
Internship report
Computer vision in a ROS 2 Interface

for the UMI-RTX robotic arm

Guillaume GARDE
ENSTA Bretagne, France

Under the supervision of Arnoud Visser
Intelligent Robotics Lab, Universiteit van Amsterdam, The Netherlands

https://github.com/gardegu/LAB42_RTX_control

October 1, 2023

https://github.com/gardegu/LAB42_RTX_control

Abstract

This report presents the computer vision part of a project conducted in collaboration
with my colleague Théo MASSA, FISE 24, robotique autonome, during our common in-
tership at LAB42 in the University of Amsterdam, Amsterdam, Netherlands. The aim
of this project was to work with an old robotic arm called the UMI-RTX (created in
the 1980s) and make it grab objects on a plane with its gripper. Some work had al-
ready been done on this robot by students, but mainly with old tools. The idea of our
project was to implement a new way of making it work and to use more recent tools.
More specifically, our goal was to set up a ROS 2 environment and build an interface
that would allow us to perform image analysis, trajectory planning, and target grab-
bing. This report focuses on the computer vision part. Another document, available
at https://www.intelligentroboticslab.nl/reports-and-theses/, sums up all the
work that has been done during this internship without separating Théo’s work from mine.

We chose a plush banana as a target. With the computer vision library OpenCV and
the software development kit of Stereolabs (the manufacturer of our camera), I managed,
in a dedicated ROS 2 node, to detect the banana on the field and compute its 3D position.
More precisely, I first wrote my own code to compute depth based on stereo vision and
OpenCV built-in tools. Then, to get better results, I wrote a second code using Stereo-
labs’ tools and got great, accurate results.

The rest of the project was done collaboratively with Théo and will not be detailed
here. The information was sent to a node dedicated to inverse kinematics. In this node,
the joints’ states required to reach the aimed pose were processed and sent both to a simu-
lation and the real arm. For this, we wrote two nodes, each dedicated to its own part, one
for the simulation and the other for the real arm. Théo’s custom Graphic User Interface
(GUI) integrated the simulation, processed images, and depthmap. It also enabled us to
choose between automatic control of the arm and a manual mode, where we could choose
our own target pose.

Thanks to this process, the arm was able to follow and grab the banana. We could
display the result in our GUI and choose to manipulate the arm or let it go through the
automatic process.

To make our work accessible and portable, we used Docker tools to enable anyone to
use our project.

https://www.intelligentroboticslab.nl/reports-and-theses/

1

Résumé

Ce rapport présente le travail réalisé dans le cadre d’un projet collaboratif sur lequel j’ai
travaillé pendant mon stage au LAB42 de l’Université d’Amsterdam. J’y ai travaillé aux
côtés de Théo MASSA, camarade de promotion, sur un sujet commun. Le but de ce projet
était de faire saisir des objets à un vieux bras robotisé de type UMI-RTX en se basant sur
ROS 2 et sur la vision par ordinateur. Il s’agissait pour nous d’utiliser des outils récents
pour faire fonctionner ce robot des années 1980. Nous nous sommes répartis les tâches et
ce rapport se propose de développer celles que j’ai réalisées. Il s’agira donc ici de vision
par ordinateur, d’architecture ROS 2 et de conteneurisation.

Pour saisir les objets ciblés, j’ai travaillé sur des algorithmes de vision par ordinateur,
en particulier sur la stéréo vision. Grâce à un premier code basé sur les outils intégrés de
la librairie OpenCV, j’ai mis en place un algorithme de détection d’objet et de détermi-
nation de position 3D. Si la détection fonctionne à merveille, ce n’est pas le cas du calcul
de la profondeur qui reste approximatif. Cependant, j’ai réussi à pallier ce problème en
écrivant un second code de calcul de profondeur basé sur les outils du concepteur de la
caméra stéréo utilisée dans ce projet. Les résultats sont alors extrêmement précis et suff-
isants pour notre projet.

Cette partie de vision par ordinateur a été intégrée dans le projet pour fonctionner avec
les parties de Théo, notamment des calculs de cinématique inverse, le jumeau numérique
du robot dans une simulation, et une interface graphique développée spécialement pour ce
projet qui nous permet d’afficher les images utiles et de choisir entre un mode de pilotage
manuel ou automatique du robot.

Grâce à notre travail, nous avons réussi à faire attraper un objet à notre robot. Et,
pour rendre ce projet accessible et portable, nous avons mis en place avec Docker une
conteneurisation de notre architecture ROS 2 utilisable par tous.

Key words

Computer vision, ROS 2, Docker, robotic arm.

2

Acknowledgement

I would like to deeply thank LAB42 and its team, especially my supervisor, Arnoud, and
his colleague, Joey, for their contribution to this work and for the help always provided
when needed. This internship has been a great opportunity. It has been a privilege to
be welcomed by the University of Amsterdam, a top-rated center of scientific knowledge,
and to have access to state-of-the-art technology that has allowed me to go further in my
research and to open my horizons of possibilities. I have had great working conditions
here and really enjoyed my stay. My final thoughts of gratitude are for Théo, my friend
and colleague, with whom I have shared this experience.

Disclaimer

Our supervisor required Théo and me to submit a joint project report in the middle and
at the end of the internship. This report reflected our partnership on this work, which
was the fruit of the pooling of the tasks we had carried out. As a result, we wrote this
report together, which was published on the LAB42 website. The report that follows
takes up many elements of this work very freely, since I am one of the authors. I also
quoted Théo’s work. Parts that have been written by him or by us will appear in blue in
this report.

Contents

1 Introduction 4

2 Computer Vision 6
2.1 Detection of the target in a horizontal plane 6
2.2 Generating depth with stereo vision using OpenCV 8

2.2.1 A bit of geometry . 9
2.2.2 Parameters . 10
2.2.3 Calibrating the stereo camera . 10
2.2.4 Stereo rectification parameters computation 12
2.2.5 Stereo rectification . 12
2.2.6 Disparity map computation . 13

2.3 Generating depth with Stereolabs’ SDK . 15
2.3.1 Stereolabs . 15
2.3.2 Using Stereolabs’ software development kit 15
2.3.3 Integration into the project . 17

3 ROS 2 Interface 21
3.1 Presentation of ROS 2 . 21
3.2 Architecture of the project . 22

4 Docker Image 24
4.1 Docker . 24
4.2 Necessity of Docker . 24
4.3 Building the bespoke project’s image . 25

5 Conclusion 26

3

Chapter 1

Introduction

This project was led in an internship context, mainly for educational purposes, at Lab42
at the University of Amsterdam (UVA), the Netherlands [7]. The UVA is a top-100 uni-
versity globally and was founded in 1632. Renowned for its rich history and academic
excellence, UvA offers a diverse range of programs across various disciplines, including
arts, sciences, social sciences, and humanities. With a commitment to fostering a vibrant
learning environment, the university attracts students from all over the world. UvA’s
world-class faculty, cutting-edge research, and modern facilities make it a top choice for
those seeking a globally recognized education in a dynamic and culturally diverse setting.
Research is at the center of the UVA and around 500 doctoral degrees are conferred every
year1. One of their top laboratories is LAB42. LAB42 is the UVA’s new center for Digital
Innovation and AI. Where students and researchers from UvA’s Informatics Institute, the
Institute for Logic, Language and Computation (ILLC) and companies all work together.
The project presented here has been conducted in LAB42.

The aim of this project was to work on an old industrial arm, the UMI-RTX, which
was created in the 1980s [10][11], and to make it autonomously grab an object that would
have been previously detected. A lot of work had already been done on it, especially by
Van Der Borght [1] and Dooms [3] who worked on a ROS 1 interface in order to control
it. Their work served as an introduction to this project and the supervisor of this project
also gave hardware drivers as a mean of beginning the work.

This project was split into two parts. Théo MASSA worked on the first part2: ensuring
the operation of the arm manipulation, making a simulation, and integrating it into the
ROS 2 architecture. The other part, presented here, concerned computer vision, its inte-
gration into the ROS 2 interface, and the construction of the Docker image for this project.

The problem to be addressed through this work was how to perform target grabbing
using an old robotic arm and state-of-the-art scientific tools. This project studied the
possibility of mixing technologies of different ages to successfully run a complex task.
More specifically in this report, the focus has been set on the possibility of using OpenCV
and stereo vision to perform depth computation inside a ROS 2 architecture for the arm.

This report first presents an attempt to carry out this task using OpenCV, but also a
1https://lab42.uva.nl/
2His work is available in Appendices G and H.

4

https://lab42.uva.nl/

5

new perspective on the issue in order to obtain results with a higher level of success and
accuracy. Then it will show how the computer vision part of this project was integrated
into a ROS 2 interface. To go further, this report also presents a way to make this work
easily portable and accessible by using Docker and its tools.

Videos of the UMI-RTX in action are available here: https://www.youtube.com/
playlist?list=PLr7kwtXen7-Se0UGnNa_Y2hR0W9sA3iEf

Figure 1.1: Views from LAB42 and the Intelligent Robotics Lab (Source: https://lab42.
uva.nl/read).

https://www.youtube.com/playlist?list=PLr7kwtXen7-Se0UGnNa_Y2hR0W9sA3iEf
https://www.youtube.com/playlist?list=PLr7kwtXen7-Se0UGnNa_Y2hR0W9sA3iEf
https://lab42.uva.nl/read
https://lab42.uva.nl/read

Chapter 2

Computer Vision

To make a robotic arm grab a target, a strong starting move is to rely on one key element:
computer vision [15]. This element is a set of several techniques to see the scene of interest
with an optical device and extract valuable information from it. In this project, these
techniques were used to detect a target and get its 3D position in the camera’s frame.
The language of programming that was used here is C++, and the OpenCV1 methods
that are cited here were written accordingly with the C++ syntax.

2.1 Detection of the target in a horizontal plane

The target, depicted by figure 2.1 was a yellow banana plush. It was put on a dark
horizontal plane on which the UMI-RTX was fixed.

Figure 2.1: The banana plush on the dark horizontal plane that supports the arm

The first task of the computer vision part was to detect this banana. The banana was
chosen because it was a convenient target. It is a standard object easy to find on Ikea; its
color is convenient to detect; its softness makes it easy for a gripper to grab it; and it was

1OpenCV documentation: https://docs.opencv.org/4.7.0/

6

https://docs.opencv.org/4.7.0/

7

coherent with the fact that most objects are not rectangular but have curves; therefore,
the approach was more general.

The image process was made with OpenCV, which includes built-in methods for com-
puter vision. To extract the banana from the scene, a specific color space was chosen: the
HSV color space (Hue, Saturation, Value) [16]. It is more common to hear about the RGB
[16] color space (Red, Green, Blue), in which each color is represented by a set of three
values between 0 and 255 corresponding to a proportion of the associated color. This is
the color space usually used to associate a color to screen’s pixels. However, the HSV
space is an appropriate color space to perform color detection when there are changing
brightness conditions because one color can still be detected in different light contexts. A
representation of these spaces is given in figure 2.2. Each color is represented by a triplet
of values between 0 and 255, corresponding to its values of hue, saturation, and value [16].

Figure 2.2: Representation of the RGB and HSV color spaces [16]

The extraction of an object from an image is based on contour detection once the image
has been binarized according to a specific strategy. In this case, two HSV thresholds were
selected, (20,100,100) and (60,255,255), to extract objects in between2. These values were
chosen to binarize the image with cv::inRange() and extract yellow objects that have
similar HSV values. The result was a binarized image with white objects on a black
background (see figure 2.3).

Figure 2.3: Image obtained after binarization to extract the banana

2The saturation value range has been chosen wide to be sure to detect the target due to highly variable
light in Lab42 (natural and/or artificial light). These values can be adjusted.

https://en.wikipedia.org/wiki/RGB_color_spaces
https://docs.opencv.org/3.4/da/d97/tutorial_threshold_inRange.html

8

Then the image was ready for contour detection. A hypothesis made for the project
was that the only visible yellow object in the scene would be the banana target. This
ensured that when performing contour detection, only the contour of the banana would
be found. The method cv::findContours() gathers all the contours detected, in this case
only the contour of the target (see figure 2.4). Then, cv::moments() gave access to the
moments of the contour, and the coordinates of its centroid in the reference frame of the
image became easily computable.

Figure 2.4: Example of detected banana and its contour with OpenCV

With the coordinates of the centroid, the banana could be located in the horizontal
plane. The next step was to access its depth with respect to the camera and grab it with
the UMI-RTX’s gripper.

2.2 Generating depth with stereo vision using OpenCV

To allow the arm to grab the target, it needed to know where it was. The first step of
detecting the banana in a horizontal plane can be done with a single camera, but getting
its depth is more complex and requires a second one [8]. This is called stereo vision.
The stereo device used in this project was the ZED Mini camera device from StereoLabs3

depicted in figure 2.5.
3https://www.stereolabs.com/zed-mini/

https://www.stereolabs.com/zed-mini/

9

Figure 2.5: The ZED Mini stereo device

On this type of device, both lenses are on the same support and have parallel optical
axes and coplanar image planes (see figure 2.6). Some stereo installations use two distinct
cameras that can be separated from each other according to need [8].

Figure 2.6: Vision of an object (on the right) with a stereo camera (on the left). O1 and
O2 are the optical centers and B the distance between the optical axes [16]

The main idea behind stereo vision is to reproduce human vision [17]. From the dif-
ference in perception of the scene, depth information can be extracted. OpenCV provides
methods and algorithms to get to that point step by step [9]. The theory behind these
methods belongs to computer science and vision. The calculations made to extract in-
formation from the views fall within the framework of projective geometry and epipolar
geometry [4][8].

2.2.1 A bit of geometry

Projective space is an extension of Euclidean space where parallel lines meet at infinity
[8]. To work in projective space, it is necessary to use homogeneous coordinates [17][8].

10

These coordinates are used to characterize changes in space and allow to consider points
at infinity and calculate points that are not at infinity with matrices as in Euclidean space.
Projective geometry is used in computer science to manipulate coordinates, but it is not
the only one used. The other mathematical aspect is epipolar geometry (see figure 2.7).
It describes the relationship between two views of the same object [17].

Figure 2.7: Representation of the epipolar plane [17]

Characterising the links and differences between the two views of a stereo device is
essential to performing any type of scene reconstruction.

2.2.2 Parameters

Knowing some parameters associated with the scene and the camera was necessary in
order to access depth information. The first type of parameter is the intrinsic parameters
[17], which are internal to the camera, such as the focal length f or the baseline B, which
is the distance between the optical axes. The second type of parameter is the extrinsic
parameters [17], which are a rotation matrix R that links the scene reference frame to
that of the camera and a vector T corresponding to a translation that links one reference
frame to the other. The third type of parameter is the fundamental matrix F [8] [17] that
contains all the epipolar information of the views, and the camera matrices that describe
the mapping of 3D points in the world to 2D points in the images. Accessing depth
information can only be done through the determination of these parameters, thanks to
a well-thought-out strategy.

2.2.3 Calibrating the stereo camera

The first step of this process was to calibrate the ZED Mini device in order to compute
the extrinsic parameters, the fundamental matrix, and the camera matrices [8][17]. To do
so, stereo images with easy-to-detect points were used to apply correspondence algorithms
to compute the results. In this project, a black and white chessboard (see figure 2.8) was
photographed five times in different poses to guarantee robustness.

11

Figure 2.8: One of the views of the chessboard used to calibrate the ZED Mini device

It was necessary to declare the inner pattern that would be searched by the algorithm.
In this case, it was the inner part of the chessboard that had 7 by 5 corners. It is very
important to correctly count the inner corners for the algorithm to work. It was also
necessary to provide the algorithm with the size of a square (3.1 cm here). Then, for each
pair of images, cv::findChessboardCorners() was applied for the left and right views. This
method would detect the declared pattern in the images and the associated corners (see
figure 2.9). Then, it was possible to use cv::cornerSubPix() to refine the positions of the
detected corners.

Once this had been done, the 2D positions of the corners in the left and right images
were saved in associated vectors, and, for each pair of images, the 3D coordinates of the
corners with respect to the top left corner, using real dimensions, with the third coordinate
set to 0 for now, were saved in a dedicated vector. Which means that there was then a
vector whose five components were the same and that there were two other vectors whose
components were relative to the images. Finally, cv::stereoCalibrate() allowed to compute
the following parameters: calibration Root-Mean-Square (RMS) error, left camera ma-
trix, right camera matrix, left distortion coefficients, right distortion coefficients, rotation
matrix, translation vector, essential matrix, and fundamental matrix. The algorithm that
summarizes the process is in Appendix A.

Figure 2.9: Detected corners on the precedent left view, associated to the declared pattern

12

2.2.4 Stereo rectification parameters computation

After calibrating, it was necessary to rectify certain aspects. The goal here was to make
both camera image planes the same by finding the right rotation matrices. This makes
all the epipolar lines parallel and simplifies the correspondence problem [8]. For this part,
camera matrices and distortion coefficients that had been computed during the previous
step were employed. cv::stereoRectify() was used to compute rectification transforms
(rotation matrices) for the cameras, projection matrices in the new rectified coordinate
systems for the cameras, and a disparity-to-depth mapping matrix.

2.2.5 Stereo rectification

The next step involved the computation of the joint undistortion and rectification trans-
formation and the representation of the result in the form of maps for remapping, achieved
by utilizing cv::initUndistortRectifyMap(). To accomplish this, the parameters obtained
during the previous step were used. Then, the images to be rectified (in this case, the
work scene) were remapped using cv::remap(). This procedure had to be executed indi-
vidually for each view. Figure 2.10 depicts the work scene captured by the left camera,
along with its corresponding rectified image. As seen in the bottom image, the previously
curved lines have been corrected into straight lines, thereby preparing the data for further
disparity analysis.

Figure 2.10: Work scene view and associated rectified image

13

2.2.6 Disparity map computation

Stereo vision reproduces human vision [17][8]. Each camera within the stereo device per-
ceives the scene similarly to the human eye. Consequently, depending on the particular
view under consideration, the scene appears to shift either to the right or to the left.
This shift provides valuable depth information. There exists a horizontal disparity in the
positioning of objects between the views, which can be quantified in terms of pixels and is
referred to as "disparity" [17][8]. The underlying principle is straightforward: when exam-
ining an object within a stereo image of a scene, a greater disparity indicates the object’s
proximity. Calculating disparity for each object in the scene facilitates the generation of
a disparity map. Furthermore, given that depth (Z) and disparity (d) are proportionally
related through the equation Z = fB

d
, it is possible to derive a depth map from a disparity

map.

OpenCV provides two algorithms for computing disparity between two stereo-associated
views: cv::stereoBM() and cv::stereoSGBM(), which is a modified version of the former.
These algorithms perform horizontal block matching between the views. Certain param-
eters of the constructor needed to be configured before computing the disparity map,
and each parameter exerts a precise influence on the results. Setting them correctly was
challenging. A concise description of these parameters can be found in Appendix B. It’s
crucial to remember that these algorithms are sensitive to texture. The absence of texture
in the images can lead to poor results. Therefore, it was necessary to optimize them for
robustness before testing them on the planar support of the UMI-RTX. Throughout this
project, numerous configurations involving different images and parameter values were
experimented with, yielding diverse results. Figures 2.11 and 2.12 illustrate the process.
The first image shows an excerpt from the rectified left view, highlighting objects visible
to both cameras.

Figure 2.11: Left view of the scene

For this scene, here is the disparity map obtained:

14

Figure 2.12: The associated disparity map

On the disparity map, various levels of gray were observed. The brighter, the closer.
This map was still noisy, but it was one of the cleanest disparity maps made during the
project. It is important to consider that finding convenient parameter values was difficult
and that the option of scaling down the disparity or normalizing remained available.
To ease parameter optimization, an adjustment interface in the form of a Graphic User
Interface (GUI), with trackbars associated with individual parameters, was used4.

Figure 2.13: The associated depth map

However, changing one parameter often strongly disturbs the harmony of the map.
The depth map associated with this image was not very good yet (see figure 2.13).

4See Appendix C.

15

2.3 Generating depth with Stereolabs’ SDK

The depth map obtained with OpenCV alone was too imprecise. The chosen process was
coherent, but adjusting parameters to get valuable and useful 3D information was too
complex. There was an opportunity to enhance this system by adopting a more effective
solution. As demonstrated in Section 3.2, depth computation can be accomplished solely
using OpenCV, thereby bypassing Stereolabs’ drivers. Nonetheless, given the utilization
of a Stereolabs device in this project, the option of exploring and working with their
software development kit (SDK) remained available. It has built-in tools that enable the
user to access trustworthy and quality information.

2.3.1 Stereolabs

Stereolabs is a French company based in Silicon Valley. It is a world leader in the use of
stereo vision and artificial intelligence to provide 3D depth and motion sensing solutions.
It sells stereo cameras, software, and embedded PCs for 3D perception and AI. This
project used one of their cameras, the ZED Mini, initially designed for mixed reality, and
their software development kit.

2.3.2 Using Stereolabs’ software development kit

The SDK5 is a toolbox for creating software on a particular platform. It’s packed with
tools to build software, spot and solve issues, and often includes pre-made code that’s
perfect for that platform’s operating system. It allows the user to use built-in tools (see
figures 2.14 and 2.15) and their associated graphic user interfaces, such as a simple stereo
viewer or a depth viewer with 3D scene reconstruction.

5https://www.ibm.com/blog/sdk-vs-api/

https://www.ibm.com/blog/sdk-vs-api/

16

Figure 2.14: ZED_Explorer a simple tool to access the stereo vision of the ZED Mini -
view of LAB42

Figure 2.15: ZED_Depth_Viewer a simple tool to access the depth map of the scene and
a 3D reconstruction - view of LAB42

This project used the latest release of the SDK, the ZED SDK 4.0. A choice of an SDK
was necessary considering that there was no general package provided for stereo cameras.
Stereolabs also provides a diagnosis service that analyzes the installation of the SDK, the
status of the ZED device, and the availability of the graphic drivers. Besides, it allows
the user to access valuable information with great precision, which could not be accessed
before by simply using the stereo device and OpenCV. Among the provided data are the
precise focal lengths (see Appendix C), which are needed to compute the (X, Y) positions,
horizontal and vertical, in metric units from Z, the computed depth. In addition, these
tools allow the user to set the desired frame rate per second (FPS), video quality, and
even the depth mode. It means that the working mode can be chosen coherently with the

17

performances needed. For instance, in this project, a highly performing mode was used.
In the context of this work, it suited perfectly. However, it was essential to consider that
higher performance often translates to heavier computational demands. There is even a
final mode that pushes performances further. It consists of adding artificial intelligence,
which improves the depth map by pertinently correcting the values. But it was not used
in this project. The last release of the SDK (version 4.0) uses an NVIDIA library called
CUDA to run AI and computer vision tasks. Hence the necessity of having a computer
with great graphic processing capabilities. Even though it was easy to download6 the SDK
and to access its documentation7, having PCs that were not powerful enough to use its
tools and do not have graphic processing units (GPUs) was a problem. This is why using
the ZED SDK was really a new step in this project compared to simple OpenCV-based
stereo vision. From here, it was necessary to start working with a very powerful computer
that had everything needed to continue the work.

2.3.3 Integration into the project

It was a good choice to use the SDK when needing something precise and efficient to
compute depth. Using OpenCV alone had slowed this project down. The idea behind
this choice was to keep the structure of Section 3.2 and adapt it to the SDK’s tools.
The advantage of doing so was that the code was much lighter and clearer now. There
was, indeed, no use for a calibration or rectification part. Thanks to the SDK, the stereo
camera can nearly directly work at full capacity. There were only a few adjustments to
make. The initial process for the vision code was:

(i) setting the stereo SGBM algorithm and its parameters

(ii) opening the camera and checking its availability

(iii) stereo calibrating

(iv) stereo rectifying

(v) entering the processing loop

(a) reading the stereo image of the scene

(b) splitting the image into left and right views

(c) detecting the banana’s position and orientation

(d) computing disparity

(e) computing depth

(f) publishing the resulting images and data

The advantage of this code was that the evolution of the images was easily visible. It
got through the whole depth computation process. Whereas with the SDK, the process
was much lighter since there was no use for calibrating, rectifying the views, or computing
disparity. To use the SDK in this code, it was necessary to specify in the CMakeLists.txt
the appropriate dependencies:

6https://www.stereolabs.com/docs/installation/linux/
7https://www.stereolabs.com/docs/

https://www.stereolabs.com/docs/installation/linux/
https://www.stereolabs.com/docs/

18

find_package(ZED 3 REQUIRED)
find_package(CUDA ${ZED_CUDA_VERSION} REQUIRED)

In the header of the computer vision node, the inclusion of Stereolabs’ tools was
accomplished in the following manner:

#include <sl/Camera.hpp>

The steps then were:

(i) setting camera parameters (resolution, fps, depth mode, units, distance range)

(ii) opening the camera and checking its availability

(iii) entering the processing loop

(a) getting the left view, the depth map and the 3D points cloud

(b) detecting the banana’s position and orientation

(c) getting the associated 3D coordinates

(d) publishing the resulting images and data

This work was conducted with specific parameters: a HD720 resolution, 15 fps, the
ultra-depth mode, in millimeters, and a minimum computable distance of 100 mm.
Then, the methods zed.retrieveImage(), granted access to the left and right views and to
the depth map8. It was as simple as that. These images were then published on dedicated
topics. Subscribing to them or using RQt9 was enough to display them (see figures 2.16
and 2.17).

Figure 2.16: Left view with target detection on

8With zed.retrieveMeasure(), access is given, among others, to the 3D points cloud
9http://wiki.ros.org/rqt

http://wiki.ros.org/rqt

19

Figure 2.17: Depth map of the scene

Figure 2.16 and figure 2.17 are useful to make a fair comparison with the images from
figures 2.11 and 2.12. On Figure 2.16 and figure 2.17, the project’s work space with the
robotic arm and the banana is depicted. On the first one, it is clear that the banana has
been detected and its contour drawn. On the second one, the UMI-RTX is brighter than
the rest of the image, above its planar support (much darker). There lies the banana
target on a box. This helped gain insight into how the situation was evolving, and it was
then easy to figure out if something went wrong.

However, the images obtained could not yet be correctly seen or published on ROS
2 topics. They needed to be converted from the format designed by Stereolabs to an
OpenCV format so that they could be published with ROS 2 (note that ROS 2 nodes were
provided by Stereolabs. However, in that case, these functions could not have been inte-
grated into a custom node of their project; one could only use these unmodifiable nodes).
To do so, two handmade methods provided by Stereolabs were used: slMat2cvMat() and
getOCVtype(). These are not part of the SDK but use items from it10. slMat2cvMat()
creates a cv::Mat matrix from a sl::Mat by accessing its dimensions, the OpenCV type
given by getOCVtype() from the Stereolabs type, and a pointer to its values in the mem-
ory. Once this is done, it is required to convert one last time from the BGRA format to
BGR. It is used in computer vision for alpha compositing. The idea is to combine one
image with a background to create a transparency effect [12]. Publishing OpenCV images
with ROS 2 was easily feasible by using:

sensor_msgs::msg::Image::SharedPtr X_msg = cv_bridge::CvImage(std_msgs::msg
::Header(),"X_format",X_source_image).toImageMsg()

Afterwards, the process was similar. The target detection was identical to Section 3.1,
but the acquisition of its orientation had been added to it (yaw, pitch, and roll). This
was done through the get_angles() method. The idea was to find a line that fitted the
contour best by minimizing the distance to the edges. It could be done with cv::fitLine()
[9]. Then, once the contour of the banana and the fittest line had been found, the last

10See Appendix E

20

step was to find an orientation for the target. At this point, the coordinates of its centroid
were also available. This is where the 3D point cloud came in (see figure 2.18).

Figure 2.18: 3D point cloud of the scene. Front and side view. On the bottom of the
front view, one can see the 3D model of the stereo camera

Given the pixel coordinates of the target’s centroid, the corresponding metric (X, Y, Z)
coordinates in the point cloud can be determined using the getValue() method. This is
how the 3D coordinates in millimeters of the banana were obtained. But they were in the
reference frame of the left camera. Hence, it was necessary to add offsets with respect to
the origin of the world frame of the UMI-RTX. The origin was marked by the intersection
of the lines (see Figure 3.13). At this point, it was just needed to publish the processed
and depth images and the coordinates of the target. Nonetheless, this code had to be run
with a specific version of ROS 2 (Foxy). Therefore, it was possible to use a Docker image
that provided everything required.

https://www.stereolabs.com/docs/api/

Chapter 3

ROS 2 Interface

3.1 Presentation of ROS 2

For this project, Ubuntu 20.04 and ROS 2 Foxy were used.

ROS 2 (Robot Operating System 2) 1 is an open-source platform created for the de-
velopment and administration of robotic systems [13]. It builds upon the legacy of ROS
1 while introducing numerous improvements and additional features aimed at simplifying
the development and deployment of robotic applications. Thanks to its modular and de-
centralized design, ROS 2 offers a flexible and expandable framework for building complex
robotic systems.

By employing a publisher-subscriber messaging system, ROS 2 facilitates efficient com-
munication between different elements within a robotic system, streamlining the flow of
data and commands. It boasts compatibility with various programming languages and
offers a wide range of tools and libraries that streamline the development process. Addi-
tionally, ROS 2 places a strong emphasis on real-time and embedded systems, making it a
highly suitable choice for a broad spectrum of robotic applications, ranging from compact
embedded devices to extensive distributed systems [13].

ROS 2 offers several significant benefits to developers and roboticists. It enhances
performance and reliability through its optimized middleware, facilitating communica-
tion between nodes. This improved performance is especially beneficial for tasks that

1https://docs.ros.org/en/foxy/index.html

21

22

demand real-time or low-latency operations. Additionally, ROS 2 places a strong empha-
sis on security and safety, integrating features such as authentication and granular access
control, making it a more suitable option for applications and environments characterized
by their sensitivity [13].

The core of ROS 2’s communication framework revolves around two fundamental con-
cepts: nodes and topics. Nodes represent discrete software components responsible for
carrying out specific tasks within a robotic system. They serve as the foundational build-
ing blocks of a ROS application and interact with each other through message passing.
On the other hand, topics act as the communication channels through which nodes ex-
change messages within the ROS ecosystem. A topic functions as a dedicated pathway
where nodes can either transmit messages or subscribe to receive them. This adheres
to the publish-subscribe communication pattern, where nodes that produce data publish
messages to a topic, and nodes interested in that data subscribe to the relevant topic to
receive these messages. [13].

3.2 Architecture of the project

Here are the interactions between every ROS node when only the simulation was running:

Figure 3.1: Node graph when running only the simulation

Here, the central node, denoted as /GUI, serves as the execution environment for the
graphical user interface (GUI) and functions as the central hub for data consolidation. It
transmits the designated pose to the /inverse_kinematics node, which is responsible for
processing inverse kinematics computations to obtain and subsequently dispatch the nec-
essary joint states essential for achieving the desired arm positioning. This transmission
is facilitated through the utilization of the /motor_commands topic.

The /simulation node is configured to subscribe to the aforementioned topic and em-
ploys the /robot_state_publisher mechanism to convey the robot’s descriptive information
to the integrated simulation panel within our GUI. A comprehensive description of this
panel can be found in Section 5.4 of this thesis. This established closed-loop configuration
facilitates precise control of the robotic arm in accordance with predetermined specifica-
tions.

In this system, meticulous attention must be paid to the handling of yaw angles. This
precaution arises from the fact that, in the case of the physical arm, the yaw angle is
ostensibly zero, whereas in reality, it corresponds to the value arctan2(y, x), where x and
y denote the coordinates of the end-effector. To clarify further, within the simulation
environment, the yaw reference point aligns with the y-axis, whereas, for the encoders,

23

the yaw reference and neutral point align with the axis formed between the z-axis and
the wrist. Consequently, it is imperative to exercise caution to prevent any potential
confusion regarding the interpretation of yaw values.

Concerning the node handling the stereovision, which is /camera_api, the ZED SDK
described earlier was used. Our working version of the interface fully uses the SDK, and
one can see that it sends lots of information, like the desired pose or two images, the depth
map, and an image where the object is surrounded. This data is sent to GUIw which is
the intermediary between the data and the simulation and/or the arm.

Figure 3.2: Node graph when running real arm

For the real arm, the node graph is a bit more complicated due to the use of the arm
node. This node also subscribes to the targeted pose to be aware of when the target
changes. By doing so, useless calculations are avoided. Indeed, if commands are sent
to the arm only when the target changes, it will cost less resources than trying to send
commands at every loop, and it will also be more reactive to any changes.

Every topic distributes its own type of message among the standard messages that
exist in ROS 2. Below are the message types associated with every topic of our ROS
architecture.

Table 3.1: Messages description

Topics Messages Purpose
/joint_states sensor_msgs/msg/JointState State of the simulation

/motor_commands sensor_msgs/msg/JointState Configuration required
to reach the target

/robot_description std_msgs/msg/String Description of the robot
to visualize it in the simulation

/target_pose geometry_msgs/msg/Point Pose (position & orientation)
to reach

/target_grip std_msgs/msg/Float32 Grip to reach
/processed_pose geometry_msgs/msg/Point Pose processed by

the computer vision
/processed_image sensor_msgs/msg/Image Image where the object is shown

/depth_image sensor_msgs/msg/Image Depth map

Chapter 4

Docker Image

4.1 Docker

Docker1 is a platform for containerization that enables developers to package applica-
tions and their dependencies into lightweight, portable containers. These containers can
run consistently across different environments, from development laptops to production
servers, ensuring software consistency and ease of deployment. Docker simplifies applica-
tion deployment, scaling, and management by isolating applications from the underlying
infrastructure and providing a standardized way to package, distribute, and execute soft-
ware, making it a popular choice for modern software development and DevOps practices
[14].

4.2 Necessity of Docker

It was mentioned in Section 3.3 that a powerful computer with a Nvidia GPU was needed
to run the application. The computer at disposal for this project came with a Linux
installation. However, it had the Ubuntu 22.04 distribution, while the ROS 2 interface
was written for Ubuntu 20.04. This slight difference was not to be neglected because ROS
2 ran under distinct version according to the Ubuntu distribution, and the code would
not be identical. This means that the first version of the code, using OpenCV, was not
compatible with an Ubuntu 22.04 distribution, more precisely with ROS 2 Humble.

To solve this issue, it was decided to create a Docker image of an Ubuntu 20.04 instal-
lation that would take advantage of the hardware of the computer. This containerization
could allow anyone to use this work project with Docker. No ROS installation was needed

1https://www.docker.com/

24

25

any more. The only requirement was having Docker. As a result, this project became
really portable. However, it required a NVIDIA graphic card as mentioned in Section 3.3.

4.3 Building the bespoke project’s image

When it came to creating a new Docker image, one important thing had to be taken into
account. Docker hosts a set of simple distributions that can be downloaded and used as a
starting point for any new image. For instance, any distribution of Ubuntu or Windows
can be used as base, and any additional layers can be installed with a script and com-
mands.

Two options were coherent with this project. Building an image from a fresh Ubuntu
20.04 distribution and installing every driver, package, and other stuff manually. Or,
using a predefined distribution furnished by Stereolabs and building around it. The first
try was to do it fully manually with the first option.

However, there was an issue when the ZED SDK was added to our image. Files were
missing, and drivers refused to work. For that reason, it was decided to rely on an image
furnished directly by Stereolabs, which was an Ubuntu 20.04 distribution with the SDK
already installed on it. Once it had been done, all that was left to do was installing ROS2,
downloading the project’s Git repository, and following the procedure in order to install
it correctly. The Dockerfile can be found in Appendix F.

The particularity of this image was that the command to launch it was special. It
needed several privileged accesses to the computer hardware: access to the GPU for image
processing and the screen to launch the GUI. Privileged access was given at the launch
with the docker tags: –gpus all -it –privileged -e DISPLAY=$DISPLAY -v /tmp/.X11-
unix:/tmp/.X11-unix. Besides setting access to the screen for usage was done with xhost
+ in the terminal.

Chapter 5

Conclusion

The purpose of this work was to enable the UMI-RTX to accurately obtain its target’s co-
ordinates so that it could then proceed with the grabbing protocol. This computer vision
process had to be integrated into a ROS 2 interface piloting the arm. After 4 months, the
results were quite satisfying.

Of course, the process could be improved. But it became reliable and robust. It was
able to use stereo vision to compute a depth map of the working scene, access the target’s
3D position with respect to the UMI-RTX’s world frame, and communicate this informa-
tion to the other components of the ROS 2 architecture so that they could be translated
into instructions.

Still, one of the major issues was the first version of the computer vision part. This
code only used OpenCV, not the SDK. The problem was that the depth map was not
reliable. It is good that the code was entirely built for this work and that it did not
use the drivers. But the drawback was that setting the parameters correctly made it
difficult to understand their influence. A list of improvement points can be made for fur-
ther research: better understanding the format and type of disparity data; correcting the
normalization if need be; pre- and/or post-filtering the images; computing depth using
the disparity-to-depth matrix. It would have been smarter to write the SDK-based node
first to have some strong results to rely on and compare to. A lot of time was lost trying
to figure out what was missing. With more general improvements, the threshold settings
that enabled the code to detect the targeted banana could be improved. Depending on
the light in the laboratory, there could be some noise that made the banana go undetected.

It is also important to mention the work done with Docker. Creating a custom Docker
image was quite challenging, but doing it enabled the project to be more accessible. This
custom image had several advantages. It allowed everyone having a Nvidia GPU and
Docker installed to use the arm; Ubuntu and ROS were no longer mandatory to do so.
The only counterpart was that the image was not fully self-built and customized. It used
an image furnished by Stereolabs, where the SDK had already been installed. Nonethe-
less, it worked well and gave satisfying results.

In a more personal perspective, this internship has been a great opportunity to con-
solidate my ROS 2 skills, improve my Docker knowledge, and learn a lot about computer
vision. I am very satisfied with this experience.

26

List of Figures

1.1 Views from LAB42 and the Intelligent Robotics Lab (Source: https://
lab42.uva.nl/read). 5

2.1 The banana plush on the dark horizontal plane that supports the arm . . . 6
2.2 Representation of the RGB and HSV color spaces [16] 7
2.3 Image obtained after binarization to extract the banana 7
2.4 Example of detected banana and its contour with OpenCV 8
2.5 The ZED Mini stereo device . 9
2.6 Vision of an object (on the right) with a stereo camera (on the left). O1

and O2 are the optical centers and B the distance between the optical axes
[16] . 9

2.7 Representation of the epipolar plane [17] 10
2.8 One of the views of the chessboard used to calibrate the ZED Mini device . 11
2.9 Detected corners on the precedent left view, associated to the declared

pattern . 11
2.10 Work scene view and associated rectified image 12
2.11 Left view of the scene . 13
2.12 The associated disparity map . 14
2.13 The associated depth map . 14
2.14 ZED_Explorer a simple tool to access the stereo vision of the ZED Mini -

view of LAB42 . 16
2.15 ZED_Depth_Viewer a simple tool to access the depth map of the scene

and a 3D reconstruction - view of LAB42 16
2.16 Left view with target detection on . 18
2.17 Depth map of the scene . 19
2.18 3D point cloud of the scene. Front and side view. On the bottom of the

front view, one can see the 3D model of the stereo camera 20

3.1 Node graph when running only the simulation 22
3.2 Node graph when running real arm . 23

5.1 Model of the arm [3] . 39
5.2 Wrist system [10] . 40
5.3 Virtual model of the arm . 42
5.4 Communication between the arm and the computer 43
5.5 3 ways of communication [3] . 43
5.6 Inverse and forward kinematics . 44
5.7 Evolution of the error according to iterations 46
5.8 Evolution of the number of iterations according to ϵ in logarithmic scale . . 46

27

https://lab42.uva.nl/read
https://lab42.uva.nl/read
https://en.wikipedia.org/wiki/RGB_color_spaces
https://docs.opencv.org/3.4/da/d97/tutorial_threshold_inRange.html

28

5.9 Current version of our custom GUI . 48

List of Tables

3.1 Messages description . 23

5.1 Description of the joints ID . 40
5.2 Overview of motors with corresponding IP 43

29

Bibliography

[1] Sebastian Van Der Borght. Camera gebaseerde robotsturing. Master’s thesis, KU
Leuven, 2015-2016.

[2] J. Carpentier, G. Saurel, G. Buondonno, J. Mirabel, F. Lamiraux, O. Stasse, and
N. Mansard. The Pinocchio C++ library – A fast and flexible implementation of
rigid body dynamics algorithms and their analytical derivatives. In International
Symposium on System Integration (SII), 2019.

[3] Xavier Dooms. Camera gebaseerde robotsturing d.m.v. ros implementatie met
opencv. Master’s thesis, KU Leuven, 2014-2015.

[4] Leo Dorst, Daniel Fontijne, and Stephen Mann. Geometric Algebra for Computer
Science, an object-oriented approach to geometry. Morgan Kaufmann, 2007. Chapter
12.

[5] Dániel András Drexler. Solution of the closed-loop inverse kinematics algorithm using
the crank-nicolson method. In 2016 IEEE 14th International Symposium on Applied
Machine Intelligence and Informatics (SAMI), pages 351–356, 2016.

[6] Aidan Fuller, Zhong Fan, Charles Day, and Chris Barlow. Digital twin: Enabling
technologies, challenges and open research. IEEE Access, 8:108952–108971, 2020.

[7] Guillaume GARDE and Theo MASSA. A ros 2 interface for the umi-rtx robotic arm.
Master’s thesis, ENSTA Bretagne and the University of Amsterdam, 2023.

[8] Richard Hartley and Andrew Zisserman. Multiple View Geometry in computer vision.
Cambridge, 2006. Chapters 9 to 12.

[9] Adrian Kaehler and Gary Bradksi. Learning OpenCV 3. O’reilly media edition, 2016.

[10] Universal Machine Intelligence Ltd. Inside RTX: Guide to the Design, Mechanics
and Electronics. April 1987.

[11] Universal Machine Intelligence Ltd. Maintenance Manual for RTX, August 1987.

[12] R. Lukac and K.N. Plataniotis. Color Image Processing: Methods and Applications.
Image Processing Series. CRC Press, 2018.

[13] Steven Macenski, Tully Foote, Brian Gerkey, Chris Lalancette, and William Woodall.
Robot operating system 2: Design, architecture, and uses in the wild. Science
Robotics, 7(66):eabm6074, 2022.

[14] Dirk Merkel. Docker: lightweight linux containers for consistent development and
deployment. Linux journal, 2014(239):2, 2014.

30

31

[15] P.K. Shukla, K.P. Singh, A.K. Tripathi, and A. Engelbrecht. Computer Vision and
Robotics: Proceedings of CVR 2022. Algorithms for Intelligent Systems. Springer
Nature Singapore, 2023.

[16] Hélène Thomas. Traitement numérique des images. Technical report, ENSTA Bre-
tagne, 2 rue François Verny, 29200 France, 2023. Private communication.

[17] Hélène Thomas. Vision par ordinateur. Technical report, ENSTA Bretagne, 2 rue
François Verny, 29200 France, 2023. Private communication.

How to cite this report

Do not forget to cite this report if it was of any help in your project. Here are the BibTeX
corresponding citing lines:

@mastersthesis{Garde2023,
title={Computer vision in a ROS 2 Interface
for the UMI-RTX robotic arm},
author={GARDE, Guillaume},
school={ENSTA Bretagne and the University of Amsterdam},
year={2023}

}

Otherwise, you can use this APA format:

Garde, G. (A. 2023). Computer vision in a ROS 2 Interface
for the UMI-RTX robotic arm. The University of Amsterdam, Amsterdam, the

Netherlands.

32

Appendices

A. Stereo calibration algorithm

Stereo calibrating

Input: 5 pairs of stereo images showing different poses of the calibration chess-
board; rectified left and right views of the scene.

(i) Declaring vectors to save the corners’ coordinates: objectPoints (3D
coordinates of the corners with respect to the top left one for each pair of
images), cornersLeft (2D coordinates of the corners in the left views of each
pair of images), and cornersRight (same but for the right views).

(ii) Declaring pattern size and squarre size: here cv::Size patternSize(7,5) and
float squareSize = 3.1.

(iii) For each pair of images:

(a) Declare vectors to save 2D coordinates for the left and right view.

(b) Use cv::findChessboardCorners(), which returns true if the pattern was
found, for the left and right view.

(c) If corners are detected, use cv::cornersSubPix() to refine detection and save
the detected points in the associated vectors. Then push these vectors in
cornersLeft and cornersRight. Declare a vector of 3D coordinates (using
true dimensions) associated with the pattern with respect to the top left
corner and under the form (x,y,0). Push it inside ObjectPoint.

(iv) Declare output parameters and calibrate: use cv::stereoCalibrate().

Output: a cv::Mat disparity map.

33

34

B. A quick description of the stereo block matching algorithms’
parameters

Parameter Description
minDisparity minimum possible disparity value
numDisparities maximum disparity minus minimum disparity
blockSize matched block size
P1 first smoothness parameter for close neighbor pixels
P2 second smoothness parameter for further neighbor pixels

disp12MaxDiff maximum allowed difference (in integer pixel units) in the left-
right disparity check

uniquenessRatio
margin in percentage by which the best (minimum) computed
cost function value should "win" the second best value to con-
sider the found match correct

speckleWindowSize maximum size of smooth disparity regions to consider their
noise speckles and invalidate

speckleRange maximum disparity variation within each connected compo-
nent

These are the main parameters for the cv::stereoSGBM() constructor. The cv::stereoBM()
constructor only uses numDisparity1 and blockSize.

1Automatically computed with 0 as minimum value.

35

C. Customized simple GUI to set disparity parameters with track-
bars

This disparity map is bad. This illustrates the fact that even with trackbars to help set
the right values, it remains delicate to get reliable data this way.

36

D. Some camera parameters given by the SDK

37

E. Converting images from Stereolabs format to OpenCV format

Listing 5.1: format conversion method from Stereolabs to OpenCV
cv::Mat Camera_API::slMat2cvMat(sl::Mat& input){

return cv::Mat(input.getHeight(), input.getWidth(), getOCVtype(input.
getDataType()), input.getPtr<sl::uchar1>(sl::MEM::CPU), input.
getStepBytes(sl::MEM::CPU));

}

int Camera_API::getOCVtype(sl::MAT_TYPE type){
int cv_type = -1;
switch (type) {

case MAT_TYPE::F32_C1: cv_type = CV_32FC1; break;
case MAT_TYPE::F32_C2: cv_type = CV_32FC2; break;
case MAT_TYPE::F32_C3: cv_type = CV_32FC3; break;
case MAT_TYPE::F32_C4: cv_type = CV_32FC4; break;
case MAT_TYPE::U8_C1: cv_type = CV_8UC1; break;
case MAT_TYPE::U8_C2: cv_type = CV_8UC2; break;
case MAT_TYPE::U8_C3: cv_type = CV_8UC3; break;
case MAT_TYPE::U8_C4: cv_type = CV_8UC4; break;
default: break;

}
return cv_type;

}

38

F. Dockerfile

Listing 5.2: Dockerfile of our image
FROM stereolabs/zed:4.0-gl-devel-cuda11.4-ubuntu20.04

ARG DEBIAN_FRONTEND=noninteractive
SHELL ["/bin/bash", "-c"]

ENV USER=root
Setlocale
RUN apt update && apt install locales
RUN locale-gen en_US en_US.UTF-8
RUN update-locale LC_ALL=en_US.UTF-8 LANG=en_US.UTF-8
RUN export LANG=en_US.UTF-8
RUN apt install software-properties-common -y
RUN add-apt-repository universe

RUN apt update && apt install curl -y
RUN curl -sSL https://raw.githubusercontent.com/ros/rosdistro/master/ros.key -o

/usr/share/keyrings/ros-archive-keyring.gpg

RUN echo "deb [arch=$(dpkg --print-architecture) signed-by=/usr/share/keyrings/
ros-archive-keyring.gpg] http://packages.ros.org/ros2/ubuntu $(. /etc/os-
release && echo $UBUNTU_CODENAME) main" | tee /etc/apt/sources.list.d/ros2.
list > /dev/null

RUN apt update
RUN apt upgrade -y
RUN apt install ros-foxy-desktop python3-argcomplete -y

RUN echo "source /opt/ros/foxy/setup.bash" >> ~/.bashrc
RUN source /opt/ros/foxy/setup.bash
RUN source ~/.bashrc
RUN apt-get install git wget -y

WORKDIR /home/Stage
RUN git clone https://github.com/gardegu/LAB42_RTX_control.git
WORKDIR /home/Stage/LAB42_RTX_control
RUN ./install_dependencies.sh
RUN mkdir logs

RUN apt install python3-colcon-common-extensions -y
RUN echo ’export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/ros/foxy/lib:/opt/ros/

foxy/opt/rviz_ogre_vendor:/opt/ros/foxy/opt/aml_cpp_vendor’ >> ~/.bashrc
RUN echo ’export PATH=$PATH:/opt/ros/foxy/bin’ >> ~/.bashrc
RUN echo ’export PYTHONPATH=$PYTHONPATH:/opt/ros/foxy/lib/python3.8/site-

packages’ >> ~/.bashrc

WORKDIR /home/Stage/LAB42_RTX_control
RUN apt install nano -y

39

G. Arm manipulation (by Théo Massa) [7]

Description

This project uses the UMI-RTX arm, which is quite basic in its composition [10]. Indeed,
it is composed of an axis to translate on the z-axis and a three-part arm, where each part
is connected to another through revolute joints. Those joints can be controlled through
both position and velocity, but in this project, they are only controled through position,
as it is more adequate to our project, which is to grab a target, a mission that requires
to go to a specific position. Our method is also more adapted to a position control. Each
motor has encoders [10] that allow it to be controlled and know its state.

Figure 5.1: Model of the arm [3]

As shown in Figure 2.1, this arm can be compared to a human arm. Joint 1 corre-
sponds to the shoulder, joint 2 to the elbow, and ensembles 3-4-5 to the wrist. For the
rest of this document, they will be referred to as in the following table:

One typical characteristic of this arm is how the roll and pitch of the hand work. They
are not controlled separately but together by two motors, one on each side, causing two
rotation axis at the same origin. A view of this system can be seen in the following figure:

40

Table 5.1: Description of the joints ID

Joint number Joint ID
0 ZED
1 SHOULDER
2 ELBOW
3 YAW

Figure 5.2: Wrist system [10]

This particular system has to be taken into account when controlling the arm, and
the two motors will be referred to as WRIST1 and WRIST2.

URDF description

For practical purposes, it is really useful, even mandatory, to have a digital twin of the
arm [6]. To this extend, it seems appropriate to use an URDF description of the arm.
This URDF (Unified Robotics Description Format) allows one to manipulate virtually
the arm and previsualize what effects the commands would have on the arm. Having
a virtual clone of our system is always something vital, and it is becoming increasingly
sought after, especially in robotics [6].

This description consists of a description of every part and joint, describing the geom-
etry of the blocks, the joints between them, their type, limits, etc. One can see below an
extract of the description of the arm. The entire description can be found on Appendix
D 2.

Listing 5.3: URDF Description of the arm
<robot name="umi-rtx">

<link name="base_link">
<visual>
<geometry>
<box size="1.252 0.132 0.091"/>

2The URDF description comes from here :
https://github.com/LHSRobotics/hsrdp/blob/master/hsrdp_bridge/umi_rtx_100.urdf

41

</geometry>
<origin rpy="0 -1.57 1.57" xyz="0 -0.0455 0"/>
<material name="blue">
<color rgba="0 0 .8 1"/>

</material>
</visual>

</link>

<joint name="shoulder_updown" type="prismatic">
<parent link="base_link"/>
<child link="shoulder_link"/>
<origin xyz="0 0.0445 -0.3" rpy="0 0 1.57"/>
<!-- xyz="0.0445 0 0.134" -->
<axis xyz="0 0 1"/>
<limit lower="0.033" upper="0.948" effort="1" velocity="1"/>

</joint>

<link name="shoulder_link">
<visual>
<geometry>
<box size="0.278 0.132 0.091"/>

</geometry>
<origin rpy="0 -1.57 0" xyz="0 0 0"/>
<material name="white">
<color rgba="1 1 1 1"/>

</material>
</visual>

</link>

This description will be particularly useful when it comes to seeing the virtual model
in our simulation and processing the inverse kinematics.

There is only one main difference between this description and reality, which is the
wrist, particularly the pitch and roll. In this description, there are two independent joints
dedicated to pitch and roll, whereas in reality, it was said before that two motors worked
together to handle those angles. Therefore, one have to be careful when converting this
description into reality. The conversion formulas are:

WRIST1 =
roll + pitch

2

WRIST2 =
pitch− roll

2

42

Figure 5.3: Virtual model of the arm

On this model, every frames is attached to its part and represented in red, green and
blue, for the x, y and z axis.

Communication with the arm

As the arm is old, the communication is not direct. The documentation is limited [11][10],
and there are no ready-to-use drivers or software furnished by the creator of the arm. It
is necessary to use a TCP/IP connection through the RS232 bus between the computer
and the arm to send commands or acquire data from the arm. Doing this is already a lot
of work, but thanksfully, previously developed drivers were at our disposal. Thanks to
our supervisor A. Visser, a fully developed hardware driver that communicates with the
arm, furnished by him, is available.
However, this driver is one that allows to control the arm only via the terminal, when the
purpose is to build an interface that does not just happen via the terminal. The reason of
this is that it is more intuitive to have a dedicated interface instead of controlling through
the terminal. For this, one had to look into the source code of the drivers, understand
how they manage to communicate with the arm, and reuse their functions in its own code.

43

Figure 5.4: Communication between the arm and the computer

One particularity of the arm, is that the motors are controlled by two 8031 chips, IPs3

called. Each IP ensures the proper operation of a selection of motors. Table 2.2 shows
which motors there are with their corresponding IP. So, for example, to move the arm up
and down (zed), it must first be switched to IP1. Once switched, the new command of
the motor can be entered [3]. IPC stands for Intelligent Peripheral Communication, and
it uses three possible ways of communication, relying on a request from the computer and
a response from the arm (see Figure 2.5).

ZED SHOULDER ELBOW YAW WRIST1 WRIST2 GRIPPER
IP1 IP1 IP1 IP1 IP0 IP0 IP1

Table 5.2: Overview of motors with corresponding IP

Figure 5.5: 3 ways of communication [3]

In order to use the arm, a precise procedure have to be followed. First, one have to
start communication with the arm by launching the daemon and specifying which USB
port is used by the arm. Then, in our code, the communications are initialized by sending
a certain command to the arm, and every time the arm is used, an initialization procedure

3Intelligent Peripheral

44

has to be processed for the arm to know where the encoder’s limits are. Indeed, there
is no real memory of the encoders’ limits and parameters, so those have to be initialised
before every use of the arm. Fortunately, the drivers contain everything necessary to do
so.

After the initialization process, everything is ready to command the arm. All that’s
left is to use the predefined commands to set motors’ positions in memory and then go
to those position. It is indeed a two-step process to command the motors.

Inverse kinematics

Inverse kinematics is one of the main parts of this project. It consists of processing the
state of each joint given the desired pose of the end-effector. Unlike forward kinematics,
where the end-point pose given the state of every joint is processed, the opposite here is
done here.

Figure 5.6: Inverse and forward kinematics

The inverse kinematics process is way more complicated than forward kinematics be-
cause there are none, one, or multiple solutions, and the difficulty increases with the
number of joints or degrees of freedom. Fortunately, each joint has only one degree of
freedom, so computation is a bit simplified.

To compute those inverse kinematics, a C++ library named Pinocchio [2] was used,
which allows us to create algorithms that will process the inverse kinematics. This library
was selected due to its versatility and efficiency, but also and mainly because of its inte-
gration into ROS 2 packages.

To process the inverse kinematics, a method called CLIK, for Closed-Loop Inverse
Kinematics [5], was chosen, using methods and object from Pinocchio library. This iter-
ative algorithm allows us to find the best state of each joint in order to be as close as
possible to an objective defined by a position (x, y, z) and an orientation (yaw, pitch, roll).

45

Let’s explain this algorithm:
Let be (x, y, z) the desired position and (ϕ, θ ψ) = (yaw, pitch, roll) the desired orien-

tation.
The different rotation matrices are defined by :

Rϕ =

cos(ϕ) −sin(ϕ) 0
sin(ϕ) cos(ϕ) 0

0 0 1

Rθ =

 cos(θ) 0 sin(θ)
0 1 0

−sin(θ) 0 cos(θ)

Rψ =

0 cos(ψ) −sin(ψ)
0 sin(ψ) cos(ψ)
1 0 0

And the desired rotation matrix by :

R = Rϕ.Rθ.Rψ

Finally, the desired pose lies in SE(3) space, defined by the desired position and R,
the desired rotation.

Then one can define q, a vector defining the initial state of the arm. Each value of q
corresponds to a joint "value". For example, the joint value for ZED will be in metres,
whereas SHOULDER, ELBOW... are in radians.

q =

q0
q1
q2
q3
q4
q5

 =

ZED

SHOULDER
ELBOW
Y AW
PITCH
ROLL

This vector is then initialised, whether at the neutral position of the arm or at the last

known state. Initialising this vector at the last state known allows a sort of continuity in
the solutions, because of the iterative method that is used after that.
Once all those parameters are set, the iterative process can begin.

• First, the forward kinematics with the current configuration defined by the vector
q is computed.

• Then, the transformation T ∈ SE(3) between the current pose and the desired one
is calculated and the logarithmic error computed, which is defined by :

err = log(T)

• if ||err|| ≤ ϵ with ϵ a defined coefficient that characterises the precision wanted, or
if a certain amount of iteration occurred, the iterative process is stopped

• Else, the Jacobian J of the current configuration is computed.

46

• The vector v is defined thanks to the damped pseudo-inverse of J in order to avoid
problems at singularities:

v = −JT (JJT + λ.I)−1.e

v can be considered as the speed vector that will get the configuration closer to the
desired one.

• Then one can integrate q = q + v.dt and reiterate this process.

Once this iterative process is over, the required configuration is stored in q in order to reach
the desired pose. Finally, the angles needs to be transformed from [0, 2π] to [−180, 180]
for practical purposes and the required state is sent on the corresponding ROS topic
/motor_commands.

Figure 5.7: Evolution of the error according to iterations

Figure 5.8: Evolution of the number of iterations according to
ϵ in logarithmic scale

As one can see in the figures above, this method is quite efficient as the error decreases
exponentially. It also confirms the fact that our algorithm converges towards a solution.
On the other side of the coin, the smaller the ϵ, the greater the number of iterations
required, up to a point where it is no longer possible to converge within a reasonable time
or even to converge at all.
See Chapter 4 to see how the inverse kinematic calculation is integrated into our ROS 2
architecture.

47

H. ROS 2 Interface (by Théo Massa) [7]

Simulation

Simulation takes place thanks to RViz2, a ROS 2 visualization tool, in which every frame
is well defined thanks to the inverse kinematics and the TF included in ROS 2. A TF (for
Transformed Frame) provides a convenient way to manage the frames relative positions
by maintaining a tree-like structure of frames and managing the transformations between
them. It helps to seamlessly convert coordinates from one frame to another and handle
various operations involving transformations and coordinate systems. It simplifies a lot the
dispositions of the frames in the simulation. Those TF are obtained thanks to the URDF
file that initiates them, and then they are actualized thanks to the inverse kinematics
algorithm that gives the positions of each joint. The rendering of this simulation and how
it is processed are explained in the following part of our GUI description.

Custom GUI

For the interface, several options were available. It could just have been a terminal-driven
interface, but this choice reduced the possibilities and was really not adapted to our goal
of fully controlling the arm. There was also the possibility of using external software like
Foxglove 4 that would be adapted to this interface.
However, building our own GUI was the preferred choice because it offered more control,
and it was quite interesting to build our own Graphic Interface. It was preferred to cen-
tralize all the information in one interface that is simple to use and autonomous.

Thanks to Qt5 5, a custom GUI (for Graphic User Interface) was designed, one that
allows us to define the desired pose if we want to manually control the arm, see the
simulation through to the integration of RViz2 into the GUI, and check the processed
image or the depth map as well. This interface is an all-in-one interface, allowing us to
control the arm as we want.

There were some aspects of this interface that required more work due to their higher
difficulty to implement. Integrating RViz2 into this custom interface necessitated a lot
of introspection into RViz’s API. Unfortunately, the documentation was sparse, so it was
challenging to understand which functions, classes, and concepts to use.

To quickly explain how RViz works, it is based on Qt (which facilitates the integration
into our own GUI) and relies on what’s called a render_panel. It is sort of the "frame" in
which everything happens. It will be this object that will be integrated into our interface.
However, this render_panel by itself is not sufficient to have everything printed. What is
called a VisualizationManager, a tool that allows us to add specific displays to our panel,
has to be instantiated. Thanks to this tool, one is able to add a RViz default displays that
will allow us to see our arm and the TF, more precisely rviz_default_plugins/RobotModel
and rviz_default_plugins/TF. However, if only this is done, only the different frames
defined by the TFs and not the model will be seen. This is because the RobotModel display
needs to subscribe to a ROS 2 topic dedicated to providing the description of the robot.
Then a display’s property that allows us to subscribe to the topic /robot_description,
which is such a topic, is used.

4https://foxglove.dev/
5https://doc.qt.io/qt-5.15/

48

Finally, one just has to add the tool necessary to be able to move the camera into this
panel, and here is a fully custom and customizable RViz2 integration in our interface.

Figure 5.9: Current version of our custom GUI

The particularity of this custom GUI is that it is linked to a ROS node. This is nec-
essary because, as explained above, this interface allows you to interact with the targeted
pose. For this, it is necessary to have a connection with the node that handles the pub-
lication of this targeted pose, even more so when we consider that we have to choose if
the arm has to be controlled manually or automatically. To do so, a switch button was
included in the interface that modifies a public Boolean of the node. This Boolean defines
what type of commands are wanted for our system.
Thanks to "Manual mode", one can control the arm with the sliders displayed on our
interface. If the button is clicked, it switches to "Grab mode", in which the arm follows
a predefined procedure: it goes to where the object is, grabs it, displays the banana, and
then puts it at another place. The algorithm works, but there are still minor issues. Be-
cause of the lack of precision, sometimes the grip misses the banana, but it is always very
close. Despite that, the planned trajectory is well followed; one just has to be careful not
to plan the arm to move too fast because the system is really limited by the motors’ speed.

In order to prove this assumption, a series of tests have been conducted. The test was
to launch the automatic mode from a random position of the arm and of the target. The
only condition was that the arm had to be above the target. It resulted that 63% of the
attempts to realise our algorithm were successful and in most of the missed attempts, the
arm was close to the target and it missed by not much. More, when the arm grabbed the
target correctly, it was put correctly at its end pose (a predefined position) on 85% of the
tries. Those success rates can be considered sufficient for the time put on it.

ENSTA
Bretagne

Merci de retourner ce rapport par courrier ou par voie électronique en fin du stage à :
At the end of the internship, please return this report via mail or email to:

ENSTA Bretagne - Bureau des stages -2 rue François Verny -29806 BREST cedex 9 - FRANCE
00.33 (0) 2.98.34.87.70/ stages @ensta-bretagne.fr

I -ORGANISME / HOST ORGANISATION
NOM / Name

Adresse lAddress

Tél / Phone (including contry and area code)

Fonction / Function

Universiteit van Amsterdam

Nom du superviseur / Name of internship supervisor

Science Park 900, 1098 XH, Amsterdam, The Netherlands

Adresse e-mail / E-mail address

MISSION / TASK

Nom du stagiaire accueilli / Name of intern

II- EVALUATION /ASSESSMENT

Senior Lecturer

< La mission de départ a-t-elle été remplie ?

a.visser@uva.nl

Veuillez attribuer une note, en encerclant la lettre appropriée, pour chacune des caractéristiques
suivantes. Cette note devra se situer entre A (très bien) et F (très faible)
Please attribute a mark from A (excellent) to F (very weak).

Manquait-il au stagiaire des connaissances ?
Was the intern lacking skills?

RAPPORT D'EVALUATION
ASSESSMENT REPORT

+31653697548

Si oui, lesquelles ?1Ifso, which skills ?

ESPRIT D'EQUIPE / TEAM SPIRIT

Version du 05/04/2019

Was the initial contract carried out to your satisfaction?

Arnoud Visser

Guillaume Garde

7

Youiyes

ABCDEF

Le stagiaire s'est-il bien intégré dans l'organisne d' accueil (disponible, sérieux, s'est adapté au
travail en groupe) / Did the intern easily integrate the host organisation? Glexible, conscientious,
adapted to team work)

non/no

Souhaitez-vous nous faire part d'observations ou suggestions ?/f you wish to comment or make a
suggestion, please do so here

ABC DEF

COMPORTEMENT AU TRAVAIL / BEHAVIOUR TOWARDS WORK

Le comportement du stagiaire était-il conforme à vos attentes (Ponctuel, ordonné, respectueux,
soucieux de participer et d'acquérir de nouvelles connaissances) ?
Did the intern live up to expectations? (Punctual, methodical, responsive to management
instructions, attentive to quality, concerned with acquiring new skills)?

Souhaitez-vous nous faire part d'observations ou suggestions ?/fyou wish to comment or make a
suggestion, please do so here

INITIATIVE� AUTONOMIE/INITIATIVE� AUTONOMY
Le stagiaire s'est -il rapidement adapté à de nouvelles situations ?
(Proposition de solutions aux problèmes rencontrés, autonomie dans le travail, etc.)

CULTUREL - COMMUNICATION / CULTURAL � COMMUNICATION

Did the intern adapt well to new situations?
(eg. suggested solutions to problems encountered, demonstrated autonomy in his/her job, etc.)

Le stagiaire était-il ouvert, d'une manière générale, à la communication ?

Souhaitez-vous nous faire part d'observations ou suggestions ? / If you wish to comment or make a

suggestion, please do so here

Was the intern open to listening and expressing himself herself?

OPINION GLOBALE /OVERALL ASSESSMENT

* La valeur technique du stagiaire était :
Please evaluate the technical skills of the intern:

Souhaitez-vous nous faire part d'observations ou suggestions ?/ Ifyou wish to commnent or make a

suggestion, please do so here

II-PARTENARIAT FUTUR/FUTURE PARTNERSHIP

Etes-vous prêt à accueillir un autre stagiaire l'an prochain ?

Would you be willing to host another intern next year? oui'yes

Fait à
In Amsterdam

Signature Entreprise
Company stamp

Instituut voor Informatica
UNIVERSTET VAN AMSTERDAM

Science Park 904
1091 XH Amsterdam

tel. 028-525 7463

www.SCcience.uvani

ABCDEF

Version du 05/04/2019

le

A BCDEF

on

ABCDEF

Signature stagiaire
Intern's signature

ABCDEF

ABCDEF

non/no

Auqust 18, 2023

Merci pour votre coopération
We thank you very much for your cooperation

	Introduction
	Computer Vision
	Detection of the target in a horizontal plane
	Generating depth with stereo vision using OpenCV
	A bit of geometry
	Parameters
	Calibrating the stereo camera
	Stereo rectification parameters computation
	Stereo rectification
	Disparity map computation

	Generating depth with Stereolabs' SDK
	Stereolabs
	Using Stereolabs' software development kit
	Integration into the project

	ROS 2 Interface
	Presentation of ROS 2
	Architecture of the project

	Docker Image
	Docker
	Necessity of Docker
	Building the bespoke project's image

	Conclusion

