
Build a driver for a mobile robot Vector

Second year internship report
FISE 2024

University of Oviedo
Gijon-Spain

Martin PILON
ENSTA Bretagne - Autonomous Robotics

martin.pilon@ensta-bretagne.org

Supervised by

Prof. Juan Carlos ALVEREZ ALVEREZ
Universidad de Oviedo - Department Research Group on Multisensor Systems and

Robotics
juan@uniovi.es

mailto:martin.pilon@ensta-bretagne.org
mailto:juan@uniovi.es

Acknowledgements

I would like to thank the University of Oviedo and especially Prof. Juan Carlos ALVAREZ
ALVAREZ, head of the Department Research Group on Multisensor Systems and Robotics,
for accepting my internship in this lab.

I am extremely grateful to Prof. Juan Carlos ALVAREZ ALVAREZ, for giving me this
opportunity and welcoming me into the laboratory. He was very attentive and available
throughout this internship, gave me lots of advice, which made this internship a very good
experience and participated to my choice of professional orientations.

I express my deepest thank to ENSTA Bretagne for allowing students to perform this type of
internship and training.

Abstract
As part of my engineering training, I did a 16-week engineering assistant internship from
28/04/23 to 21/08/23 at the Research Group on Multisensor Systems and Robotics
department in the University of Oviedo. Supervised by Prof. Juan Carlos ALVAREZ
ALVAREZ. I was given a mobile robot, Vector, to improve. To do this, global objectives were
set for me.

- Create a driver to improve program structure
- Use of ROS 2 (Robot Operating System) to implement wireless communication

In the first month I studied the hardware of the mobile robot, to understand how
communication was carried out between the various components so that I could implement it
in the driver. During the next month, after understanding, we put it into practice and created
the first driver to enable communication between a remote PC (Personal Computer) and the
mobile robot's motors. Then a test node was added to test the driver. Finally, a LIDAR (Laser
Imaging Detection And Ranging) sensor was subsequently added. The driver structure and
the node test had to be modified to accept the addition of this LIDAR

Résumé
Dans le cadre de ma formation d'ingénieur, j'ai effectué un stage d'assistant ingénieur de 16
semaines du 28/04/23 au 21/08/23 au sein du groupe de recherche sur les systèmes multi
capteurs et du département de robotique de l'Université d'Oviedo. Ce stage était supervisé
par le professeur Juan Carlos ALVAREZ ALVAREZ. On m'a donné un robot mobile, Vector, à
améliorer. Pour ce faire, des objectifs globaux m'ont été fixés.

- Création d'un driver pour améliorer la structure du programme
- Utilisation de ROS 2 (Robot Operating System) pour implémenter la communication

sans fil.
Le premier mois, j'ai étudié le hardware du robot mobile, afin de comprendre comment la
communication s'effectuait entre les différents composants pour pouvoir l'implémenter dans
le driver. Le mois suivant, nous avons mis en pratique et créé le premier pilote pour
permettre la communication entre un PC distant et les moteurs du robot mobile. Ensuite, un
nœud de test a été ajouté pour tester le pilote. Enfin, un capteur LIDAR a été ajouté. La
structure du pilote et le test du nœud ont dû être modifiés pour accepter l'ajout de ce LIDAR

Keywords
Mobile robot, Driver, ROS, LIDAR

Table of contents

1- Introduction 8
1-1 Organisation of the structure 8
1-2 Presentation of the internship subject 8
1-3 Objectives 9

2- Hardware 10
2-1 Mechanical system 10

2-1-1 Robot structure 10
2-1-2 Wheels 11
2-1-3 Motors and Encoders 12

2-2 Electronic 13
2-2-1 Electrical system 13
2-2-2 Power electronics 14

2-2-2 a) Sabertooth 2x32 15
2-2-2 b) Kangaroo x2 16

2-2-3 Raspberry Pi 4 B 17
2-3 Sensor LIDAR 18

3- Communication 19
3-1 Communication between Sabertooth/Kangaroo and Raspberry Pi 4 19
3-2 Communication between LD19 and Raspberry Pi 4 B 21
3-3 Communication between Raspberry Pi 4 and Computer 22

4- Program 23
4-1 Driver 24

5-1 Node Motors 25
5-2 Node LD19 26

4-2 Node Test 28
5- Results 29

5-1 Culture and communication 29
5-3 Work Done 29
5-4 Future work 29

6- Conclusion 30
Appendice 31

Table of illustration

Figure 1: The mobile robot Andábata 8
Figure 2: Photograph of the structure on Vector 10
Figure 3: Vector wheel position diagram 11
Figure 4: GM9236S019 motor with E30 encoder 12
Figure 5: Diagram of electrical circuit 13
Figure 6: Diagram simplified of the power electronic 14
Figure 7: Sabertooth 2x32 control card connections 15
Figure 8: Choice of DIP switches on the Sabertooth 2x32 control board 16
Figure 9: Separate Kangaroo x2 module connected to Sabertooth 2x32 board
16
Figure 10: Choice of DIP switches on the Kangaroo x2 board 17
Figure 11: Environmental scan in a cloud data 18
Figure 12: Communication between Hardware in Vector 19
Table 1: Motion command 20
Table 2: Readback Commands 20
Table 3: packet format 21
Table 4: description of the packet 21
Figure 13: Communication with a network 22
FIgure 14: Package and files organization of the mobile robot Vector 23
Figure 15: Simplified driver communication diagram 24
Figure 16: ROS 2 Graph 25
Figure 17: Scan on Rviz 2 of the laboratory 27
FIgure 18: Scan on the node test of the laboratory 28

Table of Appendice

Appendix 1: Diagram Complet of the power electronic 32
Appendix 2: node motors.py 33
Appendix 3: motor_ld19.py 35
Appendix 4: launch.py 36
Appendix 5: node node_test.py 37
Appendix 6: Assessment report 40

Abbreviation list
ENSTA Bretagne = Ecole Nationale Supérieure de Techniques Avancées Bretagne
ENSMM = Ecole Nationale Supérieure de Mécanique et des Microtechniques
ROS = Robot Operating System
PC = Personal Computer
LIDAR = Laser Imaging Detection And Ranging
CPR = Counts Per Revolution
LPR = Lines Per Revolution
DIP Switch = Dual In-line Package Switch
PID = Proportional Integral Derivative

1- Introduction

1-1 Organisation of the structure
The Robotics Laboratory in the Electrical, Electronics, Computer and Automation
Engineering department of Oviedo University welcomes every year many students to work
on high-tech robots or to carry out their own projects. For example, there are industrial
robots such as the ABB-IRB 120 robot but also mobile robots. It is also one of the leading
robotics laboratories in the region in terms of projects carried out in collaboration with
companies such as MoviRobots.

1-2 Presentation of the internship subject
My internship topic is based on the second year internship of the year 2018-2019 of Pierre
PICHOU, a student in ENSMM (Ecole Nationale Supérieure de Mécanique et des
Microtechniques).

His objective was to build a mobile robot: Vector. The goal of Vector is having autonomous
navigation in the natural environment. He is inspired by the end of career project of Olga
CORDERO MORALES, professor at the University of Málaga (Spain). This project is
focused on the development and programming of the Andábata vehicle. Andábata is a small
4-wheeled mobile robot (see Figure 1) for autonomous navigation in the natural
environment. It is battery-powered and has a 3D laser range finder and a suspension
system. Moreover, the robot has a mobile phone to retrieve information (GPS, gyroscope,
live video).

Figure 1: The mobile robot Andábata

All of his objectives have been achieved. He made the data sheet of the robot's mechanical,
electrical and electronic systems. A programme was also made to control the movement of
the robot. He described some possibilities for improvement such as:

- Develop wireless control method
- Implement a 3D laser range finder for a better perception of the environment
- Implement a suspension system
- Develop an application on smartphone
- Add various sensors for a better rendering of information

The main goal of the internship is to improve the mobile robot Vector. The selected
improvement criteria were the wireless control method and a better perception of the
environment. But also a better organization of structure for the program.

1-3 Objectives
The ROS2 use for the wireless control was requested in order to use later this methodology
in other mobile robots in the laboratory. For the program structure, we created a driver using
ROS2 to communicate. Also, the Vector’s environment was improved with a LIDAR.
Therefore, the main objectives during this internship were:

- Create a structure with a driver
- Add ROS2 on the mobile robot to implement wireless control
- Implement a LIDAR to the system for a better perception of the environment
- Make a simple controller of the mobile robot with ROS2 to control the robot

2- Hardware
The first part of the internship consists in understanding how hardware works and the next
part is about what was used to improve the mobile robot.This understanding is necessary
because the driver communicates between the main program and the hardware. Finally,to
create a driver; it is necessary to understand how the hardware is working.

2-1 Mechanical system

2-1-1 Robot structure
The mobile robot ”Vector” consists of a mBase MR5-2D chassis made by MoviRobotics. This
chassis has a robust aluminum structure. The mobile robot has a length of 0.53m, a width of
0.45m, a height of 0.31m and a mass of 26kg.

Figure 2: Photograph of the structure on Vector

2-1-2 Wheels
Vector is a tricycle-type robot (see Figure 3) consisting of two independent non-steerable
driving wheels and placed on the same axis. Moreover a free steerable centering wheel, also
called an "idler wheel", was placed on the longitudinal axis to provide vehicle stability. The
movement of the robot was given by the rotation speed of the driving wheels and by the
orientation of the free steerable wheel. Its center of rotation was located in the center of the
two driving wheels. The two driving wheels are each driven by a DC motor associated with
an encoder.

A tricycle-type robot has several advantages and disadvantages over other configurations:
- Simple and robust mechanical system
- Non-holonomic, which means that it can not be moved in a direction perpendicular to

the drive wheels.

Figure 3: Vector wheel position diagram

The two-wheel drive had a diameter of 20 cm and consisted of an inner tube and an
aluminum rim. The tires used had small irregularities allowing better driving in a natural
environment.

2-1-3 Motors and Encoders

Figure 4: GM9236S019 motor with E30 encoder

The mobile robot was equipped with two Pittman GM9236S019 brushed DC motors (see
Figure 4). These motors were simple to control, their cost was low and their behavior is
reliable even under restrictive conditions. However, they required regular maintenance: the
brushes must be regularly cleaned, and have a low heat dissipation capacity. These two
motors had a stator consisting of permanent magnets. They offered better performance,
better power-to-volume ratio and better reliability compared to other DC motors. They had a
nominal voltage of 12 V, a maximum efficiency of 84%, a maximum rotation speed of 236
rpm, a nominal torque of 1.1 Nm

The two motors of the robot were each equipped with an integrated encoder. The encoders
transmitted square signals to calculate the angular position and the speed of wheel rotation
The encoders used for the robot were incremental optical encoders E30 from the company
Pittman (see Figure 4).

- The radius of the driving wheels: 100 mm;
- A wheel revolution in a straight line corresponds to 2π * 100 = 628 mm;
- The reduction ratio: 19.7;
- Encoder resolution: 125 LPR (500 CPR);
- A straight wheel circumference corresponds to 500 * 19.7 = 2463 LPR (9850 CPR);

One turn of the wheel was 628 mm traveled in a straight line was equivalent to 2463 LPR
counted.

2-2 Electronic

2-2-1 Electrical system
At the beginning of the internship, there was one power source for the power electronics. An
emergency button was installed for safety reasons. With the installation of the Raspberry Pi
4 B for the driver, another power source was necessary. A 5V 10000mAh battery had been
added as a power source. An emergency button was not necessary for this power source, a
simple switch was added. (see Figure 5)

The LIDAR was powered with USB. The USB between Raspberry Pi 4 B and the Sabertooth
send only information and not power.

Figure 5: Diagram of electrical circuit

2-2-2 Power electronics

Electronic circuits of the mobile robot consisted of a Sabertooth 2x32 control board
controlling the motors and a Kangaroo x2 module, that reads both incremental encoders,
and can regulate the speed with feedback. As shown in Figure 6 below, the motors are
connected to the Sabertooth 2x32 board. This card is connected to the Kangaroo x2 module
which receives the commands sent with a serial-USB computer.

Figure 6: Diagram simplified of the power electronic

2-2-2 a) Sabertooth 2x32

The Dimension Engineering Sabertooth 2x32 board was a two-way control board capable of
providing 32A to two motors with peaks of up to 64A per motor. There were four different
control modes.
The main features of the Sabertooth 2x32 card are:

- Wide power supply range from 6 V to 33.6 V;
- Thermal protection and overload protection;
- A mode of protection of the batteries;
- Four modes of control possible;
- A configurable current limit.

The control mode is chosen using DIP switches located on the control board (see Figure 7).
Switches 1 and 2 select the control mode, switch 3 configures the system power and
switches 4, 5 and 6 select different configuration options. The four control modes available
are:

- Analogical: a voltage was used to control the motors. For example, this voltage can
be generated by a potentiometer e. The voltage range was 0 V to 5 V. This is the
simplest use.

- Radio: R / C pulses were used to send commands to the motors. These signals were
generated by radio transmitters / receivers or by a microcontroller.

- Series: a microcontroller was used to control the Sabertooth 2x32 card.
- USB: commands were received via a serial-USB port on the card (see Figure 7).

Figure 7: Sabertooth 2x32 control card connections

In our project the information was sent by USB to the Kangaroo 2x module. We have to set
the Sabertooth 2x32 on DIP switches. Figure 8 shows possible choices for DIP switches.

The first two switches to select the control mode were ON and OFF respectively to select the
USB mode. Switch 3 was in the OFF position to select a battery power supply. The switch 4
is in the ON position. Switch 5 in the OFF position allowed both the card to receive
serial-USB commands but also to relay these commands to other modules such as the
Kangaroo x2 module. Finally, the switch 6 was in the ON position, because there is an
emergency stop button being located on the electrical circuit. The following combination is
then obtained: ON / OFF / OFF / ON / OFF / ON.

Figure 8: Choice of DIP switches on the Sabertooth 2x32 control board

2-2-2 b) Kangaroo x2

Dimension Engineering's Kangaroo x2 module read both encoders and added feedback
loops to control the speed and position of the mobile robot's wheels in a closed loop. It
connected directly to the Sabertooth 2x32 board via the S1 and S2, 0V and 5V serial ports
(see Figure 7 and 9)

Figure 9: Separate Kangaroo x2 module connected to Sabertooth 2x32 board

Like the Sabertooth 2x32 a DIP switches have to be configured (see Figure 10). In our case
ON / ON / OFF / OFF.

Figure 10: Choice of DIP switches on the Kangaroo x2 board

2-2-3 Raspberry Pi 4 B
The Raspberry Pi 4 B is a nanocomputer that can connect to a monitor, a keyboard/mouse
set and has Wi-Fi, Bluetooth and Ethernet interfaces. It was supplied with a case and a
power supply.

In our case the Raspberry Pi 4 B was used as the driver processor. These USB ports were
used to communicate with the Kangaroo and the Sabertooth 2x32 and the LIDAR (see
Figure 5). Wi-Fiwas used to communicate with an external PC containing the mobile robot
control program. A monitor, a keyboard and a mouse were added for card parameterization,
then removed during final installation in the mobile robot Vector.

Raspberry Pi 4 B ran from a micro-SD card and worked with a Linux or Windows 10 IoT
based operating system. Due to the desire to use the ROS 2 humble version, a version of
Ubuntu 22.04 was installed on the Raspberry Pi 4 B.

2-3 Sensor LIDAR
In the mobile robot vector there was only one sensor, FHL-LD19 Lidar of the company
Youyeetoo. This sensor was a LIDAR : “Laser Imaging Detection And Ranging”. It was
added during this internship to improve the perception of the environment of the mobile
robot.

It was composed of a laser ranging core,an angle measurement unit and a motor drive. The
LD19 ranging core can measure 4,500 times per second. Each time the distance was
measured, the LD19 emitted an infrared laser forward.he laser was reflected to the single
photon receiving unit after encountering the target object. Thanks to this, the time when the
laser was emitted and the time when the single-photon receiving unit captured the laser
were obtained. The time difference between the two was the time of flight of light. The time
of flight can be combined with the speed of light to calculate the distance. After obtaining the
distance data, the LD19 combined the angle values measured by the angle measurement
unit to form point cloud data, and then send the point cloud data to the external interface
through wireless communication (see Figure 11).

Figure 11: Environmental scan in a cloud data

3- Communication
After the work done on the hardware in order to understand the functioning of each
component independent of one another, understanding how the hardware communicates
with each other is important to write the driver. Three communications caught our attention:

- The communications with the Raspberry Pi. Because these were the ones that our
driver will have to manage in order to transmit the information.

- The communication between the Kangaroo - Raspberry Pi
- he communication between the LIDAR - Raspberry Pi

The last two communication systems were the first that we analyzed. Their installation was
easy to set up, connect these components via USB to the Raspberry Pi and authorize the
transmission of information from a Raspberry Pi terminal. The last communication that
interests us is between the PC and the Raspberry Pi. The latter will be done via a Wi-fi
network that we will have to install in the laboratory.

3-1 Communication between Sabertooth/Kangaroo and Raspberry Pi 4
This communication was one of the communications between the driver and the hardware.
It’s made with a USB “simple” serial. It would send commands for motors and get information
from the encoders (see Figure 12).

Figure 12: Communication between Hardware in Vector

We send a simple serial command with the USB encode in utf-8. The default serial settings
to use this mode were 9600 baud, 8N1. All commands followed the same format. Spaces
were ignored and can be added for readability. All commands consisted of a channel
number, followed by a comma, the command and a newline. The channel number was 1 or 2
for the motor 1 or 2, in our case the motor 1 was the left motor and the motor 2 the right one.
A list of commands possible was given by the constructor below.

Table 1: Motion command

Command Result

p Position command. The motor will go to the
specified position, in units

s Speed command. The motor will go at the
specified speed, in units per second

powerdown Power down. This command will turn off the
motor and control system. You can still read
position and speed with the motor powered
off. This is used to allow the system to
freewheel or to save power.

Table 2: Readback Commands

Command Result

getp Get position. Returns the channel number,
followed by a comma, followed by a capital
P if the move is completed or a lowercase p
if
the move is still going on, followed by the
position in units (plain text) followed by a
return and a newline

gets Get speed. Returns the channel number,
followed by a comma, followed by a capital
S
if the device is up to max speed or a
lowercase s if the device is still
accelerating,
followed by the position in units (plain text)
followed by a return and a newline

example of what we could send for the kangaroo x2:

1,start
2,start
1,s100
2,s100
1,gets
2,gets
1,powerdown
2,powerdown

3-2 Communication between LD19 and Raspberry Pi 4 B
Communication between the LD19 and the Raspberry Pi 4 B was a one-way communication.
The LIDAR starts to send information on the USB without sending any commands. the
packet format sending is show on Figure 13

Table 3: packet format

Table 4: description of the packet

Value Description

Header The length is 1 Byte, and the value is fixed at 0x54, indicating the
beginning of the data packet

VerLen The length is 1 Byte, the upper three bits indicate the packet type, which
is currently fixed at 1, and the lower five bits indicate the number of
measurement points in a packet, which is currently fixed at 12, so the
byte value is fixed at 0x2C

Speed The length is 2 Byte, the unit is degrees per second, indicating the
speed of the lidar

Start angle The length is 2 Bytes, and the unit is 0.01 degrees, indicating the
starting angle of the data packet point

Data Indicates measurement data, a measurement data length is 3 bytes,
please refer to the next section for detailed analysis

End angle The length is 2 Bytes, and the unit is 0.01 degrees, indicating the end
angle of the data packet point

Timestamp The length is 2 Bytes, the unit is milliseconds, and the maximum is
30000. When it reaches 30000, it will be counted again, indicating the
timestamp value of the data packet

CRC Check The length is 1 Byte, obtained from the verification of all the previous
data except itself. For the CRC verification method, see the following
content for details

3-3 Communication between Raspberry Pi 4 and Computer
The communication between the raspberry pi and the computer was made by Wi-Fi. For wifi
communication between the PC and the mobile robot a wifi network was necessary. Thanks
to a wifi Routeur (Dlink) connected to the university network, a subnetwork of the latter was
created.

This network allowed the wireless transmission of commands but also to connect me to the
Raspberry Pi terminal from an external PC in order to configure the mobile robot. However,
to do this you must know the IP address of the Raspberry Pi on the network. To facilitate
connection, a fixed address had been configured on the Raspberry PI 4: 192.168.10.102.

Figure 13: Communication with a network

4- Program
The first part of this internship consisted of understanding the hardware and resulting with
the creation of the mode motors. This step was essential to start Vector programmation..
Once this node was completed, a test node was created in order to remove errors in the
motor node. After adding the LIDAR to the robot, the LD19 node created by the LIDAR
manufacturer was installed on the robot. The test node had been modified accordingly in
order to also test the LD19 node. The last part of the internship was focused on the Launch
folder created to facilitate the launch of the different nodes.

The folder of Vector was composed of three parts (see Figure 14).
- There was the folder “doc” with all documents of the mobile robot vector.
- There is the folder driver where there are two packages ROS 2.
- The last folder is the launch file to launch the driver and the different packages of the

mobile robot.

FIgure 14: Package and files organization of the mobile robot Vector

To work on this project, all files were on a GitLab. Gitlab is a platform for hosting and
managing projects. To update the program, we made the change on a computer, we pushed
the modification, we pulled it on the mobile robot Raspberry Pi 4, and we compiled it directly
on the mobile robot.

To launch the mobile robot the file launch.py must be launched. This program authorized
USB ports to send and receive information. This program also ran a ROS 2 launch file,
motors_ld19.py, which launched the LD19 and motors nodes.

4-1 Driver
Initially, the robot control and the sending of the simplified serials necessary for the
Kangaroo were in the same program. However, this program structure was risky. If there was
a programming error or any other bug in the robot control part , the program loop would not
stop and the robot would also stop working.
Adding a driver separated the two programs. A simple program "without" bugs and on the
mobile robot, the driver, served as a communication gateway. And we were able to code a
more complex program, requiring more resources, which can be run in parallel on a remote
and more powerful system.

Thus, the driver should only be used to process and transmit information from a higher level
program to the hardware (see Figure 15).

Figure 15: Simplified driver communication diagram

ROS 2 works with nodes and topics. Nodes are nodes where information is intercepted and
processed by programs. Topics are the information channels where information can pass
between nodes.

Our driver was composed of 2 packages ROS 2, the node LD19 and the node motors (see
Figure 16). Each package was a node ROS2 which was launched when the mobile robot
started. Each Node was independent and was able to work without the other. This had the
main advantage : if one of the two nodes crashed the other continued to function normally.
The node LD19 sent information on the topic scan and the node motors read information on
topics cmd_motor_left and cmd_motor_right.

Figure 16: ROS 2 Graph

5-1 Node Motors
This node made the communication between the Kangaroo/sabertooth and other nodes.
Therefore, this node had two goals: send the command to the motors and get the
information from the encoders.

There were two topics and one service. The two topics were: cmd_motor_left and
cmd_motor_right. There were commands for each motor. They send a command of speed in
turns per second of the wheel. To do this, the ratio described in part 2-1-3 Motors and
Encoders was necessary. The message sent in these topics was a float64. Therefore for
each message the subscriber sent a simplified serial to the Kangaroo see in 3-1
Communication between Sabertooth/Kangaroo and Raspberry Pi 4.

The node motors was the server of the service. Clients send a bool, if it was true the node
sent back a string with the information of the encoder position.

5-2 Node LD19
This node sent information about the LIDAR. This node had been made by the company of
the LIDAR Youyeetoo in ROS 2. The ROS 2 function package of this product supported the
use of the ROS 2 Foxy (Ubuntu 20.04) version environment. In our case we used this node
in ROS 2 Humble (Ubuntu 22.04) version. No error was detected so the node provided by
the manufacturer was not updated. This node had one topic: scan. This topic send:

- angle_min (float)
This float was the minimum angle of the LIDAR

- angle_max (float)
This float iwas the maximum angle of the LIDAR

- angle_increment (float)
This float is incrementation of angle between each measurement

- time_increment (float)

- scan_time (float)

- range_min (float)
This float was the minimum range measured

- range_max (float)
This float was the maximum range measured

- ranges (sequence<float>)
The list of ranges. This list started with the range of the minimum angle and ended with the
range of the maximum angle.

- intensities (sequence<float>).
The list of intensities. This list started with the intensity of the minimum angle and ended with
the intensity of the maximum angle.

Youyeetoo also allowed us to test the LIDAR interface on Rviz2 in order to display the point
clouds given by the LIDAR. Therefore we can see the scan of our laboratory (see Figure 17).
The small red line represents the positioning of the LIDAR on the scan. The points are the
values of the ranges list. The range between blue and red represents the intensity of the
received signal. The more blue it is, the lower the intensity, the more it is red, the higher the
intensity.

Figure 17: Scan on Rviz 2 of the laboratory

4-2 Node Test
This node was on a PC distant from the mobile robot. The goal of this node was to test the
node motor and the node LD19. The node read the keyboard of the computer, send
information on the topic cmd_motor_left and the topic cmd_motor_right and read the topic
scan. The nod read the following keys:

- Arrow Forward set both command motors on 1 turn/sec
- Arrow Back set both command motors on -1 turn/sec
- Arrow Right set the command of the right motors on 1 turn/sec and set the command

of the left motors on -1 turn/sec
- Arrow Left set the command of the right motors on -1 turn/sec and set the command

of the left motors on 1 turn/sec

The node also created a screen where it puts the cloud of data of the topic scan (see Figure
18). The red dot was the LIDAR and black dots were measurements.

FIgure 18: Scan on the node test of the laboratory

5- Results

5-1 Culture and communication
During my 16-week internship in Spain, my immersion in Spanish culture showed me a new
way of working. My supervisor Juan Carlos ALVAREZ ALVAREZ gave me the confidence
and total autonomy to carry out the necessary modifications to the mobile robot, Vector. His
aim was not to set precise objectives and a precise work methodology, but to get results.
That's why every week we had a meeting to show how the project was progressing.This
autonomy enabled me to concentrate on the areas of improvement I felt Vector needed.

These meetings were conducted in English, even though occasional words and phrases
were expressed to facilitate communication. Living in Spain has also enabled me to improve
my Spanish.

Towards the end of the internship, my supervisor Juan Carlos ALVAREZ ALVAREZ asked
me to prepare a presentation of Vector and more specifically a presentation of ROS 2.
Indeed, ROS 2 was rarely used in the various projects at the laboratory. This presentation
was given in English to doctoral students and colleagues working in the laboratory.

5-3 Work Done
By the end of August 2023, the objective of the internship had been met. The driver was
installed in Vector. A simple launch.py runs the driver. With this driver, we can control the
rotation of the motors, get their speed, and get the cloud data of the LIDAR. A node test was
also available to test Vector and to communicate with the driver. The documentation will
make it easy for someone to use the driver and improve it.

5-4 Future work
Numerous modifications and improvements can now be made on Vector. The next
improvements that could be interesting to make are:

- Cleanly attach the LIDAR to the outside of Vector: unfortunately the LIDAR was not
fixed.

- Increase the amount of information the driver can send to the user. Some information
might be interesting to extract from Vector, such as battery level or even internal
temperature.

- Sensor additions such as sensors. We only have LIDAR as a sensor. We could add a
central inertial unit or even a satellite positioning system.

6- Conclusion
During my 16-week internship, I was able to advance and improve an existing project, but I
also had to understand how the robot worked and how the hardware was organized. This
gave me a global view of the project. This overview was motivating, especially as I had
autonomy over the project. Thus showing that understanding the project can be a motivating
factor in a company.

The project was finalized, and the initial goals, such as the addition of the driver with ROS 2
and the new LIDAR sensor, have been achieved. However, there is still room for
improvement for Vector, for example we could add new sensors and new functions to the
driver.

This internship put my knowledge of ROS 2 into practice, learning about actuators,
pre-actuators and an electronic system. I learned how to manipulate and parameterize a
Raspberry Pi and a LIDAR,all this independently. The knowledge I acquired and used during
this internship was unique, and fits in perfectly with my curriculum and career plan.

Appendice

Appendix 1: Diagram Complet of the power electronic

Appendix 2: node motors.py
import rclpy
from rclpy.node import Node
from std_msgs.msg import Float32
from std_msgs.msg import Int32
from std_srvs.srv import SetBool

import serial
import serial.tools.list_ports
import pysabertooth

class motors(Node):

'''
The motors is heritance of Node.
'''

def __init__(self):
print("Motors Initialisation")
super().__init__('motors')

with the id_saber, find the right port to use
id_saber = 513
port_sabertooth = self.find_port(id_saber)

if port_sabertooth is not None:
self.sabertooth = pysabertooth.Sabertooth(port_sabertooth, baudrate=9600)
self.kangaroo = serial.Serial(port_sabertooth,9600)
print('temperature [C]: {}'.format(self.sabertooth.textGet(b'm2:gett')))
print('battery [mV]: {}'.format(self.sabertooth.textGet(b'm2:getb')))
self.init_kangaroo()
else:
print("port is not founding")

subscriber of the left motor command in speed
self.sub_cmd_motor_left = self.create_subscription(
Float32,
'cmd_motor_left',
self.cmd_motor_left,
10)

self.sub_cmd_motor_right = self.create_subscription(
Float32,
'cmd_motor_right',
self.cmd_motor_right,
10)

self.srv = self.create_service(SetBool, 'ask_encodors', self.send_encodors)

def find_port(self,identifiant):
ports = list(serial.tools.list_ports.comports())
for port in ports:
print(port.pid)
if identifiant == port.pid:
return port.device
return None

def init_kangaroo(self):
print("START CONNECTING WITH KANGAROO")

self.kangaroo.write('1,start\n'.encode())
self.kangaroo.write('2,start\n'.encode())

self.kangaroo.write('1,getp\n'.encode())
line = self.kangaroo.readline()
print(int(line.decode()[3:]))

self.kangaroo.write('2,getp\n'.encode())
line = self.kangaroo.readline()
print(int(line.decode()[3:]))

print("END INITIALISATION KANGAROO")

def send_encodors(self, request, response):
if request.data:

self.kangaroo.write('1,getp\n'.encode())
line = (self.kangaroo.readline()).decode()
enc_left=int(line[3:])

self.kangaroo.write('2,getp\n'.encode())
line = (self.kangaroo.readline()).decode()
enc_right=int(line[3:])

response.success = True
response.message = f"{enc_left},{enc_right}"
else:
response.success = False
response.message = "0,0"

return response

def cmd_motor_left(self, msg):
print("cmd left : ",float(msg.data))
commande = str(f'1,s{1000*int(msg.data*2.5)}\n')
self.kangaroo.write(commande.encode())

def cmd_motor_right(self, msg):
print("cmd right : ",float(msg.data))
commande = str(f'2,s{1000*int(msg.data*2.5)}\n')
self.kangaroo.write(commande.encode())

def main(args=None):
rclpy.init(args=args)
node = motors()
rclpy.spin(node)
node.destroy_node()
rclpy.shutdown()

if __name__ == '__main__':
main()

Appendix 3: motor_ld19.py
#!/usr/bin/env python3
from launch import LaunchDescription
from launch_ros.actions import Node

'''
Parameter Description:

- Set laser scan directon:
1. Set counterclockwise, example: {'laser_scan_dir': True}
2. Set clockwise, example: {'laser_scan_dir': False}
- Angle crop setting, Mask data within the set angle range:
1. Enable angle crop fuction:

1.1. enable angle crop, example: {'enable_angle_crop_func': True}
1.2. disable angle crop, example: {'enable_angle_crop_func': False}

2. Angle cropping interval setting:
- The distance and intensity data within the set angle range will be set to 0.
- angle >= 'angle_crop_min' and angle <= 'angle_crop_max' which is [angle_crop_min, angle_crop_max], unit is degress.

example:
{'angle_crop_min': 135.0}
{'angle_crop_max': 225.0}
which is [135.0, 225.0], angle unit is degress.

'''

def generate_launch_description():
LDROBOT LiDAR publisher node
ldlidar_node = Node(

package='ldlidar_stl_ros2',
executable='ldlidar_stl_ros2_node',
name='LD19',
output='screen',
parameters=[
{'product_name': 'LDLiDAR_LD19'},
{'topic_name': 'scan'},
{'frame_id': 'base_laser'},
{'port_name': '/dev/ttyUSB0'},
{'port_baudrate': 230400},
{'laser_scan_dir': True},
{'enable_angle_crop_func': False},
{'angle_crop_min': 135.0},
{'angle_crop_max': 225.0}
]

)
motors publisher and server node
motor_node = Node(

package='driver',
executable='motors',
name='motors'

)

base_link to base_laser tf node
base_link_to_laser_tf_node = Node(

package='tf2_ros',
executable='static_transform_publisher',
name='base_link_to_base_laser_ld19',
arguments=['0','0','0.18','0','0','0','base_link','base_laser']

)

Define LaunchDescription variable

ld = LaunchDescription()

ld.add_action(ldlidar_node)
ld.add_action(motor_node)
ld.add_action(base_link_to_laser_tf_node)

return ld

Appendix 4: launch.py

import subprocess

subprocess.call("sudo chmod 666 /dev/ttyACM*", shell=True)
subprocess.call("sudo chmod 777 /dev/ttyUSB*", shell=True)
subprocess.call("ros2 launch launch/motor_ld19.py", shell=True)

Appendix 5: node node_test.py
import sys
import pygame
import numpy as np

import rclpy
from rclpy.node import Node
from std_srvs.srv import SetBool
from std_msgs.msg import Float32
from sensor_msgs.msg import LaserScan

class Node_test(Node):

def __init__(self):
super().__init__('client_test_vector')
self.cli_vector = self.create_client(SetBool, 'ask_encodors')
while not self.cli_vector.wait_for_service(timeout_sec=10.0):
self.get_logger().info('service not available, waiting again...')
self.req = SetBool.Request()

self.pub_cmd_left = self.create_publisher(Float32, 'cmd_motor_left', 10)
self.pub_cmd_right = self.create_publisher(Float32, 'cmd_motor_right', 10)
self.sub_ld = self.create_subscription(
LaserScan,
'/scan',
self.sub_lidar,
10)
self.vector_ld=[]

def send_request(self):
self.req.data = True
self.future = self.cli_vector.call_async(self.req)
rclpy.spin_until_future_complete(self, self.future)
return self.future.result()

def send_cmd(self, value_left,value_right):
msg = Float32()
msg.data = value_right
self.pub_cmd_right.publish(msg)
msg.data = value_left
self.pub_cmd_left.publish(msg)

def send_cmd_right(self, value):
msg = Float32()
msg.data = value
self.pub_cmd_right.publish(msg)

def sub_lidar(self,msg):
coef = 50
ranges=msg.ranges
n=len(ranges)
vector=[]
for i in range(len(ranges)):

if np.isnan(ranges[i]):
vector.append([0,0])
else:
vector.append([int(coef*ranges[i]*np.cos(2*np.pi*i/n+np.pi/2)),int(-coef*ranges[i]*np.sin(2*np.pi*i/n+np.pi/2))])

self.vector_ld = vector

def main(args=None):
rclpy.init(args=args)
pygame.init()

node_test = Node_test()

SIZE = [1000, 1000]
screen = pygame.display.set_mode(SIZE)

clock = pygame.time.Clock()
global go_up,go_right,go_none,go_down,go_left
go_up = False
go_left = False
go_right = False
go_down = False
go_none = True

white=pygame.Color(255,255,255)
black=pygame.Color(0,0,0)
red=pygame.Color(255,0,0)

while rclpy.ok():
rclpy.spin_once(node_test)

motor_left=0.0
motor_right=0.0

for event in pygame.event.get():
if event.type == pygame.QUIT:
running = False

keys = pygame.key.get_pressed()
if keys[pygame.K_LEFT]:
if not go_left:
print("LEFT")

go_up = False
go_left = True
go_right = False
go_down = False
go_none = False

motor_left = -1.0
motor_right = 1.0
node_test.send_cmd(motor_left,motor_right)

elif keys[pygame.K_RIGHT]:
if not go_right:
print("RIGHT")

go_up = False
go_left = False
go_right = True
go_down = False
go_none = False

motor_left = 1.0

motor_right = -1.0
node_test.send_cmd(motor_left,motor_right)

elif keys[pygame.K_UP]:
if not go_up:
print("UP")

go_up = True
go_left = False
go_right = False
go_down = False
go_none = False

motor_left = 1.0
motor_right = 1.0
node_test.send_cmd(motor_left,motor_right)

elif keys[pygame.K_DOWN]:
if not go_down:
print("DOWN")

go_up = False
go_left = False
go_right = False
go_down = True
go_none = False

motor_left = -1.0
motor_right = -1.0
node_test.send_cmd(motor_left,motor_right)

else:
if not go_none:

go_up = False
go_left = False
go_right = False
go_down = False
go_none = True

node_test.send_cmd(motor_left,motor_right)

screen.fill(white)

for point in node_test.vector_ld:
point[0]+=SIZE[0]//2
point[1]+=SIZE[1]//2
pygame.draw.circle(screen,black,point,5)

pygame.draw.circle(screen,red,(SIZE[0]//2,SIZE[1]//2),5)
pygame.display.update()

clock.tick(30) # Limite la boucle principale à 60 FPS

node_test.destroy_node()
rclpy.shutdown()

if __name__ == '__main__':
main()

Appendix 6: Assessment report

