Development of an autonomous sailboat using
Arduino

Aston University FISE 24

Birmingham

October1, 2023

Virgile PELLE
virgile.pelle@ensta-bretagne.org

mailto:virgile.pelle@ensta-bretagne.org

I would like to express my thanks to my internship supervisor Jian Wan, for
his welcome and the opportunity for this internship. He was very committed and
his advice were precious.

I am grateful to my school teacher, Luc Jaulin, for facilitating this internship
opportunity.

I also want to thanks my colleagues and friends, Augustin Morge, Laurent
Droudun and Mathieu Drillon for their teamwork. Together we gave ourselves
a boost.

Contents

[Acknowledgment|o 000000 1
[Abstractl 3
REumd 3
[Keywords| 3
(1__Introductionl 4
[1.1 The university| oo 4
[1.2 Autonomous sailing boat|. 0000 4
1.3 Purpose of the internship| 4
2 Hardware 6
BT Sensors 6
RI1 Windsensod. 6

2.1.2 Inertial measurement unit (IMU)| 6

2.1.3 GNSSreceliverl 7

B2 Actumator].o 7
2.3 Communication components|. 8
2.4 Wiring| oL 9

11
3.1 Arduind 11
BII1 Sensorfibraried 11

8.1.2 Other libraries] 12

13.1.3 Main program| 13

8.2 Control algorithm| 13
B21 Truewindl 13

B22 Mission Planner oL 14

B8.2.3 Follow line controllerl 14

[4 Monitoring| 15
4.1 _Communication protocoll 15
M2 Userinterfacel 16
6_Results] 17
Bl Canaltestlo oo 17
b.2 Lake testings| 18
5.3 Improvements|. 19
[6_Conclusion| 21
[A Wiring Diagram)| 23
(B Class diagram| 24

Abstract

In this report I will review and analyse the work I did during a 4 months
internship at Aston University in Birmingham. The subject of this internship
was to control a sailing boat using a low consumption micro controller. The
complexity of this project was to read all the different sensors information and
to be able to control autonomously the boat using only an Arduino.

I had the opportunity to test the system several time on a small lakes. It was
the occasion of testing all the sensors in real condition and see if the controller
was appropriate.

I also developed a server to gather the data via an wireless connection to the
boat. Then I was able to monitor the boat position and behaviour directly on
a map.

Résumé

Dans ce rapport, je vais passer en revue et analyser le travail que j’ai effectué
au cours d’'un stage de 4 mois a I'université d’Aston & Birmingham. Le sujet
de ce stage était de controler un bateau a voile en utilisant un microcontroleur
a faible consommation. La complexité de ce projet était de lire toutes les in-
formations des différents capteurs et d’étre capable de controler le bateau de
maniere autonome en utilisant seulement une Arduino.

J’ai eu l'occasion de tester le systeme a plusieurs reprises sur un petit lac.
C’était 'occasion de tester tous les capteurs en conditions réelles et de voir si
le controleur était approprié.

J’ai également développé un serveur pour collecter les données via une con-
nexion sans fil au bateau. J’ai ainsi pu suivre la position et le comportement
du bateau directement sur une carte.

Keywords

Sailing Boat, Autonomous Control Algorithm, Arduino, Sensor Integration,
Real-Time Monitoring.

1 Introduction

1.1 The university

My internship took place in
Aston University. It is situ-
ated in the centre of Birming-
ham, the second largest city
in the UK located in the mid-
dle west of England. Accord-
ing to the edurank’s website,
Aston University is in the top
250 of the best university of
the Europe. Indeed, with its
24 hectare campus, the uni-
versity bring together a lot
of faculties ranging from engi- Figure 1: Main building of Aston University
neering to social sciences via
economics, law, medicine and many others. In addition, the university em-
phasises social mobility, diversity and sustainability. As a result, it won the
University of the Year award from the Guardian and also the price for the most
inspiring building. [I]

1.2 Autonomous sailing boat

Marine robotics is not a very developed field at the moment, so many com-
panies are starting to do research in this area. Indeed autonomous boat would
be a huge help for hydrographers and oceanographers for their research. Such
boats could be also used for military marine defence, for rescuing shipwrecked
and also to develop a more ecological system for freight transport.

1.3 Purpose of the internship

The purpose of the internship is developed into three axis:

1. To familiarise with various sensors such as IMU, weather vane, camera,
GNSS receiver, Li-DAR and others for sensor data collection, filtering and
fusion

2. To use Arduino/Raspberry Pi/NVIDIA boards to program control and
learning algorithms through C++, Python and/or ROS1

3. To use some basic mechanical design and 3D print of sensor supporting
mechanisms for the autonomous systems.

The main goal of this internship is to do some research on a sailing boat that
has been used for remote control competitions in order to upgrade it and make
it autonomous. The boat used for this project is shown on the Figure 2] There
are some research that has already been done by others trainees in recent years.
But this system was not robust enough and was too energy-intensive. That is
why I have been asked to develop a new system using a much more energy-
friendly embedded computer but thus much less performant. In the end the two

Figure 2: RC Laser boat

systems could be compared to know which one is the most efficient. The board
chosen for this system is an Arduino board. This is a very famous and used
micro controller in robotics field. It is low energy consumption and offers a lot
of input and output. This is very useful because we will need a lot of sensors to
acquire many data of the environment in order to control correctly the boat.

2 Hardware

The boat needs to be autonomous. That is why the boat needs to be equipped
with many sensors to be able to understand its environment and to navigate.
Some other components are also required for safety reason because the boat also
have to be reached and controlled from the shore.

2.1 Sensors

2.1.1 Wind sensor

Figure 3: Weathervane Anemometer — 7911 — Davis Instruments sensor

The wind behaviour have to be precisely known to operate correctly a sailing
boat. The wind sensor is composed of two sensors: a weather vane for its
direction (in rad) and an anemometer for its speed (in m.s~!). It was not
possible to attach this sensor on top of the mast as on most of sailing boat to
have an accurate measure. We decided to attached it on the front of the boat.
But sometimes there was some strong and brief wind gusts bouncing on the sail
and thus giving an incorrect perception of the wind direction. In order to avoid
this, a first order low-pass filter was added on the wind direction measure (¢):

¢ = ¢measured + (1 - a)¢prem’ous

With a = 0.2.

2.1.2 Inertial measurement unit (IMU)

Figure 4: IMU - CMPS12

The heading of the boat is very important for the control algorithm. The
boat evolve in a 2D plan but because the water is never completely flat and
because the boat tend to roll on its longitudinal axis. The IMU needs to be tilt
compensated. The selected IMU, the CMPS12, already have a tilt-compensation
algorithm implemented in it. This IMU is automatically calibrated, the user is
just required to perform simple movements to allow the CMPS12 to complete
this. This will make the reading of the heading of the boat much more easier
because there will not have any post processing of the data. Although the yaw
reference for the IMU is set when powering it. So before launching the boat the
IMU needs to be align manually using an external compass.

2.1.3 GNSS receiver

Figure 5: Grove - GPS Module (without its antenna)

The boat needs to be able to follow a list of given waypoints. This is why the
boats need to have a GNSS receiver on board. The GNSS receiver chosen has a
refresh rate of 1Hz. This is much enough because the boat will not sail too fast
so it does not require more frequent updates.

2.2 Actuator
To control this sailing boat two servomotors are needed.

e One for the rudder: this one has to go to -45° to +45° whether the boat
needs to turn right or left. The blue circle on Figure [6]

e One for the sail: this one can turn to 0° to 2160° (6 turns). Thanks to a
system of pulley and a string attached to the end of the sail, the sail can
be closed (aligned with the boat) and fully open (making a 90° angle with
the boat). The red circle on Figure [}

Figure 6: Top view of the boat with actuators position

2.3 Communication components

For safety reason and also in order not to lose the boat, it was important to
be able to take the control of the boat from the shore at any moment. This is
why a a radio receiver was added to the Arduino. As soon as the RC receiver
gets a signal from the remote controller, it sends directly the command to the
servomotors interrupting the controller program.

The problem of this system is that it is only a one way communication,
meaning that the boat cannot send anything to the remote operator. Thus no
real time feedback was possible.

Then I decided to replace it by an XBEE. Thus by plugging another XBEE
on my computer I was able to control the boat but also to receive real time data
about its mission. The XBEE is also using the 2.4GHz frequency so the range
is not affected.

Figure 7: RC receiver Figure 8: XBEE Module

2.4 Wiring

Figure 9: Arduino Mega 2560

The best Arduino for this project is the Arduino Mega because there is a
lot of components to plug on it. This board has 54 digital pins, including 6
interrupts ones, 16 analog ones and 15 PWM ones. It also supports UART (4
ports), 12C (1 port) and SPI (1 port) communications protocols which will be
needed for some components [2]

To simplify the wiring of every components, the Arduino board is equipped
with a Grove-Mega Shield. Indeed this board supports standardized 4 pins con-
nector (Signal 1,Signal 2,VCC and GND) which is very convenient for plugging
and also avoid unwanted unplugging of some wires.

The servomotors require their own power supply. This is why an other
shield is added to the previous one. It is the Adafruit servomotors interface.
Servomotors wiring is then much easier and most importantly it has a dedicated
5V input for the servomotors.

Figure 11: Adafruit servomotors inter-
face

Figure 10: Grove-Mega shield

To power the whole system one battery with 2 output is used. Both output
provide 12W (5V DC/2.4A). One output is connected directly to the servomotor
interface and the other one to power the Arduino via its USB-B connector.

The first components to plug are the ones using interrupts pins because there
is only 6 interrupting pins on this Arduino. Interrupt pins are very useful
because they trigger a function as soon as a signal is received on this pin. The
RC receiver needs 2 interrupt pins so it is plugged on D2 and D3 pins. The
anemometer also need an interrupt pin that is why it is plugged on the D19 pin.
But by doing this, a serial port become unusable (Seriall).

Most of the sensor needs a serial port to communicate with the Arduino.
In this project the GNSs receiver, the IMU and the XBEE are using UART
communication through a serial port. By default a serial port, using DO and
D1, is used to debug the program using a USB cable connected to the computer.
Thus there is only 2 left serial port for 3 sensors. The XBEE is connected to D16
and D17 pins (Serial2) and the GNSS receiver to D14 and D15 pins (Serial3).
The library SerialSoftware allows to emulate another serial port on 2 other
digital pin. This library is used to connect the IMU to the Arduino board on
pins D10 and D11.

For the wind vane, the sensor works with a variable resistance. To read the
information it needs to be plugged on an analog pin (A14).

The SD card reader is using the SPI communication protocol and thus require
4 pins for data transmission:

e MISO (Master Input/Slave Output) on pin D50: the line for the slave to
send data to the master.

e MOSI (Master Output/Slave Input) on pin D51: the line for the master
to send data to the slave.

e SCLK (Clock) on pin D52: the line for the clock signal.
e SS/CS (Slave Select/Chip Select) on pin D53: the line for the master to

select which slave to send data to.

The control of the servomotors are done via an I12C communication. It allow
the master to send messages to several slaves. In this case the master is the
Arduino board and the slaves are the 2 servomotors. Contrary to the SPI
communication protocol, this one only requires 2 wire:

e SDA (Serial Data) on pin D20: the line for the master and slave to send
and receive data.

e SCL (Serial Clock) on pin D21: the line that carries the clock signal.

10

3 Software

3.1 Arduino

There is many components to work with on this project. Moreover every
components has its own way of sending the data. Trying to put everything in
the same arduino code would have been quite impossible to do. So I decided to
create libraries for every components. Then those libraries would be added to
the main arduino code. On top of being more readable it is also very convenient
for debugging because every sensor can be tested individually. All the codes are
available on my GitHub [3].

3.1.1 Sensor libraries

Libraries are written in C++. Each library can contain one or several classes
that will be accessible in the main arduino code once imported.
Every sensor has its own class:

e The GNSS class uses the TinyGPS+ library for obtaining the coordinates,
the speed, the course over the ground and the current time via a serial
connection. Many control algorithm does not use directly longitude and
latitude, this is why there is also a function to get coordinates map on
a 2D plane using a known latitude and longitude reference. This code is

explained in the paragraph

e The IMU class is using the SoftwareSerial library to emulate a serial con-
nection. The program has to request for every data wanted by sending a
byte to the IMU and then the IMU will send the appropriate data. This
program reads the yaw, the pitch and the roll of the IMU.

e The wind vane class is used to know the wind direction. To do so the
program reads the analog value given by the potentiometer inside the
wind wane. Then this value is mapped between 0° and 360°.

e The wind speed class is used to know the wind speed. The anemometer
is wired to an interrupting pin and then for every revolution it makes,
a function is triggered to increment a counter. And then by using the
formula in the documentation for this sensor [4] we have the wind speed:

V = P(1.061/T)

where V is the wind speed in m.s~! and P the number of revolution
counted during the time T

e The radio receiver class does not need to always be updated. Both channel
(rudder and sail) are connected on interrupt pin. Those interruptions are
triggered when a change in the PWN signal sent by the radio controller
is detected. So the values are updated only when the radio controller is
turned on. The program determines how long the signal for a channel is
high and can then determine the desired position for the corresponding
servomotor.

11

() sensar

L= e init{l - w0 i
— 1 ® upiated) | void _

- - . =i,
o - ., -
e / 3 >
o @ ars ’ .
/ o aps - TinyGRSPhs %, B
£ + GRS[| 4
{e) cMps12 » =GRS 1 Y ,
‘-) = getlatlon|] : COORD LATLON {8 ac h,
2 88 SaftwamSenial s gebiy]] | COORD_XY b * -
o Mm_piteh char » getlat() : double o m_vale : finat © WindDiraction .fc“] Winds pesd
1 m_roll char » getLoni] : double o m_filtered value ; unsigned kan S =
o m_arge : doutsle # getCoursel] : float o m_last_intérmupt ;: unsigned long o ra Fd o M_Contact_bounce time : doutsle
1 fr_arg E : urs igned char = getEiey(] | Flaat om_effsetmax :ursgned leng ot o m_time_aremaemeter | double
1 m_ang e 16 « unsigned ink » getSpeed) : fioat o m_offsetmin : unsigrad long o WindDirection] o m_wind_speed | flaat
CMPELZ| & coursestatus() : int o m_raw_vakie : unsigned long & —WindDirection() o r_nk_rotations : ursigned inc
; —CMPS1Z = dateStatusi] : int o m_start_time : ursigned long = gatCasl ; double preT— peadl)
. ge‘mmle(;u- douible » elevationStatusl] « Int & R 1 » getSin{] . double a ~Wirdspeed]]
gatCos) : doubla R » getFiltaradValielint channal) : finat el b i s gatspeed() | float
» getSinl) : double getTil: int » getRawValus{int channel) : float ?:M. iyoid « newRotationd) : void
» getPitchi) : float . qeth(']. nt « getyalialint charmel] - flaat :u n;frll Wi & tpdated) : yoid
getRoll © float e R o IsReceivingl] : int L
o init[} 1 void . gnrsnj- el & inbermIptC ANt pin, int channei) : vaid
L = kacationStatus(] - int

& speadstatus) : int
= timeStatust) « int
o init() : void

= updatei] : yoid

Figure 12: Sensor class diagram

To simplify the initialisation and the updating of every sensor they all inherit
from a prototype object called ”Sensor”. The corresponding class diagram is
shown on Figure[I2] Thanks to this all sensors objects can be stored in a unique
list and to update or initialise them the program just have to call the function
init() or update() on every object in it.

There is also a class for the xbee. The XBEE communicates with the Arduino
on a serial connection. To be able to discuss with an external xbee plugged on a
computer, a communication procedure has been established. It will be explained
in the communication section .11

3.1.2 Other libraries

The main class is ”Sailboat”. This is the class representing the sailing boat. This
class is making the code functionning easier because just by creating an object
everything is already set up and it has access to every sensors and servomotors
on the boat. Inside this class there is for example a unique function to update
every sensors, and another one to update the position of the servos.

This class has a reference to a controller object. For the moment only 2
controllers have been developed:

e A ”"None Controller” which does nothing meaning that it does not send
anything to the servomotors. It is the default controller and can be used
before launching the boat or after a mission is finished, when the boat is
being manipulated by someone.

e A 7Follow Line” controller. This is the main controller used to follow a
line defined with two GNSS coordinates. Its functioning will be explained
in detail in the control algorithm section [3.2.3

The controller is managed by a Mission Planner object. In this object a
mission is saved as a list of waypoint. Knowing the current position of the boat
it will set a new controller every time a waypoint is passed.

12

3.1.3 Main program

The main program is the only arduino code. This is the code to upload on
the Arduino. When this code is uploaded on the Arduino it also include all
the other libraries required seen before. During the setup function of the code
all the sensors and the controller are initialised. And then the main loop will
repeat until the boat is unplugged. Here is what is happening during the main
loop of the program :

1. All the sensors are updated to have the current value and the controller
compute new value for the actuators.

2. The servomotors position are updated accordingly.
3. All the value are logged for future debugging

4. The XBEE send the data to the remote operator.

3.2 Control algorithm
3.2.1 True wind

The wind sensor is attached directly on the boat, thus the collected data are
in the boat’s frame of reference. But in order to use the control algorithm
those must be in the terrestrial reference frame. This is why it is important to
calculate the true wind speed and direction (respectively TWg and TWp) [5].
We need the following information :

e the apparent wind speed (AWg), measured by the anemometer

e the apparent wind angle (AW 4) in the boat reference frame, measured by
the wind vane.

e the heading of the boat (H), it is the yaw measured by the IMU.
e the apparent wind direction (AWp) will be calculated using H and AW 4.

e the speed and the course over the ground (respectively SOG and COG).
Those information came from the GNSS receiver.

AWp =H + AWy4

SOG x sin (SOG) — AWg x sin (AWp)
SOG x sin (COG) — AWg x cos (AWs)

TWs = |TW]|
TWp = angle(TW)

-

13

3.2.2 Mission Planner

The objective of the sailing boat is to be able to follow a given mission. It can
be to follow a simple line but also to follow a more complicated mission made of
several line for example to make a path around a lake. The role of the mission
planner is to update the line to follow regarding if the next waypoint has been
reached. Whether it is for the controller or to check if a waypoint is reached we
need to project the coordinates onto a 2D map. A reference latitude (¢,cs) and
longitude (Arer) has to be chosen in the area of the mission.

™ ™

P = T = Ares) e

= Reos(d75)(150
s

y= R(¢_ (bref)@

Where ¢, \ are respectively the latitude and longitude we want to project to
obtain z, y on a 2D plan. R is the earth radius.

Now that our coordinates are transformed into a a cartesian 2D plan all the
calculation regarding the position of the boat are easier. To know if a waypoint
is passed or not, let’s consider a line from a to b and a boat representing by the
point m (see Figure . The next waypoint (in our case b) will be considered
as reached if (b - a) and (m Z b) are in opposite direction. We can express that
mathematically:

if (b—a)-(m —b) <0 then the waypoint b is reached

Figure 13: Determining whether a waypoint is passed or not

3.2.3 Follow line controller

For the line following algorithm, I chose Professor Jaulin’s controller [6].

The controller takes in input the position of the boat m, its course 6, the
direction of the true wind 4, the line ab and the hysteresis ¢ used for close
hauled sailing.

This algorithm outputs the angle of the sail §smax and the angle of the
rudder 6,. It also returns the hysteris ¢ which has to be stored for the next
iteration.

14

inputs : m, 0, V¢, a,b,q

e= det(ﬁ,m —a)

if |e| > r then ¢ = sign(e)
¢ = arctan(b — a)
0=¢— arctan(¥)

if(cos(thrw — 0) 4 cos(§) < 0) or ((ef —r) < 0 and (cos(¢rw — @) + cos(§) < 0)) :
O0=m + ’(/}tw - qg R
6, = Semaz squptooth(0 — 6)

™
- log(57)
_ cos(Piw—0)+1\ oo
Ssmaz = =(w)) TeE®)

outputs : 5r, 5sma$7 q

Table 1: Line following controller

4 Monitoring

4.1 Communication protocol

Thanks to the XBEE there is a bi lateral communication between the boat and
a remote operator on the shore. I have established a communication protocol
to interact remotely with the boat. This communication protocol is based on
a slave/master communication in which the remote operator is the master and
the boat is the slave. It means that the boat does not send anything on its own.
It is always waiting for a message from the master (the operator) to respond
something.

Message from the master are just a simple byte. Those commands are listed
in the following table.

’ Byte to send | Function ‘
0x69 (i) Send boat informations (coords, wind etc.)
0x73 (s) — 0x6F (o) | Open a new log file and start logging
0x73 (s) — 0x63 (c) | Close the current log file and stop logging
0x6D (m) — ... Receive a new mission
0x63 (c) Enter control mode
0x71 (q) Exit control mode
0x68 (h) turn rudder left (in control mode)
0x6A (j) close sail (in control mode)
0x6B (k) open sail (in control mode)
0x6C (1) turn rudder right (in control mode)

Thanks to this communication protocol once the boat is powered it is possible
to check the sensors info, check the servomotors, start a mission and monitor
it. But it was not very convenient because it was only in command line so very
difficult to interpret informations

15

4.2 User interface

+ Shaw weypuisits |red|
¥ Show history (blie) feses tistory deytyusnn
s dawnlnadad tles

Cemmonnect

oy Rrpis R0 opasned

¥ Lt Bt position

Figure 14: User interface for monitoring the boat

In order to make the process easier and to not make mistake, I implemented a
user interface in python. You can find all the code and the installation procedure
on my github [7]

The program of the user interface is directly connected to the boat via a
xbee to be able to interact with the boat. In the background of the UI there
is a script which gets all the data about the current mission and then upload
them to a local database. This database is used by a website hosted in local
to display the boat on a map. This is the map on the left side of the UI. This
allows to monitor the boat position and its trajectory in real time. Moreover
the wind is also shown on the map so it helps to see if the boat reacts correctly
according to its target and to the wind.

Directly in the user interface it is also possible to take control of the boat,
to enable the logging and to send a new mission.

16

5 Results

5.1 Canal test

Figure 15: First test on the canal

The first conducted testings were on a narrow canal. We decided to make
the first tests here because it was very close to the university. For this test the
boat just had to follow a simple line in the canal, from point 001 to 002 on the
Figure [I6] Here is what I learned during this test:

e I made a mistake by choosing the end point (002) on the river side to
make the recovery easier.But because the canal was too narrow it ended
up hitting the bank (blue circle on the Figure [I6).

e When there is a big gust of wind on the side of the sailing boat it makes
it roll a lot and thus the data from the IMU are irrelevant. This is what
caused the right turn in the red circle on the Figure In order to avoid
that T added a simple low pass filter on the yaw value.

e It also appears that there is an offset on the boat’s position. However the
controller seemed to has correctly guide the boat on a line. One of the
most likely causes would be that there was errors during the logging of
the boat’s position. It would also explained why the the boat’s path is
located on the bank of the canal.

17

Nationaf
College

for High

Speed Rall

Birmmgham
Epmmurity

Figure 16: Log of the first test on the canal

5.2 Lake testings

We have find a better place to test the sailboat. This is a small lake used for
remote controlled sailing boat race so it is perfect for our experimentations.
But unfortunately the firsts tests on this lake were did not work as planned.
Indeed I had a lot of problem with the reception of the GNSS signal. On the
Figure [17] we can see that the boat keeps loosing the GNSS signal and end up
crashing on the bank of the lake. Every testings this day ended up the same
way for the same reason.

Figure 17: Log of the mission with failed GNSS reception

The next time we went on that lake, I decided to run the GNSS receiver
antenna through the waterproof cap of the boat to enhance the reception of
the signal. It was much better and the boat succeeded to cross the entire lake
(Figure Even if there has been one loss of the GNSS receiver. This test has
been made with a cross wind. Another testing has been made to cross the lake

18

going against the wind on Figure We can see on the log that the boat is
trying to tack to get to the waypoint 002. Here is what I learned during those
tests on the lake:

e Aslong as the boat is not trying to go upwind the line following algorithm
is working pretty well. But the algorithm is not perfectly adjust to go
upwind.

e Because the boat is very small, it is very sensitive to the wind. We can one
more time observe on the Figure [19|that the boat has made some strange
circle due to many wind gust that has disrupt the data acquisition (heading
and wind direction).

Figure 18: Crossing of the lake (cross wind)

Figure 19: Crossing of the lake (upwind)

5.3 Improvements

Once on site it was not really possible to analyse the log and then understand
what was working or not to test something else so I had to wait to be back at
the university to analyse them. Moreover I haven’t been able to run so many
because the lake was quite far from the university where I was working. Anyway
I had some good results but there is still room for improvement:

e The first thing that could be improved is the controller algorithm. It is
difficult to make a model for every sailing boat. In the simulation the boat

19

was behaving perfectly but on the real boat some constant in the algorithm
could have been changed appropriately. But it would have required a lot
of test.

It could have been interesting to implement another controller for doing
another mission. For example a station keeping controller which goal
would have been to keep the boat inside a circle around a target.

The GNSS receiver caused a lot of mission to failed because sometimes
the boat did not get any signal for several minutes. Maybe using a better
antenna would have solved this problem.

Every time I had to upload a new code, I had to take everything out of
the boat and then put it back. There is a lot components and cables and
not so many room inside the boat, so it was taking quite some time to
do it correctly without unplugging some components accidentally. This is
why it could have been great to tidy the inside using shorter cables and
maybe soldering some components to avoid unexpected disconnection.

20

6 Conclusion

The main purpose of this internship was to fit a set of sensors on an Arduino
to have an autonomous sailing boat. I was very excited about of this intern-
ship, mainly because the project was interesting, but also to have an experience
abroad. It turned out to be a very rich experience, both intellectually and on a
human level.

I has been able to finish the sensors integration on the boat. It includes a wind
vane, an IMU and many other sensors to be have all the necessary information
to control it. Then after finishing the controller algorithm, I have been able to
run some experimentation on a lake.

Even though the experimentation were not all successful, I learned a lot from
familiarising with the sensors, to analysing the test including programming a
control algorithm. Moreover it gave me a better understanding of the world of
research. Indeed, this internship gave me the opportunity to co-write a scientific
document about this project [8].

21

References

[1] Wikipedia. |Aston Univerityl, 2023.

[2] |Arduino Mega datasheet, 2023.

[3] V. Pelle. |Github repository Sailboat code, 2023.

[4] Davis Instruments anemometer instructions, 2023.

[5] (Calculating the True Wind and Why it Matters | Cruising Compass.

[6] Fabrice Le Bars Luc Jaulin. A simple controller for line following of sail-
boats. 2012.

[7] V. Pelle. |Github repository for Sailboat-monitoring,, 2023.

[8] Morge Augustin, Pelle Virgile, Wan Jian, and Jaulin Luc. |[Experimental
Studies of Autonomous Sailing With a Radio Controlled Sailboat. IEEE
Access, 10, 2022.

22

https://en.wikipedia.org/wiki/Aston_University
https://docs.arduino.cc/resources/datasheets/A000067-datasheet.pdf
https://github.com/vivipal/Birmingham-Sailboat
https://pim-resources.coleparmer.com/instruction-manual/davis-instruments-7911-anemometer-instructions.pdf
https://pim-resources.coleparmer.com/instruction-manual/davis-instruments-7911-anemometer-instructions.pdf
https://www.ensta-bretagne.fr/jaulin/paper_jaulin_irsc12.pdf
https://www.ensta-bretagne.fr/jaulin/paper_jaulin_irsc12.pdf
https://github.com/vivipal/Birmingham-Sailboat-monitoring
https://ieeexplore.ieee.org/document/9999358
https://ieeexplore.ieee.org/document/9999358

A Wiring Diagram

GNSS receiver

7y IMU
D10 & D11 (Software Serial)
+ Mode pin connected to GND

RC receiver

Serial3 (Hardware Serial) D2 & D3 (interrupts pins}

D50 -> D53 (5P1)

D19 (interrupt pin)
Anemometer

A14
Wind vane

\J
Serial2 (Hardware Serial)

+5V INPUT

SERVO 0
Rudder servo

SERVO 1
Sail servo

Figure 20: Wiring Diagram

23

Class diagram

p— .
o e —

£m_last_recewe : ursignet ink
"

l ~XBEE|
& contraiModst): voi

. Irutﬁallnoat' boat Logier loqgrerh: viil
» loggert): vo

- rec:meMnmrlJ waid
= sendinfo(] : vai

- undInFuLmaII 1vard
Lawy =

o
1 m_lrula:nam string.
4 mlas

1 Ll e

Jang
e “"‘ﬂ“m”

ong it
b |

e

1
L
' oawa(eﬂlenama: 5tring |
l|l|¢

" clwﬁ: uwmulw int II
. nmsanw boat] ; vaid |I

« nenlagl] - vaid
& wrkeisEn o

& wrbsdin vl : vakl

= wrketunsigned lang ink vall | void

w wrkeflost val) | vorl |
& wrtejooubike: nu i |

4

iboats boat)
derCmdl | | Flost
ul| af] - Ploatt

| = vtatis|) int
| nubﬂﬁscml T e

b8

L

\

() satboat
3 m_contraliers : Cantrolers
o rcarment_cantralier : Centrallers
am mlswmumr MissionPlanner
e

T serea' Serv Mutore
m_tne_mi ud_un-ﬂnu:

—

@ Followtine

Sllboat)

Sailboal
efmpasil] - CMPS12
er!-nllwllne(l Followd.ine+
Fas

G
-runu MisiorPhierer

e
om\ﬂuﬁuml? SareG Metom
= sailSarded): Mstor
wdu.mdo.m.on-

(] ;W
erwmﬂﬂr!:kln'ﬂ Moat

(8} Menacantraller |

nrn_n Finat

crnllomnsll
PircAl] | :conn um.on

i

Pl vasd

" Sﬂlk\ell’hl[Iitl Na(Ienl Milt! Pl b2, flat b void
snﬂLmelEDDRD LATLON o, COORD,_LATLON b, float rl : void
poat=Cmd] © ynid

(&) Misicrianner

(8 serve Motar

I wp : CODRD_LATLON
am_heat : Saibantt

-ﬂuhnﬂlanml‘u
= nEAFT] | i
» nb_wp_| Dﬂﬂedj nt

= _metor : Adatit_ S Der
©m_angleman | float”
©m_snglermin ; f
o lsst_set : Moat
nmJun wintE_L
2 ursignd int
t

= wyROirE_passed[COGRD LATLON m} - int
- an'thon" hltl 1 woigh
- ETWPS] e

reset() : void
@ SEEWPIIN Nk, CODRO_LATLON €)1 vkl
-startn :IKM
-UDNL@‘CQQRBJJ\TLOI mi : vaid

— o

o s - TinyGPSPus

| (@ cMps12

| oo Softwarsseral | e e

| om_pitch: char om f

| am_roll : char o m_filtered valus : unsigred lang.
[NLange dauble o mJaE_intermant w\slﬂneulw
| oo _am negred char » @etElewt| '~ m_odfsetmax : unsigned kong

| cm_angie1s : unsigred it | » gel Snudti ﬁm a n | ursigned long

| emps 1z
| & —cMPs121)
|

SetCal
pRLSing

| & ITAxPW M
| PninPVM)
| tlnlu’m

& Sery_Hotaruintt_t pin, umined ot premMin, ursgned ik pambes, fioat anglemin, fost scgkimas)
= GETLasrse| | Mal

it Pwmmbme'- PG pEr) - v
setfioat pafcent). vo

| -mﬂu‘Nnmnnedum mnset vkl

| m_carcact_bouree. ume doume'
| om_time
|r|m,und_;n==d fical

= & Couriest | =t ki o loeg | mmlnib mtal:hni:unnl;md int
Odﬂ.ﬁut I I l‘ “Lm_klmt U'ﬁlﬂmﬁ long
-elz«rmsmml] int: ™
; hCl o peeck)
i aetriteredyabieint chamel) foat tepeed| : Hoat
& et ine + BetRawalua rewhotationt ol
§ etbl - int = getval mntcmnn:h ﬂnu: | = updatel] vai
-xmﬂ': i =Recevingl] ink :
annrsmml) int
5t
& HmeStatus) |
* e} void
= upsdital] : vaid

Figure 21: Class diagram

24

3 RAPPORT D’EVALUATION
g /5 4 ASSESSMENT REPORT

ENSTA

Bret: IO NE

Merci de retourner ce rapport par courrier ou par voie électronique en fin du stage a :
At the end of the internship, please return this report via mail or email to:

ENSTA Bretagne — Bureau des stages - 2 rue Frangois Verny - 29806 BREST cedex 9 — FRANCE
& 00.33 (0) 2.98.34.87.70 / stages @ensta-bretagne.fr

I- ORGANISME / HOST ORGANISATION
NOM / Name A%U“‘ On.Jers \‘l"‘j

Adresse / Address 56 € StY eat / B\ { 2wy ovnma ‘5 ‘k —]ET

Tél / Phone (including country and area code) ~+ ‘(—‘(— o‘]% 15 (oD 8 7

Nom du superviseur / Name of internship supervisor Ui V\J
[/ 72N O

Fonction / Function \ o E*,.,FQJ': Q Me Chatyoni LS O RobotceS

Adresse e-mail / E-mail address ; . Wown % @ aston . ac. Ulc

Nom du stagiaire accueilli / Name of intern \)\‘ fﬁ: le pe (\e

II - EVALUATION / ASSESSMENT

Veuillez attribuer une note, en encerclant la lettre appropriée, pour chacune des caractéristiques
suivantes. Cette note devra se situer entre A (tres bien) et F (tres faible)
Please attribute a mark from A (excellent) to F (very weak).

MISSION / TASK
¢ La mission de départ a-t-elle été remplie ? \9/ BCDEF
Was the initial contract carried out to your satisfaction?

¢ Manquait-il au stagiaire des connaissances ? |:| oui/yes \M non/no
Was the intern lacking skills?

Si oui, lesquelles ? / If so, which skills?

ESPRIT D’EQUIPE / TEAM SPIRIT

¢ Le stagiaire s’est-il bien intégré dans I’organisme d’accueil (disponible, sérieux, s’est adapté au
travail en groupe) / Did the intern easily integrate the host organisation? (flexible, conscientious,

adapted to team work)
\4BCDEF

Souhaitez-vous nous faire part d’observations ou suggestions ? / If you wish to comment or make a
suggestion, please do so here

Version du 05/04/2019

COMPORTEMENT AU TRAVAIL / BEHAVIOUR TOWARDS WORK

Le comportement du stagiaire était-il conforme a vos attentes (Ponctuel, ordonné, respectueux,
soucieux de participer et d’acquérir de nouvelles connaissances) ?
Did the intern live up to expectations? (Punctual, methodical, responsive to management
instructions, attentive to quality, concerned with acquiring new skills)?

\/ BCDEF

Souhaitez-vous nous faire part d’observations ou suggestions ? / If you wish to comment or make a
suggestion, please do so here

INITIATIVE — AUTONOMIE / INITIATIVE - AUTONOMY

Le stagiaire s’est —il rapidement adapté a de nouvelles situations ? ABCDEF
(Proposition de solutions aux problémes rencontrés, autonomie dans le travail, etc.)

Did the intern adapt well to new situations? \)AS CDEF
(eg. suggested solutions to problems encountered, demonstrated autonomy in his/her job, etc.)

Souhaitez-vous nous faire part d’observations ou suggestions ? / If you wish to comment or make a
suggestion, please do so here

CULTUREL — COMMUNICATION / CULTURAL — COMMUNICATION

Le stagiaire était-il ouvert, d’une maniere générale, a la communication ? \A/B CDEF
Was the intern open to listening and expressing himself /herself?

Souhaitez-vous nous faire part d’observations ou suggestions ? / If you wish to comment or make a
suggestion, please do so here

OPINION GLOBALE / OVERALL ASSESSMENT

+¢ La valeur technique du stagiaire était : \% CDEF
Please evaluate the technical skills of the intern:

IIT - PARTENARIAT FUTUR / FUTURE PARTNERSHIP
¢ Etes-vous prét a accueillir un autre stagiaire I’an prochain ?

Would you be willing to host another intern next year? MOui/yes [] non/no

Fait a , 1

e
In N » , on
‘%\—fm—'ﬁ‘wiu %‘-{—h-@—é??’-w
\
Signature Entreprise B = Signature stagiaire

Company stam, Intern’s signature
pany p 8

Merci pour votre coopération
We thank you very much for your cooperation

Version du 05/04/2019

	Acknowledgment
	Abstract
	Résumé
	Keywords
	Introduction
	The university
	Autonomous sailing boat
	Purpose of the internship

	Hardware
	Sensors
	Wind sensor
	Inertial measurement unit (IMU)
	GNSS receiver

	Actuator
	Communication components
	Wiring

	Software
	Arduino
	Sensor libraries
	Other libraries
	Main program

	Control algorithm
	True wind
	Mission Planner
	Follow line controller

	Monitoring
	Communication protocol
	User interface

	Results
	Canal test
	Lake testings
	Improvements

	Conclusion
	Wiring Diagram
	Class diagram

