
École Nationale Supérieure des Techniques Avancées de Bretagne

Engineer-Assistant internship report

done at Thales Alenia Space

From May to August 2023

Computer vision application and Robotic
Arm Visual Pose Estimation

Clara Gondot

2nd year in Mobile Robotics, ENSTA Bretagne, Brest

Thales Alenia Space

Strada Antica di Collegno, 253
10146 Torino (TO)

Supervisors in Thales Alenia Space

Valter Basso
Intellectual Property Manager

Andrea Merlo
Head of Robotics and Mechatronics Group

Academic tutor

Luc Jaulin

October 18, 2023

1

Abstract

This report summarizes the experiences and skills I have learnt during my Engineer-Assistant intern-

ship of 2023. The main themes are computer vision, the control of a robotic arm and the planning

of a high-level communication between the di�erent parts, in the frame of On Orbit Servicing.

Résumé

Ce rapport synthétise l'ensemble des expériences et compétences apprises pendant mon stage dit

Assisstant-Ingénieur de 2023. Les thèmes abordés sont la vision par ordinateur, le contrôle de bras

robotique et la mise en place d'une communication haut-niveau entre les di�érents composants, dans

le contexte du Service En Orbite.

2

Acknowledgment

I want to thank all my co-workers who all welcomed me warmly and made possible this
cheerful and ful�lling experience. I especially adress my kind regards to A. Bongiovanni and
M. Lapolla for helping me in my work and my tutors V. Basso and A. Merlo for o�ering me
a glimpse of the company world.

Contents

Abstract 1

Acknowledgments 2

Introduction 4

1 Context and Planning 4

1.1 Workplace environment . 4
1.2 De�ning and planning the internship's objectives 5

2 First Activities 6

2.1 Needed theoretical studies and CV context 6
2.2 Algorithms behind Object Detection . 7

2.2.1 SIFT algorithm . 7
2.2.2 ORB algorithm . 9
2.2.3 Matcher algorithms . 10

2.3 Idea of application and architecture of the wanted project 11
2.4 Computing the distance . 14
2.5 Results and commentary . 14

3 Controlling a Robotic Arm using Visual Pose Estimation 15

3.1 Details of the project and equipment 15
3.1.1 Stereolabs ZED Mini . 15
3.1.2 Marker Detection . 16
3.1.3 IIT Robotic Arm . 17
3.1.4 Project's architecture . 18

3.2 Software implementation . 18
3.2.1 Package architecture . 18
3.2.2 Following the image center . 20
3.2.3 Aligning the frames . 22

3.3 Results and commentary . 24

Conclusion 25

References 26

3

1 Context and Planning 4

Introduction

From May to August 2023, I worked as an intern in Thales Alenia Space, in their site in
Torino. Thales Alenia Space places among the leading european companies in the aerospace
industry and is the result of a joint venture between the French group Thales and the Italian
group Leonardo. I was welcomed in one of the two Robotics Laboratory of the Torino
site. Their projects assignments revolved around On Orbit Servicing missions. On Orbit
Servicing (OOS) encompasses all sort of interactions between a client satellite and a servicing
satellite, like repairs, recovering waste or refueling. This internship as assistant-engineer was
an opportunity to learn about what my own future work could be like, by observing my
colleagues and their work.

The team of 6 engineers that I joined participated in the conception of a Robotic Platform
hosted on the servicing satellite. Among the di�erent missions and sub-projects onboard of
this platform, I familiarized myself with the rendez-vous and docking processes of the OOS
context. For the rendez-vous step, I studied the detection and the pose computation of the
client satellite, more speci�cally the computer vision tasks that can be used in the OOS
context; and for the docking between the two satellites, I focused on the use of a robotic arm
to attain the client satellite.

This report will begin with the details of the context and organization of the internship.
There are then two main parts, the �rst one focusing on the theory and application of
Computer Vision; and the second one about the control of the laboratory robotic arm.

The report will be divised in two half, the �rst part reporting on the activities related to
computer vision, a project devised to apply the knowledge I had gotten and explore di�erent
options. The second part is on the use of a robotic arm present in the laboratory.

1 Context and Planning

1.1 Workplace environment

The assistant engineer internship marked both my �rst experience within a large company
and my initial foray into an international enterprise site located in a foreign country, rep-
resenting a signi�cant milestone in my professional journey. This opportunity proved to
be invaluable and exceptionally enriching. While the rest of this report will delve into the
technical and technological aspects of what I learned, it was also a chance to observe the
functioning of a company operating on a site housing several hundred employees. (In the
subsequent sections of this report, I will delve into the technical and technological insights I
gained during this experience. However, it is essential to highlight that it also presented a
unique opportunity to observe the functioning of a company operating on a site housing sev-
eral hundred employees.) This experience deepened my understanding of the organizational
architecture of such a company, as well as the interactions between di�erent departments
and neighboring companies, which are critical for the execution of large-scale projects, such
as the launch of the Euclid satellite.

At the beginning of my internship, I deliberately sought to step out of my comfort zone
to make this experience as di�erent as possible from what I was familiar with. Thus, among

1 Context and Planning 5

the two robotics laboratories on the Turin site, I chose to join the one focused on 'On Orbit
Servicing' instead of the one dealing with rovers and mobile robotics, which aligned more
closely with my academic background from the previous year. By joining this laboratory, I
had the opportunity to operate a robotic arm and a stereo camera.

The laboratory team I was welcomed into consisted of six young engineers, each special-
izing in various �elds such as space engineering, system engineering, inverse kinematics and
Cartesian control, arti�cial intelligence, computer vision, informatics tools, and more. They
provided me with extensive support to explore potential projects and utilize the laboratory's
tools and equipment. I gained invaluable knowledge through their guidance, assistance, and
wealth of experience. The topics and objectives addressed during the internship were there-
fore developed based on the available equipment as well as the experience of my colleagues
and their prior work.

1.2 De�ning and planning the internship's objectives

Firstly, it is necessary to provide a precise introduction to the context of an On-Orbit Ser-
vicing (OOS) mission. Here, we are speci�cally interested in the initial stage of approaching
a client satellite, see Figure 1. The objective is to establish contact between our satellite
and the client satellite. Initially, we must determine the target's position and go through the
di�erent approach phases, from far to close range rendez-vous. Subsequently, as we attain
the close surroundings of the target satellite, a robotic arm is deployed. Then, we have to
identify the anchoring point on the client satellite using cameras and an illumination system
on the servicing satellite.

This anchoring point is the subject of two scenarios, where the target may or may not be
prepared for this type of intervention. In the case where the target is prepared, we can assume
a more precise knowledge of the satellite's geometry, as well as the presence of markers that
facilitate the �nal step. This �nal step involves using the robotic arm on the operational
satellite to approach the client satellite and to establish a connection, it is referred to as the
"capture" phase.

To correctly approach the anchoring point and close the gripper around it, the robotic
arm uses the visual input gotten by the cameras system. Its role is to detect precisely and
to compute the pose of the anchoring point on the target satellite relatively to the pose of
the end-e�ector of the robotic arm. With this information, it is then possible to determine
the control input for the robotic arm.

The development of the algorithm responsible for detecting and computing the pose of
the anchoring point from a visual input was the work of my colleagues. In order to fully
grasp the scope of their work, I needed to study the subjects I was less familiar with. The
�rst step involved deepening my understanding of Image Processing and Computer Vision,
which formed the core components of the algorithm's program. After a theoretical study,
I constructed a software application designed to utilize a camera for object detection and
pose computation in relation to the camera frame. The objective was to apply the computer
vision algorithms I had studied and gain a deeper comprehension of the challenges of image
segmentation.

Subsequently, we outlined clear objectives for the �nal month of the internship, during
which I worked on controlling a robotic arm brought into the laboratory through a partner-

2 First Activities 6

Fig. 1: A typical on-orbit servicing mission main steps

ship with the Italian Institute of Technology. The ultimate goal had to factor in the time
constraints for me to become familiar with the arm's software and control, and was inspired
by the thesis work of one of my colleagues. The assigned task was to develop an application
enabling the arm to track a speci�c marker on a plane parallel to the camera's plane.

To follow this organization, this report will be divided into two sections. For each section,
I have created a GitLab repository, from which select extracts will be included in the report
and its annex, and that are also accessible online.

2 First Activities

2.1 Needed theoretical studies and CV context

As said previously, the �rst part of the internship was focused on computer vision, in order to
estimate the pose of a target from one or several images. It was necessary to understand and
study the state-of-the-art computer vision techniques, beginning with classes on the subject
and simple application exercises.

Typically, when using images as a program input, the image goes through a pipeline with
given processing steps, which ends with the extraction of the wanted information. Initially,
it is best to do some Image Processing to detect some geometrical features, edges or corners,
and �lter and enhance part of the image, or select a region of interest. The next step, in the
case of the work I did, is referred to as Image Matching, estimating the similarity between a
pair of image. This process is part of the bigger problem of Object Detection in an image,
which is still an important research subject nowadays, with a lot of challenges that computers

2 First Activities 7

still struggle with: the scaling of objects, the changes in illumination, the object deformation
or occlusion. . .

Apart from Neural Networks that started appearing approximately 10 years ago, the
solution used to resolve this problem is to quantify common mathematical denominators
between what we know about the target and a scene we've never seen before. There are
three base operations that are needed in this process:

• Detection of feature points;

• Description of these key points;

• Matching between similar feature points across the images.

As an example, let's have a look on the pipeline used in an a case of satellite detection in
the Figure 2.

Fig. 2: Object detection and Pose estimation pipeline

The �rst step is Image Processing with a blurring Gaussian Filter. Then the two following
steps correspond to the Image Matching, and result with a region od interest supposedly
containing the wanted object. Finally we estimate the pose of the detected object and use a
Kalman Filter on the result.

2.2 Algorithms behind Object Detection

There are a lot of di�erent methods conceived to resolve this problem, among them the Scale
Invariant Feature Transform (SIFT) and the Oriented FAST and Rotated BRIEF (ORB)
are some of the most well known algorithms. They are used to complete the two �rst steps
of Object Detection: the detection and description of keypoints in an image.

2.2.1 SIFT algorithm

The SIFT algorithm was created two decades ago and its performance have been improved
and critiqued thoroughly since then. It is still one of the main examples of object detection
algorithms.

To summarize the important notions described before, the keypoints in SIFT are chosen
by evaluating and re�ning sites with signi�cant intensity changes in di�erent scales of the
image. It means that the keypoints can be used even with a change of scale of the scene,
hence the name of the algorithm.

Once again simpli�ed, a descriptor is a collection of vectors describing the surroundings
of its keypoint, especially information about the orientation of the keypoint. It is computed

2 First Activities 8

by computing the orientation of the pixels gradient and weighted by their magnitude, then
doing the same for larger zones; keeping only the dominant gradient orientations. These
descriptors are what is used to achieve robustness against illumination and rotation changes.

I used my student ID card as an example to compute and visualize keypoints and their
descriptors computed by a SIFT algorithm. This computation can be easily done using
the OpenCV python libraries, as is shown in the code extract in the Figure 3. The SIFT
algorithm can be easily programmed, but its commercial use does require to pay a fee as it
is patented.

1 def implement_SIFT(image) :
2 """ A func t i on us ing OpenCV l i b r a r i e s to program a SIFT algor i thm ,

re tu rn ing an image wi th a r ep r e s en t a t i on o f the computed keypo in t s and
d e s c r i p t o r s .

3 """
4 grey = cv2 . cvtColor (image , cv .COLOR_BGR2GRAY)
5 # crea t i n g a SIFT ob j e c t wi th the wanted parameters
6 s i f t = cv2 . SIFT_create (edgeThreshold=5, contras tThresho ld =0.05)
7 # using the SIFT a lgor i thm on the wanted image
8 keypoints , d e s c r i p t o r s = s i f t . detectAndCompute (grey , None)
9 # d i s p l a y i n g keypo in t s and d e s c r i p t o r s found

10 r e s u l t = cv2 . drawKeypoints (grey , keypoints , image ,
11 f l a g s=cv2 .DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)
12 return r e s u l t

Fig. 3: SIFT Code application using OpenCV implementation

OpenCV created a speci�c class for the SIFT algorithm. On the 6th line in Figure 3,
where the SIFT object is created, two parameters are entered. They in�uence the re�ning
of keypoints by the algorithm. The edgeThreshold is used to �lter the keypoints close to the
image's edges and the contrastThreshold is for �ltering out keypoints in low-contrast regions,
see [4] for more details.

In Figure 4, we can see the graphic visualization of said keypoints and descriptors, with
the circle and radius object corresponding to the scale and orientation of the keypoints.

Fig. 4: Visual representation of keypoints and their descriptors computed by the SIFT algo-
rithm

2 First Activities 9

2.2.2 ORB algorithm

The ORB algorithm is more recent, it was created in 2011 as an alternative to SIFT and is
free of use, unlike SIFT. It stems from other algorithms as its name suggests.

It uses the Features from Accelerated Segment Test (FAST) algorithm to compute key-
points: it classi�es pixels by the intensity of their surroundings, keeping those with a major
part of their neighborhood having a very high or very low relative intensity; then keeps only
the local extremes with non-maximum suppression. It is several times faster than other ex-
isting corner detectors, but it is not robust to high levels of noise and depends on a threshold
[5]. This method is not not resilient to rotation and scale changes, so ORB uses FAST on a
multiscale image pyramid (which consists of di�erent resolutions of the same image) to solve
the scaling problem and adds an orientation to the keypoints by computing the Intensity
moment of the zone and keeping the angle of the result.

For the descriptors, ORB uses the Binary Robust Independent Elementary Features (BRIEF)
algorithm, tweaked to answer the rotation invariance issue. The BRIEF algorithms works
with a �xed window pattern applied to around the keypoint and compares random pairs of
pixels in this pattern. For each pairing, the algorithm assigns either a 0 or a 1 if the intensity
of the �rst pixel is greater or lower compared to the second pixel. This process results in a
binary descriptor, a format which allows high computation performances when using BRIEF
descriptors. Since BRIEF is known for not working well with rotations, ORB does com-
putes the BRIEF descriptor on a set of discrete orientations of the image. By comparing the
keypoint's orientation to these discrete rotations, ORB creates rotation-invariant descriptors
[7].

See below in the Figures 5 and 6 for a Python application of the ORB algorithm using
again the OpenCV libraries and the resulting illustration of the keypoints and descriptors on
my student ID card.

1 def implement_ORB(image) :
2 """ A func t i on us ing OpenCV l i b r a r i e s to program an ORB algor i thm ,

re tu rn ing an image wi th a r ep r e s en t a t i on o f the computed keypo in t s and
d e s c r i p t o r s .

3 """
4 grey = cv . cvtColor (image , cv .COLOR_BGR2GRAY)
5 # crea t i n g a SIFT ob j e c t wi th the wanted parameters
6 orb = cv . ORB_create (n f e a tu r e s =1000 , edgeThreshold=5, patchS ize=5,

f a s tThre sho ld=20)
7 # using the SIFT a lgor i thm on the wanted image
8 kp , des = orb . detectAndCompute (grey , None)
9 # d i s p l a y i n g keypo in t s and d e s c r i p t o r s found

10 r e s u l t = cv . drawKeypoints (grey , kp , image ,
11 f l a g s=cv .DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)
12 return r e s u l t

Fig. 5: ORB Code application using OpenCV implementation

Thanks to the OpenCV implementation which relies in Python classes to create objects
dedicated to the algorithms, the code implementation is very similar from one algorithm to
the other. We also have a variety of parameters we can in�uence. Here we set nfeatures

2 First Activities 10

to determine the size of the BRIEF binary descriptors, fastThreshold for the intensity com-
parison in the FAST algorithm, edgeThreshold to exclude the border of the picture when
computing the keypoints and patchSize which needs to be close to edgeThreshold, see [3] for
more details.

Fig. 6: Visual representation of keypoints and their descriptors computed by the ORB algo-
rithm

2.2.3 Matcher algorithms

Once the keypoints and their descriptors are computed, you need a �nal algorithm to match
them between two given images. During this internship, I had the opportunity to use two
di�erent algorithms: the Brute Force Matcher (BF matcher) and the Fast Library for Ap-
proximate Nearest Neighbors Matcher (FLANN matcher).

The BF matcher is a straightforward algorithm: you compare each feature from the �rst
set to every feature in the second set, and computes the distance (for example Euclidean
distance of the di�erent criteria in the descriptors) between the two and �nally chooses
the closest match. It is simple however expensive in computation. See Figure 7 for its
implementation.

1 def brute_force_matching (algo , kp , des , image , scene) :
2 # BFMatcher wi th d e f a u l t parameters
3 bf = cv . BFMatcher ()
4 kp2 , des2 = algo . detectAndCompute (scene , None)
5 matches = bf . match (des , des2 , k=2)
6 # keeping only f i r s t good matches
7 draw_params = dict (matchColor=(0 , 255 , 0) , s i ng l ePo in tCo l o r =(255 , 0 , 0) ,

f l a g s=cv .DrawMatchesFlags_DEFAULT)
8 r e s u l t = cv . drawMatches (image , kp , scene , kp2 , matches [: 1 0] , None , **

draw_params)
9 return r e s u l t

Fig. 7: Brute Force Matching application

2 First Activities 11

Fig. 8: Brute Force matcher and ORB descriptors results on two scenes with the same image
reference.

The FLANN matcher is a more e�cient way to compare the keypoints. It builds a multi-
dimensional tree structure to accelerate the comparisons, but doesn't necessarily gets the
nearest neighbor for the keypoints. See Figure 9 for its implementation.

1 def f lann_matching (algo , kp , des , image , scene) :
2 # FLANN parameters
3 FLANN_INDEX_KDTREE = 1
4 index_params = dict (a lgor i thm=FLANN_INDEX_KDTREE, t r e e s =5)
5 search_params = dict ()
6 f l ann = cv . FlannBasedMatcher (index_params , search_params)
7 kp2 , des2 = algo . detectAndCompute (scene , None)
8 matches = f l ann . knnMatch (des , des2 , k=2)
9 # keeping only good matches

10 matchesMask = [[0 , 0] for i in range (len (matches))]
11 # ra t i o t e s t as per Lowe ' s paper
12 for i , (m, n) in enumerate(matches) :
13 i f m. d i s t ance < 0 .7 * n . d i s t ance :
14 matchesMask [i] = [1 , 0]
15 draw_params = dict (matchColor=(0 , 255 , 0) , s i ng l ePo in tCo l o r =(255 , 0 , 0) ,

matchesMask=matchesMask , f l a g s=cv .DrawMatchesFlags_DEFAULT)
16 r e s u l t = cv . drawMatchesKnn (image , kp , scene , kp2 , matches , None , **

draw_params)
17 return r e s u l t

Fig. 9: FLANN Matching and Lowe's ratio test application

To get better results, we add another operation which �lters out bad matches. We apply
the Lowe's ratio to the distance of the 2 best matches gotten from the FLANN algorithm:
if d1

d2
< 0.7 then we keep the �rst match as a good one. This allows better results for the

FLANN matcher, when we just keep the �rst 10 matches with the shortest distance for the
BF matcher. The BF matcher is paired with the ORB algorithm and the FLANN matcher
is paired with SIFT to get the results in the Figures 8 and 10.

2.3 Idea of application and architecture of the wanted project

The �rsts half of the internship was focused on Computer Vision and the realization of an
algorithm pipeline similar to the one in Figure 2. The objective was to detect the pose of

2 First Activities 12

Fig. 10: FLANN matcher paired with SIFT descriptors results on the same two scenes.

my student ID card in a video �ux using a single image reference, in a similar manner as the
matching examples from before. I programmed this application as a ROS2 package, which
takes as input an image of the target and an image of the scene in which we want to detect
it and outputs the pose of the target. The package can be divided in three main functions:

• After choosing an algorithm between SIFT and ORB, detecting and describing key-
points from a given reference image. The keypoints and descriptors are then saved in
a XML �le and can be loaded at a later time.

• Receiving and processing the data from the camera: �rstly detecting and describing
keypoints in the image received using the same algorithm than before; then using a
FLANN matcher to pair said keypoints with the one from the reference image.

• Computing the homography between the pairs of keypoints and deducing the pose of
the object.

Fig. 11: Object detection and Pose estimation simpli�ed pipeline

In this project, the input images are given by a Stereolabs ZED Mini camera. The
Stereolabs cameras come with a very complete software and several third-parties integrations.
This enabled me to use ROS2 to retrieve the data from the ZEDMini various sensors, precisely
the left camera image and the distance computed with the stereo cameras from speci�c pixels.
More details on the ZED camera are given in a later subsection.

The complete ROS2 package with instructions on how to install it can be found here:
https://gitlab.ensta-bretagne.fr/gondotcl/zed-ros2-2023. From the three steps de-
scribed earlier and the general pipeline, we get the architecture of the nodes and topics of
the ROS2 package in Figure 12.

https://gitlab.ensta-bretagne.fr/gondotcl/zed-ros2-2023

2 First Activities 13

Fig. 12: Package tag-detection architecture

The nodes taking care of the computation of keypoints, their descriptors and the matching
between the target image and the scene image work with similar programs than the one
detailed in the last subsections, but the whole package is programmed in C++. The pose of
the target has to be computed from the matches between keypoints that result from these
algorithms: with multiple keypoints transformations from one image to the other, we can
deduce the homography being applied to the target object reference pose and its pose in
the scene image. The OpenCV library has a practical function doing this operation, as
implemented in Figure 13.

1 std : : vector<cv : : Point2f> find_homography (
2 std : : vector<cv : : KeyPoint>& keypoints_object ,
3 std : : vector<cv : : KeyPoint>& keypoints_scene ,
4 std : : vector<cv : : DMatch>& good_matches ,
5 std : : vector<cv : : Point2f>& object_corners)
6 {
7 //== Loca l i z e the o b j e c t and form two ve c t o r s o f matching keypo in t s
8 std : : vector<cv : : Point2f>& ob j e c t ;
9 std : : vector<cv : : Point2f>& scene ;

10 for (auto &good_match : good_matches) {
11 //== Get the keypo in t s from the good matches
12 ob j e c t . push_back (keypoints_object [good_match . queryIdx] . pt) ;
13 scene . push_back (keypoints_scene [good_match . t r a i n Idx] . pt) ;
14 }
15 //== Finding the homography matrix between the two l i s t s o f k eypo in t s
16 cv : : Mat H = findHomography (object , scene , cv : :RANSAC, 3) ;
17 //== Using the matrix to compute where the corners are in the image
18 // The o b j e c t corners correspond to the input image corners and are

i n i t i a l i z e d once
19 std : : vector<cv : : Point2f> sorted_corners (4) ;
20 perspect iveTrans form (object_corners , scene_corners , H) ;
21 return scene_corners ;

Fig. 13: Computing the homography between two sets of keypoints

2 First Activities 14

2.4 Computing the distance

Once the homography is computed, we have to compute the distance between the camera
and the target. To do this we make use of the ZED Mini stereo cameras [1]. This operation
is done by the outputDistNode. It takes three topics as inputs:

• The distance data sent by the ZED Mini as a greyscale image with the pixels intensity
value corresponding to the distance computed by the camera. The intensity is null if
the distance couldn't be computed.

• A mask with the zone in the image occupied by the target. The information is com-
municated as a binary image and the zone is a quadrilateral, which could be changed
but works perfectly with my student ID card.

• A list with the four corners of the quadrilateral with the detected target.

Fig. 14: The node graph around outputDistNode

With this information, we can either compute the center of the quadrilateral and publish
the associated distance, or compute the mean distance for quadrilateral surface. The second
method is useful to compensate any sensor errors, but the result can be corrupted if the zone
de�ned is not accurate.

From the quadrilateral, it is also possible to get a frame for the target, with the x-axis
along the longer border and the y-axis along the shorter border of the zone.

2.5 Results and commentary

To test out the performances of the package, I used my student ID card as before. We can
criticize the performances of the object detection algorithms used.

The results I got while using the ORB algorithm to compute the keypoints were less
conclusive than when using the SIFT algorithm. Firstly, these algorithms are mainly used
to quantify the changes between two scenes and can be evaluated only for their resilience
to rotation and illumination variations, as in the dataset shown in the Figure 17. Using a
cropped image of the target was giving the matching algorithms less useful keypoints and
descriptors. It was di�cult to get better results, even after tweaking the parameters of
the detection and matching algorithms. Another option to better the performances for the
keypoints detection and descriptors computation would be to �ne tune the pre-processing of
the input images. Because this method of object detection was proved di�cult to implement,
in the next part of the internship a speci�c marker was placed on the object to detect, making
this step easier to handle.

3 Controlling a Robotic Arm using Visual Pose Estimation 15

Fig. 15: Computing the homography using the matches computed previously with SIFT (left)
and ORB (right).

Fig. 16: Same as previously but with another scene.

3 Controlling a Robotic Arm using Visual Pose Estima-

tion

3.1 Details of the project and equipment

During the second part of the internship, I focused on using visual servoing to control a
robotic arm. The objective was to simulate the �nal approach phase of an On-Orbit Servicing
mission, during which the arm is deployed and a vision algorithm is used to control it towards
the client satellite. Firstly, I had to set up a camera and an object detection algorithm with
capable of outputting the pose of the target. Then, the major part of the work consisted in
familiarizing myself with and controlling the robotic arm.

3.1.1 Stereolabs ZED Mini

The ZED Mini was used before for the video input for the feature detection in the precedent
part. It was also useful for the Pose Estimation. The ZED Mini comes with a software that
does a lot of computation and pre-processing of the di�erent sensors data, before publishing
them in a collection of ROS2 topics. Here is a list of the features that were used in the
project:

• The ZED Mini has an inertial unit and publishes its pose on a TF2 tree. TF2 is a
ROS2 tool used to handle transformations between coordinates frames.

• The stereo camera of the ZED Mini allows to compute a distance map associated with
the images. You can easily check if the distance associated with a pixel of one of the
cameras image was computed correctly and retrieve it.

3 Controlling a Robotic Arm using Visual Pose Estimation 16

Fig. 17: Extracts from the HPSequences dataset displaying two viewpoint (top) and two
illumination (bottom) based sequences. [6]

• Like in the precedent project, I used the topic on which the video stream of the left
camera if published.

The camera was �xed to the robotic arm using a 3D printed piece keeping it on top of
the end-e�ector, see Figure ?? below.

Fig. 18: Photographs of the camera placement on the arm.

3.1.2 Marker Detection

To make detecting the target and computing its pose easier, we used an ArUco marker.
This marker library is commonly used for camera pose estimation and an OpenCV library

3 Controlling a Robotic Arm using Visual Pose Estimation 17

detecting these markers already exists [2]. This type of marker is easily detectable, because
it is composed of highly contrasted edges. To compute the pose, the algorithm needs its
pattern and size as an input.

For this project, I used a Git repository available here: https://github.com/lapo5/

ROS2-Aruco-TargetTracking. Its forked version with my modi�cations is available here:
https://github.com/GondotCl/ROS2-Aruco-TargetTracking/. It contains a ROS2 pack-
age to which I input the topic with the ZED Mini left camera image and creates multiple
topics corresponding to the marker presence, corners and pose.

3.1.3 IIT Robotic Arm

The Arm present in the laboratory was brought here by the Humanoid and Human Centered
Mechatronics Research Line of the Italian Institute of Technologies. It has 7 degrees of
freedom and joints and measures approximately 1.2 meters. It is placed above a marble
block on which dummy targets can circulate.

Understanding the arm's operation was quite di�cult, as there was 2 more softwares
integrated in its computer, that needed to cooperate with ROS, the software I used for my
control implementation (see Figure 22).

First, the Robotic Arm came with a custom software XBotCore, made in the IIT. It is
both:

• Used for Real-Time control of the robot, taking charge of the �nal layer of communi-
cation with the harware and ensuring the command.

• A middleware, con�gurable by adding programs named Plugins, that can interact and
communicate with other softwares such as ROS.

This duality made the role and possibilities of XBot hard to totally understand. In the end,
I chose to program my project with ROS as it was more con�gurable and complete as a
middleware, as some functionalities were di�cult to implement in a XBot Plugin.

The second software on the robotic arm is CartesIO, used for solving the mathematical
equations of Inverse Kinematics that appear when using Cartesian Control to command the
pose of a part of a robot, in our case the end-e�ector of the robotic arm. CartesIO includes:

• A programmatic API, allowing to reuse its tools in Python and C++ programs.

• A ROS based server, with launch �les provided that loads the robot description and a
Cartesian controller.

• Di�erent control modes, using the joints impedance, torque or pose.

With this software, we can input the wanted pose of the end-e�ector and it computes all the
corresponding positions and orientations of each joints, as well as sending them to XBot. As
illustration of the software capabilities, we can launch a ROS node with a RVIZ graphic user
interface in which we can control the end-e�ector position and orientation. In the Figures
19 and 20, we can see how the position of the entire arm is computed and controlled by the
software to satisfy the end-e�ector pose change.

https://github.com/lapo5/ROS2-Aruco-TargetTracking
https://github.com/lapo5/ROS2-Aruco-TargetTracking
https://github.com/GondotCl/ROS2-Aruco-TargetTracking/

3 Controlling a Robotic Arm using Visual Pose Estimation 18

Fig. 19: CartesIO's RVIZ interactive visu-
alization, arm in its homing pose

Fig. 20: CartesIO's RVIZ interactive visu-
alization, after interaction with
the end-e�ector pose

The robot's computer could also launch a ROS1 master node, which was used to commu-
nicate with another computer handling the computer vision. A ROS bridge package between
Noetic and Foxy was necessary to communicate to the arm's computer and translate speci�c
XBot messages especially.

3.1.4 Project's architecture

The ZED Mini was connected to the same computer that was used for the Computer Vision
studies via a HDMI cable. For the remainder, there are two scenarios, if we are working
in a simulation or on the real arm. For the simulation, the computer communicates with
Gazebo, a ROS2 application, in which a scene was programmed to communicate with the
arm software and simulate its movements. When using the real arm, the �rst computer has
to be connected with the arm computer via Ethernet. In both cases, the commands are
computed and sent by the �rst computer on a ROS2 topic. On the arm's computer, a ROS1
Master Node is launched on start and is used to communicate with my own ROS2 programs
via the ROS bridge.

3.2 Software implementation

3.2.1 Package architecture

As said earlier, ROS2 was used to send commands to the robotic arm. I created a four pack-
ages available here: https://gitlab.ensta-bretagne.fr/gondotcl/marker_tracking_

pkg.

• The �rst package, custom_interfaces, contains 3 messages used by the other packages:
PointsList, DataStatus and Direction.

• The second package, marker_replacement, is used to test the other packages and pub-
lishes topics mimicking the ROS2-Aruco-TargetTracking package.

https://gitlab.ensta-bretagne.fr/gondotcl/marker_tracking_pkg
https://gitlab.ensta-bretagne.fr/gondotcl/marker_tracking_pkg

3 Controlling a Robotic Arm using Visual Pose Estimation 19

Fig. 21: The high-level electronic architecture.

Fig. 22: The interactions between the di�erent softwares involved to control the arm

3 Controlling a Robotic Arm using Visual Pose Estimation 20

• The third package, pose_manager, is where the images and other topics are processed to
compute and send the command. There are two alternative nodes: marker_positioning
and arm_transformation, each using a di�erent way to compute the wanted pose for
the end-e�ector. They are detailed in the next part.

• The last package, arm_control, is communicating with CartesIO, creating a speci�c
object named CartesianInterface to do so. It is a bridge for geometry_msgs to this
interface. Because of compatibility issues, it was necessary to separate this Cartesian-
Interface and any TF2 usage. TF2 is used in the pose_manager package and then
a simple geometry_msg is send for each pose we want to transmit to the interface
with CartesIO. The package contains two nodes, set_pose is a minimal one for testing
purposes and cartesian_interface which is connected to the rest of the project. The
cartesian_interface node is:

� connected to the direction input on the arm_direction_order topic

� connected to the marker pose on the base_link_to_marker_transformation topic

� connected to the marker presence topic

� publishing the end-e�ector pose on the topic end_e�ector_pose for TF2 to use in
another package

In the following sections, I detail the two approaches explored to control the robotic arm.

3.2.2 Following the image center

The �rst option was to keep the marker in the center of the left camera image. By initializing
the arm in its homing position and having the target on a vertical plane, we can admit that
the frame of the marker and the camera are parallel. Since the camera and end-e�ector
frames are �xed with respect to each other, the wanted transformation for the end-e�ector
frame is then simpli�ed to a translation in the plane. The command is computed in the
marker_positioning node, that takes the image size and the marker corners position as
entries and outputs a combination of directions, between �up�, �down�, �left� and �right�.

To decide which direction to input the arm, we use the lower right and upper left corners
position on the image and distinguish between di�erent cases to see if the marker position is
satisfying. Ideally, the corners have to be on each side of the picture like the (1) case in the
Figure 24. But as a security we accept than interval of 8 pixels around the horizontal and
vertical lines splitting equally the image, making the case (2) also acceptable.

From these comparisons, it is possible to know which direction the end-e�ector has to
translate in to get the marker closer to the center. This information is published on a
Direction topic, with the Direction message being an ensemble of 4 booleans corresponding
to the 4 possible directions.

3 Controlling a Robotic Arm using Visual Pose Estimation 21

Fig. 23: The disposition of the arm and marker at the start of the test with associated frames

Fig. 24: Illustration of the case distinction

To command the arm, we have to send to CartesIO the new wanted pose. With Tinit and
Ttarget the translations between the end-e�ector and the base link of the robotic arm before
the command and that we want to attain, we have:

Ttarget = Tinit + qinit ∗ δ ∗ dT

where δ = 0.1 meters, qinit is the quaternion for the rotation between the end-e�ector and
the base link and

dT =



{
up : 1

down : −1{
right : 1

left : −1

0



3 Controlling a Robotic Arm using Visual Pose Estimation 22

Fig. 25: Architecture around the marker_positioning node

To summarize, you can refer to Figure 25 with the di�erent relations between nodes and
topics below.

3.2.3 Aligning the frames

Since the ROS package detecting ArUco markers returns the frame associated with the
marker, we can consider a more advanced control approach. I implemented a new ROS node
for a command that aligns the gripper's frame on the straight line between the robot base
and the marker center, allowing it to "point" toward its target. This situation is illustrated
in the Figure 26.

Fig. 26: Illustrating the target pose when aligning the end-e�ector frame to the marker frame

To compute the new pose for the end-e�ector, with
−−→
OM the vector between the base link

origin and the marker center and r = 0.9 meters the range of the robotic arm, we have the
following translation Ttarget between the base link and the end-e�ector:

3 Controlling a Robotic Arm using Visual Pose Estimation 23

Ttarget = k ∗
−−→
OM

||
−−→
OM ||

where

k =

{
||
−−→
OM || − 0.1 if ||

−−→
OM || < r

r else

Then we need to compute the rotation between the end-e�ector frame and the base link
frame and express it as a quaternion. In our application, we want the z-axis of the end

e�ector pointing in the direction of the
−−→
OM vector. Let's de�ne −→zO the z-axis of the base

link frame, which is also considered the reference frame, and −→zA the z-axis of the end-e�ector
frame where A if the center of this frame. If −→u = −→zO∧−→zA, then the quaternion corresponding
to the rotation between the two frames is:

q =


ux

uy

uz
−→zO ∗ −→zA +

√
||−→zO||2 ∗ ||−→zA||2


We want (A,−→zA) // (OM) and A ∈ (OM), which means that −→zA =

−−→
OM

||
−−→
OM ||

. Since −→zO = 0
0
1

, we can easily compute −→u =

 −zA,y

zA,x

0

. Finally, since ||−→zO||2 = ||−→zA||2 = 1, we have

the wanted quaternion qtarget between the two frames:

qtarget =


−zA,y

zA,x

0
zA,z + 1


In the program, we get the

−−→
OM via the ROS tool TF2. To use TF2 e�ciently, we need

to set up a proper hierarchy between the involved frames. The frames hierarchy can be
visualized in the Figures 27 and involves the following interfaces:

• A static transformation is published by the pose_manager package between the world
and the base link.

• The arm_transformation node broadcasts to TF2 the transformation base link to end-
e�ector from the data published by the cartesian_interface node and publishes the
transformation base link to marker to a topic using a TF2 listener.

• The ZED Mini ROS package publishes a static transformation between the �TCP� and
the left camera optical frame.

• The ArUco tracking package publishes the transformation between the left camera
optical frame and the detected marker.

3 Controlling a Robotic Arm using Visual Pose Estimation 24

Fig. 27: TF2 architecture of the base,
end-e�ector (TCP) and camera
visualized in RVIZ

Fig. 28: TF2 frame of the marker visual-
ized by the camera

Fig. 29: Architecture around the pose control using TF2

The cartesian_interface node is the one computing the wanted pose for the end-e�ector

once all the necessary poses are published. The
−−→
OM vector is evaluated from the base link to

marker transformation. Then it computes and sends the pose command to the CartesIO using
the equations detailed before. The summary of the ROS architecture around this command
is illustrated in the Figure 29 below.

3.3 Results and commentary

I was able to test out the �rst method to control the arm. Firstly in simulation, I tested if
the marker_positioning node computed the right orders, by inputing the camera image and
seeing what was published on the Direction topic, see Figure 30 where the direction order is
to move left and up.

The second step was to send a direction order to the arm and see if it follows it, a screen
capture of this test can be found here: https://www.youtube.com/watch?v=UgLrClH9nI0.
Finally, I was able to to do a quick test of the algorithm on the real arm. The results can be

https://www.youtube.com/watch?v=UgLrClH9nI0

3 Controlling a Robotic Arm using Visual Pose Estimation 25

Fig. 30: Monitoring the orders sent after receiving the marker still image

seen here: https://youtu.be/CxWkDPXzIuA.
In the given situation where the marker is on a plane parallel to the camera plane, the

algorithm does work. With more time and extensive testing, the program could be improved
to work in any starting situation, by adding a sequence where the arm searches for the marker.

The second method was more di�cult to implement and I only have a recording of the
simulation of the order on RVIZ, where I move a marker frame via the key_teleop ROS
package: https://youtu.be/CxWkDPXzIuA.

Conclusion

During this internship experience I had the opportunity to work on various aspects related
to computer vision and its applications in the context of On Orbit Servicing.

Throughout these four months, I delved into the intricacies of computer vision, gaining
knowledge in various concepts relevant to camera pose estimation and applied in the context
of OOS. I explored the fundamentals of object detection, including algorithms like SIFT
and ORB, and developed a solid understanding of matcher algorithms. Additionally, I was
introduced to the promising �elds of convolutional neural networks and arti�cial intelligence,
which are poised to play a pivotal role in the future of visual servoing.

Having the chance to use the laboratory equipments during practical applications, I man-
aged large code projects, which involved integrating and layering di�erent tools. This experi-
ence allowed me to grasp the signi�cance of maintaining code tidiness and staying motivated
while working independently on a project. Both these skills and the knowledge I acquired
will undoubtedly prove invaluable in my future work and academic pursuits.

https://youtu.be/CxWkDPXzIuA
https://youtu.be/CxWkDPXzIuA

3 Controlling a Robotic Arm using Visual Pose Estimation 26

Lastly, my time at the company provided me with valuable insights into the workings of
a large organization. I observed how work rhythms vary depending on one's proximity to
technology and administration. I also recognized the signi�cance of e�ective communication
and collaboration among team members, witnessing the diverse roles required for the success
of a project while working alongside my colleagues.

Overall, this internship has not only enhanced my technical knowledge but also broadened
my horizons in terms of the broader aspects of project development and management. I am
now better prepared to pursue my career goals with a solid foundation in computer vision
and a better appreciation for the dynamics of the corporate world.

References

[1] Depth Sensing Overview | Stereolabs.

[2] OpenCV: ArUco marker detection (aruco module).
https://docs.opencv.org/4.x/d9/d6d/tutorial_table_of_ content_aruco.html.

[3] OpenCV: cv::ORB Class Reference. https://docs.opencv.org/3.4/db/d95/classcv_1_1ORB.html.

[4] OpenCV: cv::SIFT Class Reference. https://docs.opencv.org/4.x/d7/d60/classcv_1_1SIFT.html.

[5] OpenCV: FAST Algorithm for Corner Detection. https://docs.opencv.org/3.4/df/d0c/tutorial_py_
fast.html.

[6] Kristijan Bartol, David Bojani¢, Tomislav Pribani¢, Tomislav Petkovi¢, Yago Diez
Donoso, and Joaquim Salvi Mas. On the Comparison of Classic and Deep Keypoint
Detector and Descriptor Methods. In 2019 11th International Symposium on Image and
Signal Processing and Analysis (ISPA), pages 64�69, September 2019. arXiv:2007.10000
[cs].

[7] Deepanshu Tyagi. Introduction to ORB (Oriented FAST and Rotated BRIEF), April
2020. https://medium.com/data-breach/introduction-to-orb-oriented-fast-and-rotated-
brief-4220e8ec40cf.

	Abstract
	Acknowledgments
	Introduction
	Context and Planning
	Workplace environment
	Defining and planning the internship's objectives

	First Activities
	Needed theoretical studies and CV context
	Algorithms behind Object Detection
	SIFT algorithm
	ORB algorithm
	Matcher algorithms

	Idea of application and architecture of the wanted project
	Computing the distance
	Results and commentary

	Controlling a Robotic Arm using Visual Pose Estimation
	Details of the project and equipment
	Stereolabs ZED Mini
	Marker Detection
	IIT Robotic Arm
	Project's architecture

	Software implementation
	Package architecture
	Following the image center
	Aligning the frames

	Results and commentary

	Conclusion
	References

