.2 Plotting library
navio2 1.0.0 Navio2 driver
numpy 1.25.1 Scientific computing library
pygubu 0.31 Tkinter-based GUI builder
PyProj 3.6.0 Cartographic projection library

PyYAML 6.0.1 YAML parser
scipy 1.11.1 Scientific computing library
SMBus 1.1.post2 I2C device interface
Spidev 3.6.* SPI device interface
tkinter 8.6 GUI toolkit

Table 1: List of python libraries used

2.2 Preparing the boat

2.2.1 Onboard computer

The plan was at first to use a ROS2 architecture for the robot, exploiting the Navio2 ROS compatibility
via a rosbridge. With this idea in mind, I started setting up a debian 22.04 (Jammy Jellyfish) installation
on the Raspberry Pi. After the basic installation process of the OS and the initialisation of some useful
parameters, like the network settings, I proceeded to install ROS 2 Humble. Despite successfully installation,
I repeatedly failed to access the IMU from the Raspberry. I was aware that this was due to the fact that
I was not using the custom system image provided by Emlid. Nevertheless, being a 32-bit image, it is
severely incompatible with the default ROS2 installs, which is why I ignored it in the first place. Indeed,
having already tried in vain to find a workaround for this issue, I assumed that trying to understand and
to replicate the quirks of the Emlid image would be best.

Unfortunately, not too long after I started investigating these modifications in-depth, I realised that the
extent and the subtlety of some of them meant that they could not be replicated in a reasonable amount
of time. As a consequence, the whole team came to the conclusion that using the custom image along
with a multithreaded program architecture in place of the initially planed ROS2 architecture was the next
best thing to do.
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2.2.2 Drivers

With the Raspberry Pi fully configured, I started working on the sensors. The first task at hand was to
test the code written the previous year. Despite the drivers for all sensor drivers being functional, due to
the non-modular and rather unpolished architecture of the main program and of the drivers themselves, it
was decided to redo everything by salvaging as much of the code as possible. Nevertheless, because of
the numerous unconventional solutions it relied on and of the lack of documentation, we ended up going
mostly from scratch. An object-oriented approach was used in this project, it is covered in more details in
the introduction of section 2.4. Controlling the boat

All drivers share more or less the same structure. They work by collecting and storing the latest useful
data from the sensor with a set frequency. This useful data is defined in the class constructor using
attributes. The constructor is in charge of initialising the latter as well as useful objects and settings,
like the measurement thread and associated mutex or the data update frequency. A getter property is
associated with each data attribute. It calls an _initialization() method, used to configure and establish
the communication with the sensor. The thread is started by using the start() method and is stopped by
using the stop() method. Its target method is the updateData() method, which is in charge of retrieving
the latest sensor data. Lastly, the shutdown() method is called to stop and disconnect the sensor.

I started by developing the GNSS driver. The useful navigation data retrieved from the sensor is the
latitude, longitude, altitude and advancing direction of the boat, as well as the norm of its speed vector
and of its components in the NED frame along with its ground speed i.e. its speed in the North/East
plane. The matching the attributes are _lat, _lon, _alt, _heading, _speed, _speed_north, _speed_east,
_speed_downand _groundSpeed. Note that _heading is not the actual heading of the boat, as the advancing
direction takes drift into account. The status of the GNSS and the current date are also respectively
stored under the _satus and _date attributes. The sensor provides these information to the driver in the
form of ublox messages, detailed in Table 2.

Message name Associated attributes
MSG_NAV_POSLLH _lat, _lon, _alt
MSG_NAV_STATUS _satus
MSG_NAV_TIMEUTC _date
MSG_NAV_VELNED _speed, _speed_north, _speed_east, _speed_downand _groundSpeed

Table 2: List of messages sent by the GNSS and associated attributes

I then worked on the calypso driver. A proof of concept had already been proposed by Catherine
RIZK, which could not however run parallel to the main program as is. Moreover, persistent unknown
issues, which later turned out to be simple battery issues, led to the creation of three drivers for the
anemometer. Both drivers collect the observed wind speed and wind direction in the frame of the boat
(see section 2.3.2. Model and simulation) and both of them also allow the user to choose which sensor to
connect to, by specifying the MAC address of its bluetooth interface. It is of interest to note that this
anemometer can be paired with a compass and/or IMU to centralise measurements.
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The first driver is based on the proof of concept. It uses the calypso-anemometer library (see Table 1)
to communicate with the sensor. However, this library uses asynchronous programming, via the AsyncIO
library, which proved to be an issue for many reasons. Firstly, Python class constructors cannot handle
asynchronous code and yet the _initialization() method of the anemometer driver uses asynchronous
methods from the calypso-anemometer library, which meant this driver could not keep the same structure
as the others. Secondly, I needed to cleanly restrict the use of AsyncIO to the driver, as failing to do so
would have required to switch the entire logic and syntax of the project to the AsyncIO format, which was
not a viable option given the volume of code already produced at the time. For example, the instantiation
of the driver needed to be synchronous to avoid the need to analyse and eventually restructure the code to
prevent event loop conflicts.
The solution I ended up going with to overcome these difficulties could be called a “synchronous factory
method” approach. This approach is based on the “asynchronous factory method” technique, which consists
in using a class method to call the constructor and subsequently performing the desired asynchronous
operations on the instantiated object before returning it. The main difference is that no coroutines
were directly called in the class method, instead the event loop in charge of awaiting the results of the
asynchronous tasks is ran. The event loop is created on the first call to the factory method and is reused
in following calls. I also implemented basic quality of life features, like automatic reconnection attempts
and an adjustable (re)connection attempt counter before raising an error.

The second and third drivers use the same method as the one made the previous year, that is scrapping
low level code from library directly and bypassing the use of the AsyncIO library. They can be considered
as two versions of the same driver developed separately. I wrote one of the two and was ultimately in
charge of merging both versions. As opposed to the calypso-anemometer library approach, The merged
driver uses a simple Bluepy bluetooth client to connect to the sensor. Indeed, the former involves a Bleak
bluetooth client wrapped in the CalypsoAPI class which is supposed to be the main interface (API )
between the user code and the sensor. The two main benefits of this approach is that the sensor is much
responsive and that I could reuse the exact same structure as the one used by other sensor drivers, without
having to resort to the workarounds imposed by the use of the AsyncIO Library. The sensor data was
obtained by accessing and eventually modifying certain registries of the sensor, detailed in [9]. The main
registries accessed and the corresponding values/services are listed in Table 3

Registry UUID Associated value/service
0x180A Device information service
0x180D Data service
0x2A39 Sensor characteristics
0xA001 Measurement status
0xA002 Data rate
0xA003 Compass status

Table 3: List of calypso anemometer registry UUIDs and associated values/service
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The driver for the IMU s was written by Ludovic MUSTIÈRE. It comes with a calibration utility
for the accelerometer and for the magnetometer, based on the method presented in appendices B and
C of [10] It provides access to the pitch, yaw and roll measured by the sensors. He also developed the
driver for the sail and rudder servomotors. This driver allows the user to control an arbitrary number of
servomotor through a single class by using configurable profiles.

A generic moving median filter was later implemented to clean up the noisy sensor data. Filters were
ultimately only used on the IMU and on the anemometer. Standard test programs capable of testing any
sensor using a driver respecting the template defined earlier, with or without filters, and servomotors were
conjointly writen by Ludovic MUSTIÈRE and me.

2.3 Simulating the boat

2.3.1 Modular simulation program

I started working on the simulation after having finished the first functional versions of each driver I
was assigned to develop. Like with the drivers, I started by testing the previous code and trying to but
ended up discarding and restarting from scratch.
The purpose of the simulation was initially to get a basic understanding of the physics of the sailboat,
but I wanted it to be much more than that. I actually wanted it to be a core part of the bundle I aimed
at creating. Indeed, because the true goal of the autonomous sailboat project is eventually to be used
widely, I wanted to create an all-in-one solution that covered everything from simulation to real testing to
optimise the user experience. Consequently, I started thinking about what features should be implemented
alongside the baseline simulation and settled mainly on HIL, log related functionalities.
I wanted this program to be both exhaustive and adaptable. As a matter of fact, while an exhaustive
but rather basic simulation could suffice for educational purposes, adaptability would allow the higher
complexity demanded by research to be implementable. The adaptability of the code relies on two key
ideas, modularity and flexibility.

On the one hand, the code is modular. First, the implementation of all modules, like control algorithms,
boat models and so on, is standardised. For example, all controllers are stored in the same file and are
all derived from an abstract template BaseController which ensures their compatibility with the main
boat class (see section 2.3. Virtual boat). The file is scanned by the simulation program on launch and all
controllers are identified and added as options to the control algorithm selection menu. The exact same
reasoning also applies for supervisors and observers, which makes the implementation and subsequent
testing of new variations of these components both simple and intuitive. A similar procedure is also
partially implemented for boat classes, except the template parent class is not abstract and is more
restrictive. It could easily be implemented for filters, which already respect the proper file structure.

On the other hand, the flexibility of the simulation program shows through the settings of the program.
Settings can be easily modified, saved and reloaded at a later time by using configuration profiles stored
in .yaml files. Settings menus allow the user to tweak the simulation configuration profiles and to save
interesting ones easily in an intuitive fashion. Configuration files are useful because they are in fact easier
to understand and to work with than raw code implementations (see Appendix B: Sample configuration
file) The MACRO_CASE syntax convention used in the .yaml files for easier processing.
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Configurations are dynamic objects storing settings as instance attributes. They are implemented via
the ConfigurationOverlay class which, as suggested by its name, is merely an overlay for the Configuration
class which is itself the template for all configuration objects. The latter acts as a .yaml file handler
with basic editing features while the former acts as an interface between the configuration file and the
simulation program. At first, these two classes were supposed to be merged but a recurring issue led to
their separation before seemingly resolving itself (see section 3.2. Notable issues) However, they still have
a symbolic purpose. On the one hand, Config contains all the necessary methods and attributes to load,
edit and save changes made to a configuration file. On the other hand, ConfigurationOverlay is used store
settings as instance attributes, dynamically initialising them based on the data fields of the configuration
file loaded, via the python setattr() method.

2.3.2 Model and simulation

The model used for the boat is introduced in [11]. Let O(x0, y0) and M(x, y) be the origin of the
selected reference frame and the barycenter of the boat respectively. Let further x and u be the state
vector and system inputs respectively, with x = (x, y, θ, v,ω)> and u = (δr, δs,max)>, where the notations
listed in Table 4 and illustrated in Figure 11

Figure 11: Illustrations of the model
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we use the following state equation:


ẋ

ẏ

θ̇

v̇

ω̇

 =


v cos(θ) + p1atw cos(ψtw)
v sin(θ) + p1atw sin(ψtw)

ω

(gs sin(δs)− grp11 sin(δr)− p2v
2)/p9

(gs(p6 − p7 cos(δs))− grp8 cos(δr)− p3ωv)/p10

 (1)

Notations
Symbol Value Symbol Value

x x coordinate of the boat in the NED frame δr,max maximum rudder angle
y y coordinate of the boat in the NED frame δs,max maximum sail angle
θ heading of the boat gr force applied to the rudder
v speed of the boat gs force applied to the sail
ω angular speed atw true wind norm
δr rudder angle ψtw true wind direction
δs sail angle aaw apparent wind norm

δr,min minimum rudder angle ψaw apparent wind direction
δs,min minimum sail angle

Model parameters
Symbol Value Symbol Value

p1 drift coefficient p7 distance to mast
p2 tangential friction p8 distance to rudder
p3 angular friction p9 mass of the boat
p4 sail lift p10 moment of inertia
p5 rudder lift p11 rudder break coefficient
p6 distance to sail center of effort

Table 4: Notations and model parameters

atw and ψtw can be expressed as functions of aaw, ψaw and θ which are known variables. The forces
exerted on the rudder and sail can be expressed as functions of model parameters and system inputs. The
reader is invited to refer to [11] for details on these assertions.

Note that, in reality, we do not directly control the angle of the sail δs but rather its maximum possible
angle δs,max. Moreover, δs,min is introduced for the sake of convenience but is not inherently useful. Indeed,
whereas δr,min and δr,max are used to actively control the range of motion of the rudder, δs,min is 0 by
definition.
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The simulation is object-oriented. The main Simulation class has attributes for key objects, like thread,
mutexes, drivers, data classes, and settings. It includes many methods associated with its different key
features, the main ones being _simCallBack(), _logCallback() and _setupWizard(). The two first ones are
responsible for running the main control loop of the simulation and handling the log replaying functionality
respectively while the latter is in charge of the settings menu.

At the heart of the simulation is my _modCallback() method. I implemented a Runge-Kutta 2nd order
numerical integration method to integrate the equations of the model. It runs in its own thread _modThread,
which is exclusively in charge of computing the state of the simulated boat. A major advantage of this
structure is that changing the integration method is as simple as replacing the _modCallback() method
with the implementation of the desired replacement method. The replacement method simply has to
match the expected output format specified in the documentation.

2.3.3 Virtual boat

While I was developing the simulation, one of my main concerns was the transposition of the implemen-
tation of control algorithms from the simulated system to the real system. We had came to the conclusion
that implementing a main boat class to centralise the control algorithms, drivers, so on and so forth, was
the best approach. I then took it upon myself to adjust the Sailboat class, implemented by Ludovic
MUSTIÈRE, and to create a child class derived from it called VirtualSailboat.

The Sailboat class stores the drivers, filters and control algorithms used by the boat as attributes. It has
methods to start, stop and shutdown all the aforementioned drivers. It also includes methods to update
sensor measurements and actuator commands.

The VirtualSailboat class contains utility methods to allow the main control loop of the simulation to
be as close as possible to the one used for real mission programs (see Appendix F: Algorithms). It stores
the dynamic model of the boat as method, used by the simulation core method _modCallback() (see
section 2.3.2. Model and simulation), and includes attributes to keep track of the evolution of the model.
It also features attributes used to track the nature of the drivers used, i.e. real or virtual.

Indeed, in addition to the VirtualSailboat, I also implemented virtual component drivers. They allow to
feed data to the Sailboat class with the same format as the corresponding real driver. One downside is that
they absolutely need to be paired with a Simulation object to function properly. Virtual sensor drivers are
all derived from the abstract parent class VirtualSensor. The latter features the same start(), stop() and
shutdown() methods as real sensor drivers. They also use the same property system to access useful values
and the same thread system used to update them, with the difference that getter properties are used to
noise the otherwise perfect measurements. Nevertheless, the main difference lies in the measurement thread
target, which here is the _measure() method. This method is a basic while loop calling the _updateData()
abstract method on each iteration, while the driver is running. _updateData() is meant to retrieve the
values of the simulated boat state matching the desired sensor values.
the VirtualServo and VirtualServomotors classes are basically one to one matches of the Servo and
Servomotors classes implemented by Ludovic MUSTIÈRE. The main difference is that instead of
sending a PWM command to the servomotors, they directly change the values of the system inputs stored
in the Sailboat class.
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2.3.4 Hardware in the loop

I made a basic utility, based on the machine library, capable of identifying whether the program is
running on the on-board computer or on another device. It relies on the fact that the machine.platform()
function returns ‘aarch64’ when running on the Raspberry Pi 4 amrv8 architecture. This utility is used,
among other things, to load specific libraries on specific devices only, e.g. to load Spidev and SMBus (see
Table 1) on the Raspberry only.

I initially planned the HIL functionality to be a part of a broader “Real-time simulation” (RTS) feature.
Following the all-in-one bundle logic, RTS would have been used to launch missions on the real boat from
the same program that allowed to run simulations. However, because it turned out to be as simple as
adding another control loop, I discarded the feature some time after implementing it. I was quickly made
understood that it was more reasonable to have only one control loop structure, shared for the simulation
and real missions (see section 2.3.2. Model and simulation). Making a separate mission launcher program
matter-of-factly reduced the complexity of the code while still allowing us to attain the desired end result.

In the end, HIL was passively merged with the main simulation feature. Thanks to the way I implemented
virtual drivers, it indeed turned out that implementing HIL was as simple as switching virtual drivers and
real drivers. To enable this, I added a components menu, under the main settings menu, that allows the
user to select between virtual and real state for the components. I also implemented extensive checks to
ensure that real drivers could only be picked to real when the corresponding real component was actually
accessible by the program.

2.3.5 Logs and replay

One of the most important aspects of testing is the analysis of the results. For this reason, I implemented
a log replay feature to the program which made reviewing logged data a lot simpler. Although initially
destined for real mission, the implementation of the VirtualSailboat class meant that logs of simulated
missions could also be recorded. This incidentally made testing and debugging the logging process a lot
easier.

While Ludovic MUSTIÈRE developed the logger class, I defined the log file format. Log files are
.csv files divided in two parts, metadata stored in a header and data stored in the main body of the file
(see Appendix C: Sample log file) I also implemented a log reader utility capable of extracting both the
data and metadata from a log file and of storing it in instance attributes where the log replay method
could easily access them.

2.3.6 User interface

The HMI is a key component of the user experience, hence the special care it received. Two user
interfaces were made, I worked on the CLI with Ludovic MUSTIÈRE and brought a minor contribution
to the GUI made by Catherine RIZK. A diagram of the global structure of the HMI , including the
differences between the CLI and GUI structures, is presented in Appendix D: HMI structure
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The CLI was designed for the Raspberry, so that we could run HIL among other things. It was made
using bash scripts and the python argparse library. It consists of a succession of interconnected menu
screens.

The bash scripts are in charge of two things. First, they ensure the proper initialisation of the program,
e.g. by pre-running servomotor drivers to give the main program access privileges for the necessary files.
Then, they define useful aliases to make using certain functionalities of the program easier. For instance,
launching sensor or actuator tests with default settings for a specific sensor is as simple as using the
command testComponent, where ‘Component’ is to be replaced by the name of the component of choice,
e.g. testIMU or testCalypso.

While aliases are used to define shortcuts, argparse is used to define the main command. Using the
ArgumentParser class, I was able to retrieve and handle the command line arguments. I was also able to
standardise and document the command.

The CLI is mostly composed of python based interfaces, built using the default python functions input()
and print() and nested while loops. I made a significant effort to make the parts of the interface I worked
on foolproof. All the settings menus I developed are capable of basic input syntax verification, accepting
only existing options with eventual valid matching arguments. Some screenshots of the CLI can be found
in Appendix E: CLI screenshots.

The GUI made using pygubu and tkinter. It was added to improve the user experience when running
the simulation is running on any other device than the on-board computer. I developed a class to handle
the simulation window, i.e. the window containing the plot used to display either a live simulation or a
log file replay. It was initially part of the CLI before we decided to implement a full GUI , at which point
the class was renamed to SimulationPlotter and relocated to the GUI file.

The SimulationPlotter class has instance attributes for tkinter settings, matplotlib settings, threads and
mutexes. Most importantly it can access the instance of the Simulation class currently running as one of
its instance attributes. It uses a thread named _drawSimuThread, targeting the _drawSimuCallback()
method, and a couple other utility methods and functions to update the plot with data from Simulation.
Moreover, it uses the tkinter main loop to run a keylogger, which allows user to interact with simulation
window shown in Figure 12. The user can pause and resume the simulation by pressing the ‘p’ key and
quit the simulation, completed or not, by pressing the escape key. At first, the pause feature was meant
to allow easier frame by frame analysis of the data but the data display was never implemented to the
simulation window for lack of time. They can also move the camera by using arrow keys, zoom in or out by
using keypad plus and minus keys, and change of camera with the ‘c’ key. The camera settings can be reset
by using the ‘r’ key. Note that resetting the camera only affects the currently selected camera. Last but
not least, the user can also switch from camera mode to control mode, if a compatible manual controller is
used by the boat. This feature was initially intended to simulate serial control (see section 2.4.2.2. Serial).
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Figure 12: Screenshots of the GUI: main menu (left) and simulation window (right)

2.4 Controlling the boat

2.4.1 Autonomous operation

The main algorithm used for autonomous operation is based on a simple control loop (see section Appendix
F: Algorithms). There were initially multiple control loops made for different contexts, e.g. for the
simulation, for real missions, so on and so forth, which were later all replaced by a single loop. All control
algorithm implementations were made respecting a certain protocol, which significantly facilitates the
addition of new algorithms to the simulation (see section 2.3.1. Modular simulation program).

2.4.1.1 Supervision

In our program, supervisors are the algorithms that define the behaviour of the boat, i.e. the mission it
tries to accomplish. They define targets based on the state vector of the boat. the main missions we tested
the boat on were line following, station keeping and path following. In the two first scenarios mentioned,
the targets are respectively a line between two waypoints and a single waypoint.

I was in charge of the implementation of all supervisors. Supervisors are all derived from the abstract
parent class BaseSupervisor. The latter has attributes for the waypoints list loaded, the target index itarg
which uniquely identifies the target, and the color map used to draw targets on the simulation window
plot whenever the simulation running. Setter and getter properties for the target index were also added to
make them wrap around at the end of the list, i.e. the index value is defined modulo the length of the
waypoints list.
It features two main abstract methods, namely get_target() and draw_target(). These methods are
respectively used to compute and return the target of the boat, and draw all the known waypoints as well
as the current target on the simulation window plot whenever it is possible. A total of three supervisors
based on BaseSupervisor were implemented.
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The SupervisorLineFollowingDefault is in charge of the line following mission mentioned earlier. It
targets the line between the waypoints at indices itarg and itarg + 1 and returns it as a list of these two
waypoints. Given that it is a basic test algorithm, the target is set once before launch, at instantiation,
and remains constant until the end of the test.

The SupervisorStationKeepingDefault is in charge of the station keeping mission mentioned earlier. It
targets and returns the waypoint at target index itarg. Given that it is a basic test algorithm too, the
target is also set once before launch and remains constant until the end of the test

The SupervisorPathFollowingDefault is in charge of path following missions. Let us call a path a closed
polygonal chain of length n ∈ N. The specificity of the considered path is that it is defined by the
waypoints file loaded, that is the ordered list of its vertices as GNSS waypoints. The path following
mission simply consists in following the considered path from start to finish and to station next to its first
waypoint after having completed a lap.
Practically speaking, it is simply a combination of the two previous supervisors, i.e. we follow successively
the different segments making up the path and finish by stationing next to the starting waypoint after
having reached target index itarg = n. As such it returns the waypoint at target index itarg or a list of the
waypoints at indices itarg and itarg + 1, depending on the mission progress. The condition to change the
currently targeted segment is reaching the half-plane delimited by line perpendicular to it and passing
by its end point, which does not contain the starting waypoint of the target segment. Let Witarg and
Witarg+1 be the waypoints at indices itarg and itarg + 1 respectively. The aforementioned condition is then
simply equivalent to the following basic inequation, i.e. we increase the value of itarg by 1 as soon as this
inequality is verified.

−−−−−−−−−−→
WitargWitarg+1 ·

−−−−−−−→
Witarg+1M > 0 (2)

2.4.1.2 Control

In our program, controllers are used to ensure that the targets issued by supervisors are actually reached.
They do so by defining target values for δr and δs, based on the boat state vector and the target defined
by the supervisor, and by ensuring that these target values are actually respected by the servomotors.
The commands determined by the controllers are in radians and are converted by the servomotor driver
to PWM commands. Because the commands depend on the target returned by the supervisor, and the
format of said target by proxy, certain controllers will only be compatible with certain supervisors.

I took it upon myself to standardise the implementation of all controllers, which was taken care of
by Catherine RIZK and Ludovic MUSTIÈRE in the first place. I also fully implemented the path
following controller. Controllers are all derived from the abstract parent class BaseController. The latter
has attributes for the configuration file used by the boat which contains all the controller parameters.
It features one main abstract method, namely get_cmd(). This method is used to compute and return
the commands as a 2d vertical numpy array. A total of four supervisors based on BaseSupervisor were
implemented.
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The ControllerLineFollowing is the default controller associated with the supervisor SupervisorLine-
FollowingDefault, it is based on the algorithm presented in [12]. The ControllerStationKeeping is default
controller associated with supervisor SupervisorStationKeepingDefault, inspired by various algorithms
presented in [12, 13, 11]. The ControllerPathFollowing is the default controller associated with the
supervisor SupervisorPathFollowingDefault. It is simply a fusion of the implementation of the two previous
controllers, using the appropriate behaviour to handle the format of the target provided by the supervisor
at any given time. Lastly, the ControllerViel is a station keeping controller based on the algorithm
presented in [14]. The algorithms for every controller are detailed in appendix F: Algorithms.

2.4.1.3 Observation

In our program, observers are used to get an estimate of the state vector of the boat at a given time.
They use sensor measurements and/or prediction equations to compute this estimate. It is that estimate
which is used to feed the supervisor and controller.

I was in charge of the implementation of the observers. Observers are all derived from the abstract
parent class BaseObserver. The latter has attributes for the estimation of the boat state.
It features three main abstract methods, namely updateEstimate(), drawEstimate(), reset() These methods
are used to compute the estimated state of the boat, to draw the estimated state of the boat on the
simulation window plot whenever it is possible, and to reset the state estimation. A single observer based
on BaseSupervisor was implemented.

The ObserverEKF is an extended kalman filter implementation. It has attributes for the initial values
of the state estimate. One of its key feature is its usage symbolic computation, via the lambdaKalman()
method (see appendix G: Kalman filter implementation), to compute the required mathematical functions.
It is capable of pickling the resulting lambda functions to lambdaKalman file, the dill library. This is
meant to allow the Raspberry Pi to bypass the symbolic calculation step, as it is not powerful enough
to quickly get through it. I also added an option to forcefully rerun the symbolic calculations on
instantiation. Another interesting feature of this observer is the way it performs the prediction step
of the extended kalman filter. It relies on basic assumptions regarding the wind evolution to use a
Runge-Kutta 2nd order numerical integration method (see Appendix G: Kalman filter implementation).
In summary, let dt be the temporal sampling step used for discretization, we assume that the true wind
intensity atw,n at time n · dt can be approximated by atw,n = atw,n + (atw,n − atw,n−1), where atw,n−1 is
the true wind intensity at time (n+ 1) · dt. Lastly, note that the measurement vector used by the filter is
y = (xgnss, ygnss, thetaimu, vgnss)>.

2.4.2 Manual control

Manual control was implemented in the main loop in a way that allows the user to take over the control
algorithms used for autonomous operation by overriding commands from the controller. Two manual
control methods were initially planned, RC and serial, though RC was the only one ready to use by the
end of the project.
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Whereas the RC control relies on a HK-T4A emitter and a HK-TR6A receiver (see 2.1.1 Hardware), the
serial control would have relied on a pair of XBEE modules, most likely the XBEE Pro series 1 modules
used the year prior. The distinction between the two control methods using the names RC and serial is
made for the sake of convenience but both of these methods use radio frequencies to communicate with
the boat. The priority in of the command chain is defined as follows: RC overrides serial which overrides
control algorithms.

2.4.2.1 RC

I wrote the RC driver. It includes attributes for the command readings, remote status, useful threads
and mutexes along with getter and setter properties for the reading attribute. Readings are stored via
the utility data class RCReading, used to store all four channel inputs from the receiver (2 axes times 2
joysticks) and the corresponding rudder and sail commands.
Like others divers, it has start() and stop() methods with a thread, targeting the getReading() method,
which to update the reading, but has no initialisation nor shutdown method, Furthermore, it runs a thread
named _statusThread, targeting the updateStatus() method, to continuously monitor the status of the
remote using the utility method isIdle(). This thread differs from the _readingThread thread targeting
the getReading() method, which continuously retrieves inputs from receiver module.
Its main specificity is that I built it so that it would behave like a controller in the eye of boat. This
translates into the addition of a get_cmd() method which returns the desired sail and rudder commands
in the same format as a controller would.

The class also features class attributes for the recorded minimum, idle and maximum value of each
channel detailed in Table 5. They can be adjusted using the test program, to calibrate the controller inputs.
In our case, we use channel 2 to control the sail and channel 0 to control the rudder, which translates to
right joystick throttle and left joystick steering. Let chi,min, chi,idle and chi,max be the minimum, idle and
maximum recorded inputs for the ith channel and chi be the current input value of the ith channel. The
corresponding target angles is obtained using the basic formula, using the notations defined above and
in Table 4:

δr =
δr,max − δr,min
ch0,max − ch0,min

(ch0 − ch0,idle) (3.1)

δs,max =
δs,max − δs,min
ch2,max − ch2,min

(ch2 − ch2,min) (3.2)

These channel values are also used to detect when the RC emitter is online. The updateStatus() method
is in charge of updating status attribute of driver. Whenever RC emitter is offline, inputs on channel all
channels are at idle values with a maximum observed deviation of 3 points. We consider that RC enabled
as soon as we leave this interval on even one of the channels. However we wait for a couple status thread
iterations with idle channels before switching the RC status back to offline. This delay is here to avoid a
scenario where the servomotors receive controller commands in between two RC commands because of a
signal loss, which could cause an erratic behaviour.
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Channel no Minimum value Idle value Maximum value
0 1075 1499 1945
1 1071 1499 1883
2 1150 899 1818
3 1081 1499 1930

Table 5: Recorded channel input values

2.4.2.2 Serial

The serial control method was supposed to allow keyboard control of the boat from the simulation
program before we decided to create a separate mission launcher. It was also intended to provide real
time feedback from the on-board computer to a connected remote computer. This would have been used,
among other things, to pilot a simulation running on the on-board computer using the GUI on a remote
computer. In the end it was not implemented for a lack of time.

2.5 Testing the boat

Live testing took place at the Bournville Radio Sailing and Model Boat Club. It is a large and shallow
artificial lake offering ample space to test a model sailboat. Waypoints were arbitrarily placed on the
lake using Google Maps, both sets of waypoints used for testing are shown in Figure 13. As mentioned
previously, the missions tested include line following, station keeping and path following (see section 2.4.
Controlling the boat).

Figure 13: Sets of waypoints used

The procedure for starting the boat is fairly simple. Firstly, all the on-board components are connected
and powered on. Secondly, the access point is turned on and the SSH communication between the on-board
and remote computers is tested. Thirdly, because the on-board electronics are not in a waterproof case, the
boat hull needs to be sealed with waterproof tape. Fourthly, the desired mission is selected and launched
from the remote computer. Lastly, the boat is put on the lake and kept in place until the initialisation
process is complete, at which point it is released and starts to operate autonomously.
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We came across many issues during live boat tests. One of our main sources of troubles was the bad
weather. Although we had good wind on the lake, we also rarely had any sunlight, which made using
the solar anemometer a real chore as it would almost always be in low power mode, causing innumerable
connection issues. Another issue we faced was with the servomotors, it is explained in details in section 3.2.
Notable issues. Another problem we had was with the recorded boat position. For some reason, we realised
while on the lake that the real evolution of the position of the boat did not match the one depicted in
the log files. It turned out that multiple successive inversions of the x and y axes, which would end up
correcting themselves in the log file but not in the boat main control loop, were spread throughout the
code

In spite of all these challenges, we were able to produce some experimental results. The best results
achieved were attained during a station keeping mission. This mission can be divided in four phases. Firstly,
the boat is on stand by and is being held in place while it initializes itself. Secondly, it is released facing the
general direction of the target waypoint, to avoid any collision with the shore, and it eventually manages
to follow a line straight to it. Thirdly, once on the waypoint, it tries to stay near the target but eventually
drifts away before subsequently trying to no avail to get back in the target zone. Lastly, the boat is seen
drifting sideways for a while, as we assume control of it, before we bring it back to the shore. The full replay
of the associated log can be found here (or by following this link: https://youtu.be/BWaITWV6-Yc).

Figure 14: Screenshot of the successful mission replay

The log file generated shows that the boat had successfully reached and stationed next to the target
waypoint but the recorded heading, which was initially correctly, seemed completely off by the time we
took control of the boat. Given the progressive nature of the appearance of the discrepancies, I felt like
this would only come from a physical issue with the boat and indeed we found that the IMU was the
responsible for this behaviour. As a matter of fact the IMU kept repeatedly uncalibrating itself after
working seemingly fine for a while once recalibrated. We were not able to pinpoint the specific cause or
causes of this issue for lack of time, although I suspect the proximity of the sensor to both of the high
torque servomotors to be the main culprit. Moreover, in spite of the projection algorithm used to get a
better value for the heading of the boat, the high roll angle values naturally experienced by a sailboat
during navigation may also contribute to the inaccuracy of the measurements. In any case this explains
why the boat was capable of station only up until a certain point, the point past which IMU measurements
were to erroneous for the algorithms to work.
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2.6 Documenting the boat

One of my key goals with the project was to ensure its reusability and to make it easily deployable.
Therefore, It was only natural that a gitlab was set up for the project [15]. Furthermore, two other
measures were taken to that effect, namely having a fully documented code and exhaustive readme files on
the git. On the one hand, the documentation of every object, function and important variable is meant to
allow future developers that would need to tweak the existing code to do so more easily. On the other
hand, the readme files were made to describe every important folder of the git and to simplify overall the
inner-workings of the project (see appendix H: README files) They act as user quick-start guides and are
oriented towards students who would be using the platform in a pedagogical context.

The documentation process was spread over two sessions, one halfway through the project and one at
the end. The first one was more focused on the git. The whole team settled on the final folder architecture
of the project and proceeded to sort the files accordingly. The majority of the readme files were also added
and the existing code almost entirely documented, leaving only work-in-progress sections untouched The
second session was more centred on the code, being almost exclusively dedicated to the documentation,
with the only exception being the addition of the few missing readme files.

3 Results

3.1 Work accomplished

By the end of the Internship, I was ultimately unable to reproduce the results obtained by the previous
team in charge of the project. The boat was only ever capable of partially clearing any provided missions,
as explained in section 2.5. Testing the boat. However, this final result is far from representative of the
work done.

Indeed, a lot of has been done on the software side of the project. I wrote two functional drivers for the
anemometer and one for the GNSS . I implemented a significant portion of the features of the simulation
program, including but not limited to the core simulation loop, the main control loop, the log replay
functionality and multiple settings menus. I also implemented control algorithms in the form of basic
supervisors as well as an extended kalman filter, all successfully tested in the simulation, and standardised
the implementation of controllers. Lastly, I contributed to documenting the code.

The main added value over what had already been done last year is that these tasks were all accomplished
with the idea of reusability in mind. With this notion at the heart of my approach for this project, I
ensured that future developers and users could easily reuse and/or improve the code.

3.2 Notable issues

I encountered many challenges throughout the project, from basic ubuntu errors to obscure python
issues or even hardware troubles. The most notable ones that I was able to overcome are listed below.
They are characterised by their complexity and the interesting solution they required to be solved, which
in my opinion made them worthy of this special attention.
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The first interesting issue I was faced with was the implementation of the Config class for the simulation
program. Initially the configuration classes were going to follow same logic as drivers, one class per
configuration profile with all the classes derived from an abstract parent Config. However, I did not
like this idea as it seemed very limiting and tedious to work with given that configurations were bound
to change with the evolution of the program. As a consequence, I came up with the idea of creating a
single configuration class with dynamically updated attributes, initialised using the contents of .yaml
configuration files (see Appendix B: Sample configuration file). The main advantage of this method is that
configuration files are more flexible and understandable for end-users.
The method I initially selected was to make only two classes. The main parent class would contain
all the non-dynamic methods and attributes and the child overlay class would use the default python
function setattr() to dynamically modify its instance attributes on constructor call (see section 2.3.1.
Modular simulation program). The problem I had with this implementation was a recurrent error message:
AttributeError: ‘Resource’ object has no attribute ‘__dict__’, apparently generated because the object I
was using setattr() on had no __dict__ attribute, making the function inoperative on said object. After
some research, it turned out that only classes had __dict__ attributes and not instances. For this reason,
I implemented an InitConfig method to modify the Config class __dict__ before instantiating it, and
subsequently resetting the Config class __dict__, before ultimately returning the instance with modified
attributes. This solution worked flawlessly but some time after its implementation new tests revealed
that problem had disappeared. As a result, I decided to go back to the initial method which was less
susceptible to be affected by python updates.

The most complex challenge I had to face was development of the first anemometer driver. The main
issue was to limit the use of the AsyncIO library, used by the calypso-anemometer library, to the driver
(see section 2.2.2. Drivers). Even without any prior experience with the library, I quickly came across the
concept of factory method for performing asynchronous operations when instantiating an object. I was
then quickly capable of adapting and integrating this method to our project. The real difficulty was to
handle the measurement acquisition from the sensor, as it was using async coroutines. The first solution I
used was to run an event loop in the measurement thread target method _updateData(), in order to wait
for the results on each iteration of the thread loop.
The calypso-anemometer library provides methods to generate both real and dummy sensor readings.
While this first solution worked with the fake readings produced by, it would crash when using real
measurements. Testing would systematically result in the error message RuntimeError: Task got Future
<Future pending> attached to a different loop, stating that an event wheel received a task it had not
started which it cannot handle. Upon preliminary investigation, it turned out that the loop used by the
message dbus driver of the Bleak client used by calypso-anemometer library was using a closed loop to
run events, while the loop used by my driver was running. More specifically, this might actually have
been an issue with the _bus attribute of the BleakClientBlueZDBus backend used by the Bleak client,
of which the initialisation is handled within an async events.get_running_loop context manager, in the
BleakClientBlueZDBus.connect() method. The fact that this method is used only by the real API and not
the fake one also explained the difference in behaviour observed. This was the first clear indication that
the issue was AsyncIO related and not multithreading related as initially suspected given that a proof of
concept driver for the calypso had already been made. Screenshots of the key error message and of the
event loop identification test are available in Appendix I: Anemometer driver investigation.
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I then hypothesized that the get_running_loop() method from AsyncIO, which I used to get the event
loop handling the async coroutines in the measurement thread, was returning a different loop at the time
of the thread execution than at the time of the initialisation of the Bleak client. Upon further investigation,
it turned out to be true. A temporary loop is used during the initialisation of the MessageBus instance
used by the Bleak client and subsequently closed after the initialisation. It can be accessed via as the
instance attribute _loop of the MessageBus class. This loop is explicitly shutdown on coroutine call()
execution, and the boolean _loop._asyncgens_shutdown_called is consequently set to True.
After many unsuccessful attempts at trying to find a workaround either using dedicated AsyncIO methods
to run the measurement thread with _updateData() being an async coroutine or even trying to modify
the loop declarations in the library directly, I ended up being able to go back to the initial method by
isolating and centralising all AsyncIO access points in our code. I did this by forcing the creation and use
of a new event loop on the first instantiation of the calypso driver, defining it as the new main event loop,
and reusing it in eventual following instantiations instead of recreating it.

The final issue I would like to discuss is a hardware related one. A repeated issue we observed during
the initial hardware test was that, when a new target was provided to the servomotor before it had the
time to reach the previous one, the Raspberry Pi would often end up crashing. This problem was only ever
observed in the servomotor testing phase and although it was very easily reproducible, it never seemed to
occur in HIL simulated missions. Nevertheless, I started noticing unprompted ill-timed Raspberry crashes
throughout the later half of July, whenever we would go for live tests of the boat.
The fact that the servomotors were never a source of troubles until then and that the mechanical part of
the system had allegedly been dimensioned and tested the previous year meant that it took a while before
I started considering them as potential culprits. Nonetheless, it turned out after further investigation that
what we mistook for an outlying failure scenario was actually just a consistent setup to generate current
consumption spikes. The issues we had all along were coming from using same battery/BEC pair for
the motors and the on-board electronics, which could not sustain power delivery in the case of a current
spike. This issue was temporarily fixed by attaching a second battery to the Raspberry Pi USB-c power
input. The more permanent solution of using two separate battery/BEC pairs, one providing power to the
electronics and the other to the motors, was later considered.

3.3 Work left

Even if a lot was done, there is even more left to do, as evidenced by the experimental results attained.
The first step would be of course to fix the only remaining known unsolved issue, i.e. the IMU calibration
problem. However, there are many improvements that could be made beyond that.

The first major improvement would be to switch from a multithreading-based program structure to
multiprocessing-based one. Indeed, in later stages of project, we actually started hitting computational
limitations of using only one physical processor core. The main problem we faced was the inability to
lower the main control loop frequency to a satisfying level because of the number of threads having to run
on a single core.
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A related improvement would be to add a cooling solution to the on-board computer. As a matter of
fact, in later stages of project, we started facing thermal throttling issues partly due to absence of cooling
solutions for the Raspberry Pi 4 processor beyond the integrated heat spreader. These troubles having
arisen when using a single core, multiprocessing would almost certainly require an active cooling solution
to be implemented to the build.

Another significant upgrade would be the proper implementation of serial communication to and from
the boat. The template driver for the XBEE module which was used the year prior to enable this very
mode of communication is already in place and only needs to be complete. Serial communication could be
used for manual control, connecting the on-board computer to a remote computer or using the latter as a
remote. It could also be used for real time feedback applications, like displaying the evolution of the boat
in real time on a remote computer or adding a remote display option for the simulation and log replay
when it is running on the Raspberry Pi.

One minor upgrade would be to switch the entire code to the CamelCase syntax and to DRY it. I
particularly would have liked to do this before the end of the project, as it would have made the code
slightly more intuitive to modify. Indeed, in its current state, the code uses a mix of CamelCase and
snake_case which would make it annoying to settle on a syntax convention when modifying the code in
the future.

4 Conclusion

During my internship at Aston University, I was able to work on an autonomous sailboat and to acquire
experience with this type of drone. Despite being unable to reproduce last year’s results, I ensured that
the next students who will take on this endeavour will have much easier time seeing through it. Ultimately,
my real contribution to this project was to get it closer to its final goal of offering an easily deployable
and highly adaptable platform for testing and educational purposes, by laying down clean foundations for
the software side. As a result, I was able to get familiar with the importance of standardisation in an
academic context, especially in order to facilitate the reproducibility of experimental results which is one
of the key steps of research and of the scientific method in general.

This internship also gave me an opportunity to immerse myself in a new work culture. This gets me
closer to one of my personal goals of getting accustomed to as many work ethics and work cultures as
possible in my early career, especially european ones, as mentioned in my first-year career plan report.
The fact that it was in an academic context also aligns with my career project, as I intend to pursue a
Ph.D. after graduation from ENSTA Bretagne.

I am grateful for the opportunities and learning experiences provided by my internship at Aston
University. Indeed, when putting the latter in perspective with my career plan, it becomes clear that
this experience was valuable both from a technical and cultural standpoint. Moreover, the gap-year I
am currently taking will definitely give me time to draw even more insights from said experience. It will
undoubtedly serve me well in my academic and professional journey and I look forward to continuing to
build upon them.
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Glossary

DDboat A differential drive model boat.
s@60° A servo speed measurement unit based on the amount of time, in seconds, it takes a servo arm to

sweep left or right through a 60 degree arc at either 4.8 volts or 6 volts.
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Acronyms

API Application Programming Interface.
BEC Battery Elimination Circuit.
CLI Command Line Interface.
DRY Don’t Repeat Yourself.
ENSTA École Nationale Supérieure de Techniques Avancées.
GNSS Global Navigation Satellite System.
GUI Graphical User Interface.
HAT Hardware Attached on Top.
HIL Hardware In the Loop.
HMI Human Machine Interface.
I2C Inter-Integrated Circuit.
IMU Inertial Motion Unit.
MAC Media Access Control.
NED North East Down.
OS Operating System.
PPM Pulse Position Modulation.
PWM Pulse Width Modulation.
RC Radio Control.
RTS “Real-time simulation”.
SPI Serial Peripheral Interface.
SSH Secure Socket Shell.
UAV Unmaned Aerial Vessel.
USV Unmaned Surface Vessel.
UUID Universally Unique Identifier.
YAML YAML Ain’t Markup Language.
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RAPPORT D’EVALUATION 
ASSESSMENT REPORT 

 
Merci de retourner ce rapport par courrier ou par voie électronique en fin du stage à : 

At the end of the internship, please return this report via mail or email to:  

 

     ENSTA Bretagne – Bureau des stages - 2 rue François Verny - 29806 BREST cedex 9 – FRANCE 

 00.33 (0) 2.98.34.87.70 /  stages@ensta-bretagne.fr 

I - ORGANISME   /   HOST ORGANISATION 

NOM / Name _________________________________________________________________  

 

Adresse / Address _____________________________________________________________  

 ____________________________________________________________________________  

 

Tél / Phone (including country and area code) _______________________________________  

 

Nom du superviseur / Name of internship supervisor 

 ____________________________________________________________________________  

Fonction / Function ____________________________________________________________  

 

Adresse e-mail / E-mail address __________________________________________________  

 

Nom du stagiaire accueilli / Name of intern  

II - EVALUATION / ASSESSMENT 

 

Veuillez attribuer une note, en encerclant la lettre appropriée, pour chacune des caractéristiques 

suivantes. Cette note devra se situer entre A (très bien) et F (très faible) 

Please attribute a mark from A (excellent) to F (very weak). 

MISSION / TASK 

❖ La mission de départ a-t-elle été remplie ? A B C D E F  

 Was the initial contract carried out to your satisfaction? 

 

❖ Manquait-il au stagiaire des connaissances ?  oui/yes  non/no 

Was the intern lacking skills? 

 

Si oui, lesquelles ? / If so, which skills? _________________________________________  

ESPRIT D’EQUIPE / TEAM SPIRIT 

❖ Le stagiaire s’est-il bien intégré dans l’organisme d’accueil (disponible, sérieux, s’est adapté au 

travail en groupe) / Did the intern easily integrate the host organisation? (flexible, conscientious, 

adapted to team work) 

  A B C D E F 

 
Souhaitez-vous nous faire part d’observations ou suggestions ? / If you wish to comment or make a 

suggestion, please do so here  

  

COMPORTEMENT AU TRAVAIL / BEHAVIOUR TOWARDS WORK 

Le comportement du stagiaire était-il conforme à vos attentes (Ponctuel, ordonné, respectueux, 

soucieux de participer et d’acquérir de nouvelles connaissances) ?  

 

Aston University

Aston Street, Birmingham B4 7ET

+44 07475104087

Jian Wan
Lecturer in Mechatronics and Robotics

wanj3@aston.ac.uk

Harendra Rangaradjou
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Did the intern live up to expectations? (Punctual, methodical, responsive to management 

instructions, attentive to quality, concerned with acquiring new skills)? 

   A B C D E F 

 

Souhaitez-vous nous faire part d’observations ou suggestions ? / If you wish to comment or make a 

suggestion, please do so here   

  

INITIATIVE – AUTONOMIE / INITIATIVE – AUTONOMY 

Le stagiaire s’est –il rapidement adapté à de nouvelles situations ?   A B C D E F 

(Proposition de solutions aux problèmes rencontrés, autonomie dans le travail, etc.) 

 

Did the intern adapt well to new situations?   A B C D E F 

(eg. suggested solutions to problems encountered,  demonstrated autonomy in his/her job, etc.) 

 

Souhaitez-vous nous faire part d’observations ou suggestions ? / If you wish to comment or make a 

suggestion, please do so here   

  

CULTUREL – COMMUNICATION / CULTURAL – COMMUNICATION 

Le stagiaire était-il ouvert, d’une manière générale, à la communication ?  A B C D E F 

Was the intern open to listening and expressing himself /herself? 

 

Souhaitez-vous nous faire part d’observations ou suggestions ? / If you wish to comment or make a 

suggestion, please do so here   

  

OPINION GLOBALE / OVERALL ASSESSMENT 

❖ La valeur technique du stagiaire était :   A B C D E F 

Please evaluate the technical skills of the intern: 

III - PARTENARIAT FUTUR / FUTURE PARTNERSHIP 

❖ Etes-vous prêt à accueillir un autre stagiaire l’an prochain ? 

Would you be willing to host another intern next year?     oui/yes  non/no 

 

Fait à  _______________________________________ , le ______________________   

In  __________________________________________ , on _____________________  

 

 

 

 

 

Signature Entreprise ____________________________ Signature stagiaire 

Company stamp _______________________________ Intern’s signature 

 

 

 

 

Merci pour votre coopération 

We thank you very much for your cooperation 

can be more proactive to solve any issue that occurs

Birmingham 05/09/2023

time management can be more efficient
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Appendix B: Sample configuration file
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Appendix C: Sample log file
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Appendix D: HMI structure
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Appendix E: Some CLI screenshots
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Appendix F: Algorithms

Main algorithm

Algorithm 1 Main control loop algorithm
Require: tmax, dtloop

1: Begin
2: while elapsed() < tmax do . elapsed() returns the time elapsed since launch
3: t0,loop ← elapsed()
4: . updateCmd(i) updates actuator commands from the source i
5: if rc() then . rc() returns whether the rc controller is online
6: updateCmd(rc)
7: else if serial() then . serial() returns whether the serial controller is online
8: updateCmd(serial)
9: else

10: updateCmd(algo)
11: end if
12: updateMeasures() . updateMeasures() updates sensor measurements
13: updateEstimate() . updateEstimate() updates the observer state estimate
14:
15: tsleep ← elapsed()− t0,loop
16: if dtloop > tsleep then
17: sleep(dtloop − tsleep) . sleep() pauses the program for the given amount of time
18: end if
19: end while
20: End

Controller algorithms

We introduce the parameters used by the various controllers in the table below.

Symbol Value
rlim Tacking corridor width (defaults to 40)
rin Inner radius of the station keeping target (defaults to 7m)
rout Outer radius of the station keeping target (defaults to 14m)
ξ Close-hauled angle (defaults to pi/3)
γ Incidence angle (defaults to pi/4)
q Hysteresis (Line following only: indicates on which side of the line the

boat currently is when tacking)
l Boolean status flag (Station keeping only: indicates whether the boat is

currently following a line to the target (True) or station keeping (False))
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Algorithm 2 ControllerLineFollowing algorithm
1: In: M , θ, v,W1,W2, atw,ψtw . The target is the segment [W1W2], starting at point W1
2: Out: δs,max, δr
3: Begin
4:

−−−→
W1M ←M −W1

5:
−−−−→
W1W2 ←W2 −W1

6: e← det
( −−−−→

W1W2
||
−−−−→
W1W2||

,−−−→W1M

)
7: θtarg ← arg(−−−−→W1W2)

8: θnom ← θtarg − 2γ
π arctan2(e, rlim)

9: ψaw ← arctan2(atw sin(ψtw − θ), atw cos(ψtw − θ)− v)
10: if |e| > rlim

2 then
11: q ← sign(e)
12: end if
13: if cos(ψtw − θnom) + cos(ξ) < 0 or [ |e| < rlim and cos(ψtw − θtarg) + cos(ξ) < 0 ] then
14: θreal ← π+ ψtw − qξ . headwind =⇒ tacking
15: else
16: θreal ← θnom . tailwind
17: end if
18: if cos(θ− θreal) ≥ 0 then
19: δr ← δr,max sin(θ− θreal)
20: else
21: δr ← δr,max sign(sin(θ− θreal))
22: end if
23: δs,max ← − sign(ψap)min

(
|π− |ψap||, π4 (cos(ψtw − θreal) + 1)

)
24: End

Algorithm 3 ControllerStationKeeping algorithm
1: In: M , θ, v,W , atw,ψtw . The target is waypoint W
2: Out: δs,max, δr
3: Begin
4:

−−−→
WM ←M −W

5: θtarg ← arg(−−−→WM)

6: dtarg ← ||
−−−→
WM ||

7: ψaw ← arctan2(atw sin(ψtw − θ), atw cos(ψtw − θ)− v)
8: if dtarg > rout then
9: if not l then

10: A←M

11: l← True

12: δr, δs,max ← ControllerLineFollowing(M , θ, v,A,W , atw,ψtw)
13: end if
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14: else
15: if l then
16: l← False

17: end if
18: if dtarg > rin then
19: if cos(θtarg −ψtw) > 0 then
20: if cos(π+ θtarg − π

2 −ψtw) > cos(π+ θtarg +
π
2 −ψtw) then

21: θtarg ← θtarg +
π
2

22: else
23: θtarg ← θtarg − π

2
24: end if
25: end if
26: if cos(ψtw − θtarg) + cos(ξ) < 0 then
27: if sin(ψtw − θtarg) > 0 then
28: q ← 1
29: else
30: q ← −1
31: end if
32: θreal ← ψtw + π+ qξ . motion heading including drift
33: else
34: θreal ← θtarg
35: end if
36: else
37: if cos(ψtw − θtarg) + cos(ξ) > 0 then
38: if cos(θtarg −ψtw − π+ ξ) > cos(θtarg −ψtw − π− ξ) then
39: q ← −1
40: else
41: q ← 1
42: end if
43: θreal ← ψtw + π+ qξ

44: else
45: θreal ← θtarg
46: end if
47: end if
48: if cos(θ− θreal) ≥ 0 then
49: δr ← δr,max sin(θ− θreal)
50: else
51: δr ← δr,max sign(sin(θ− θreal))
52: end if
53: δs,max ← − sign(ψap)min

(
|π− |ψap||, π4 (cos(ψtw − θreal) + 1)

)
54: end if
55: End
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Algorithm 4 ControllerViel algorithm
1: In: M , θ, v,W , atw,ψtw . The target is waypoint W
2: Out: δs,max, δr
3: Begin
4:

−−−→
WM ←M −W

5: θtarg ← arg(−−−→WM)

6: dtarg ← ||
−−−→
WM ||

7: ψaw ← arctan2(atw sin(ψtw − θ), atw cos(ψtw − θ)− v)
8: if dtarg > rout then
9: if not l then

10: A←M

11: l← True

12: δr, δs,max ← ControllerLineFollowing(M , θ, v,A,W , atw,ψtw)
13: end if
14: else
15: if l then
16: l← False

17: end if
18: if dtarg ≥ rin then
19: if cos(θtarg −ψtw) > 0 then
20: if cos(θtarg − (ψtw + π

2 )) > cos(θtarg − (ψtw − π
2 )) then

21: θtarg ← θtarg +
π
2

22: else
23: θtarg ← θtarg − π

2
24: end if
25: end if
26: if cos(ψtw − θtarg) + cos(ξ) > 0 then
27: if cos(θtarg − (ψtw + π− ξ)) > cos(θtarg − (ψtw + π+ ξ)) then
28: q ← 1
29: else
30: q ← −1
31: end if
32: θreal ← ψtw + π+ qξ . motion heading including drift
33: else
34: θreal ← θtarg
35: end if
36: δs,max ← − sign(ψap)min

(
|π− |ψap||, π4 (cos(ψtw − θreal) + 1)

)
37: else if v > 0 then
38: θreal ← ψtw + π

39: δs,max ← − sign(ψap)|π− |ψap||
40: else
41: θreal ← ψtw + π− ξ sign(v)
42: εδs ← 5
43: δs,opti ← π

4 (cos(ψtw − θreal) + 1)
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44: δs,M ← min(|π− |ψap||, π2 )
45: δs,lim ← max(δs,M − εδs , 0)
46: δs,max ← − sign(ψap)min(δs,lim − |δs,opti|)
47: end if
48: if cos(θ− θreal) > 0 then
49: δr ← δr,max sin(θ− θreal)
50: else
51: δr ← δr,max sign(sin(θ− θreal))
52: end if
53: end if
54: End
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Appendix G: Kalman filter implementation
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Appendix H: README files
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