
Development of a Range Estimator, through
enhancing log data analysis

Auteur:
Martin GALLIOT

Superviseur:
Victor DELAFONTAINE

RigiTech

Prilly, Suisse

Octobre, 2023

https://rigi.tech/

1

RIGITECH

Abstract

Development of a Range Estimator, through enhancing log data analysis

by Martin GALLIOT

L’industrie des drones connaît une expansion rapide, avec un nombre croissant d’entreprises se
spécialisant dans un large éventail d’applications. RigiTech, une start-up suisse, est à la pointe
d’un écosystème complet axé sur des livraisons efficaces et autonomes dotées de capacités opéra-
tionnelles étendues. L’autonomie des drones est maintenue grâce à différents processus, mais
dans l’objectif de faciliter la tâche de l’opérateur. L’objectif ultime est de permettre à un seul
opérateur de superviser efficacement plusieurs itinéraires de livraison simultanément.

J’ai principalement travaillé dans le but de développer un Range Estimator. Ce projet a été
divisé en deux parties. Tout d’abord, j’ai corrigé et amélioré Flight Review, un outil d’analyse de
logs PX4, afin d’obtenir des valeurs de consommation cohérentes. Cela a fourni une base solide
pour le développement du Range Estimator, d’abord sur RigiCloud et plus tard pour l’estimation
en direct sur le drone.

Enfin, on m’a confié des responsabilités supplémentaires, notamment la correction de bogues,
l’intégration de nouvelles fonctionnalités et la participation aux efforts de recherche et de développe-
ment. Cet effort collectif a joué un rôle essentiel dans l’amélioration continue du drone et de
l’interface cloud qui lui est associée.

The drone industry is experiencing rapid expansion, with an increasing number of companies
specializing in a wide range of action. RigiTech, a Swiss startup, is pioneering a comprehensive
ecosystem centered on efficient and autonomous delivery with extensive operational capabilities.
The drones’ self-reliance is upheld through different process but all working together to make
the drone operator’s job easier. The ultimate goal is to empower a single operator to efficiently
oversee multiple delivery routes simultaneously.

I primarily worked with the aim of developing a Range Estimator. This project was divided
into two parts. Firstly, I corrected and improved Flight Review, a ULog analysis tool, to obtain
consistent consumption values. This, in turn, provided a solid foundation for developing the
Range Estimator, initially on RigiCloud and later for live estimation directly on the drone.

Finally, I was tasked with additional responsibilities, encompassing bug fixes, the integration
of new features, and engagement in Research and Development efforts. This collective effort
has played a pivotal role in the ongoing enhancement of both the drone and its associated cloud
interface.

HTTPS://RIGI.TECH/

2

Acknowledgements

I would like to thank here all the people that made this internship possible. I wish to extend
my heartfelt gratitude to Victor Delafontaine for his unwavering support, patience in addressing
my myriad of questions, and the wealth of answers he shared with me.

I also wish to thank Jonas Perolini and Etienne Meunier, who took me under their wing from
the very beginning, greatly enhancing my efficiency and enabling me to achieve as much as pos-
sible during this short four-month internship, through excellent advice.

Furthermore, I would like to express my appreciation to the entire RigiTech team, who have
created a welcoming and dedicated work environment. Their invaluable experience and knowl-
edge have been instrumental during this journey.

3

Contents

Abstract 1

Acknowledgements 2

1 Introduction 5
1.1 Presentation of RigiTech . 5
1.2 What they offer . 5
1.3 The Eiger . 6
1.4 Purpose of the internship . 7

2 PX4 and Flight Review 8
2.1 Fix mileage consumption . 9

2.1.1 Rectangle Method . 10
2.1.2 Trapezoidal Rule . 10
2.1.3 Simpson’s Rule . 10
2.1.4 Comparison and conclusion . 10

2.2 PX4 parameters . 11
2.2.1 A Li-Ion battery . 11
2.2.2 How to estimate Li-ion’s battery percentage 11
2.2.3 PX4 estimation . 12

2.3 Other improvements . 13
2.3.1 Sprint process . 13
2.3.2 Failsafe parameters and logged messages . 13

3 Range Estimator 15
3.1 Principle . 15

3.1.1 The route . 16
3.1.2 Computation of energy and time . 16
3.1.3 The idea : flying backwards . 17
3.1.4 Rally points . 17
3.1.5 Approximations and improvements . 18

3.2 Transfer to RigiCloud . 19
3.2.1 The solution : WebAssembly . 19
3.2.2 Emscripten . 19
3.2.3 Spécifications . 19

4 Conclusion 21

A range_estimator.hpp 23

4

List of Figures

1.1 The RigiTeam . 5
1.2 Edge Node . 6
1.3 RigiCloud . 6
1.4 The Eiger . 6

2.1 Some data from PX4’s Flight Review . 8
2.2 RigiTech’s Flight Review for the same log . 9
2.3 Eiger’s Li-ion battery : Foxtech’s Diamound HV . 11
2.4 Typical Discharge Curves of a 2000mAh Li-Ion Battery [1] 12
2.5 PX4 parameters in Flight Review . 14

3.1 Take off waypoint from a JSON route . 16
3.2 WebAssembly through Emscripten [2] . 19

5

Chapter 1

Introduction

1.1 Presentation of RigiTech

The internship and its activities that will be presented here took place at RigiTech, a Switzerland
start-up, based at Prilly, near Lausanne. Named after the mount Rigi, RigiTech’s goal is to create
a fully integrated, inter-city drone delivery solution, flying over crowded cities, rivers, lakes and
mountains.

RigiTech is a Swiss air logistics company founded in 2018 by 3 founders : Adam Klaptocz
(CEO), David Rovira (CBO) and Oriol López (CTO). In less than five years, they have gone from
the drawing board to selling an innovative delivery solution on five continents. Being among the
first on the VTOL drone market, the needs and therefore the size of the drone. So it’s only natural
that their offer has varied and improved. From the RigiOne (middle) to the Eiger (right), via the
Minto (left), RigiTech has adapted to the needs of its different customers.

Figure 1.1: The RigiTeam

1.2 What they offer

Contrary to what one might think, RigiTech does not sell drones. That’s not its objective. So as not
to limit themselves in what they offer, they want to put forward a customizable delivery service,
for a set period of time. This includes a drone (Eiger), an Edge Node for communication / internet
and a Cloud for mission planning and execution.

Chapter 1. Introduction 6

Figure 1.2: Edge Node Figure 1.3: RigiCloud

1.3 The Eiger

Currently, RigiTech exclusively offers the Eiger drone, which possesses the ability to transport a
payload weighing up to three kilograms within a radius of one hundred kilometers in just one
hour. This remarkable technological achievement is made achievable through the utilization of
vertical take-off and landing (VTOL) technology, granting the drone dual operational modes. In
its quadcopter mode, the Eiger takes off vertically using four propellers. After becoming air-
borne, it transitions to fixed-wing mode, with the rear propeller taking control and propelling the
drone forward, allowing it to navigate like a traditional aircraft thanks to its wings providing the
necessary lift. This innovative design consumes significantly less battery power compared to con-
ventional quadcopters, resulting in a tenfold increase in its operational range,while also notably
increasing its speed.

Figure 1.4: The Eiger

The Eiger is also proficient in executing Beyond Visual Line Of Sight (BVLOS) missions, which,
as per their definition, do not necessitate the presence of a pilot on-site or visual supervision. Rig-
iTech’s primary focus presently lies in the delivery of medical samples to remote regions. Utilizing
the Eiger drone expedites laboratory analysis and contributes to a reduction in carbon emissions
when juxtaposed with conventional transportation methods such as trucks or automobiles.

Chapter 1. Introduction 7

1.4 Purpose of the internship

RigiTech embraces the Agile methodology and follows the Scrum framework to ensure efficient
and iterative project management. During each development sprint, which spans a duration of
one month, all code enhancements are rolled out onto a dedicated test server. This server exclu-
sively houses code that has reached a reasonably stable state and has undergone thorough testing
on a development server. At three-month intervals, following comprehensive testing and the nec-
essary bug fixes, the contents of the test server are migrated to the production server, ensuring
that customers can benefit from the latest improvements and additions. As a result, short- and
medium-term objectives change rapidly, and the work I had to do was not defined at the start of
the internship.

When I arrived, one of the main needs was to improve robustness, both on the drone and
on the Cloud. In particular, there was room for improvement in terms of estimating consump-
tion and battery life, and therefore in terms of estimating the distance that can be covered. I also
worked on one-off tasks such as debugging important tasks that needed hot fixes on the produc-
tion server.

8

Chapter 2

PX4 and Flight Review

RigiTech uses and adapts PX4 [3], a versatile open-source autopilot software suite widely em-
ployed for controlling autonomous drones and robotic vehicles. It records flight data in ULog
files, which capture crucial telemetry and system information. To analyze and optimize vehicle
performance, users rely on Flight Review [4], a web-based tool that visualizes ULog data, offering
insights into flight behavior and aiding in troubleshooting and configuration adjustments.

RigiCloud includes an improved version of Flight Review. It stands out for its more numerous
and useful data for operators and customers. In the following, PX4 and Flight Review refer to
their RigiTech versions.

Figure 2.1: Some data from PX4’s Flight Review

Chapter 2. PX4 and Flight Review 9

Figure 2.2: RigiTech’s Flight Review for the same log

2.1 Fix mileage consumption

Upon my arrival, I noticed that the calculation of average consumption per kilometer exhibited
inconsistency. The overall consumption in one mode, such as the multicopter mode, didn’t align
with the result of multiplying the consumption per kilometer by the distance traveled.

As depicted in the image above, there are two methods for estimating the remaining battery
capacity at the end of the flight ; PX4 and calculations. Given that the drone employs Li-Ion
batteries, accurately gauging the remaining battery power can be challenging. PX4 handles this
calculation internally, as we will explore later. This calculation approach serves as a means to
verify the accuracy and consistency of the mileage calculations.

Energy (E) is the integral of power (P) with respect to time (t):

E =
∫

P dt

Power is the rate at which energy is transferred or converted, and it can be calculated as the
product of voltage (V) and current (I):

P = V · I

To approximate the energy using numerical methods, such as the rectangle method, trape-
zoidal rule, and Simpson’s rule, we discretize the time interval into n subintervals (∆t).

Chapter 2. PX4 and Flight Review 10

2.1.1 Rectangle Method

In the rectangle method, we approximate the integral as a sum of rectangles with heights equal to
the values of P at specific time points:

E ≈
n

∑
i=1

Pi · ∆t

2.1.2 Trapezoidal Rule

The trapezoidal rule is a refinement of the rectangle method and provides a more accurate ap-
proximation by averaging the heights of consecutive rectangles:

E ≈ 1
2

n

∑
i=1

(Pi + Pi+1) · ∆t

2.1.3 Simpson’s Rule

Simpson’s rule is even more accurate and approximates the curve using quadratic functions. It
takes three consecutive points at a time:

E ≈ 1
3

n/2

∑
i=1

(P2i−2 + 4P2i−1 + P2i) · ∆t

2.1.4 Comparison and conclusion

To evaluate each approach, I analyzed three flight scenarios: one involving solely a transit in
multicopter, another simulating a typical flight sequence (take-off, transitions, and landing), and
a third featuring a higher frequency of transitions to simulate scenarios like payload drops.

Flight 1 Flight 2 Flight 3

Rectangle Method 123.00 745.22 632.30
Trapezoidal Rule 122.95 745.20 632.31
Simpson’s Rule 122.96 745.15 632.37

Table 2.1: Comparison of Energy Calculation Methods (in Wh)

I opted to use the rectangle method for energy calculation due to several compelling reasons.
Firstly, when comparing the results obtained with the rectangle method against the more complex
trapezoidal and Simpson’s rules, I found that the differences were negligible, typically less than
1%. This level of accuracy was deemed sufficient for my specific application. Secondly, the rect-
angle method demonstrated a significant advantage in terms of computational efficiency, making
it considerably faster in execution compared to the other methods. On Flight Review, the speed
difference was substantial. Indeed, the calculations were carried out in C++, which is known to be
computationally efficient, and on a relatively powerful computer. However, as the long-term ob-
jective was to code an on-board Range Estimator, the calculations had to be the same everywhere
and as fast and simple as possible, even if the error was a little greater.

Consequently, the combination of acceptable accuracy and significantly improved computa-
tional speed made the rectangle method the preferred choice for my energy calculations.

I have hence corrected the consumption data. The disparity between the PX4-provided value
and the calculated one is now minuscule, typically falling below 1% of the battery capacity. As
a result, I have established consistent mileage figures. This dataset serves a valuable purpose,
especially in discerning whether the drone’s energy consumption exceeds that of other instances
or even surpasses its own historical patterns and therefore reveal unusual behaviour such as bad
weather, battery wear or motors.

Chapter 2. PX4 and Flight Review 11

2.2 PX4 parameters

We assumed that PX4 did a good estimation of the remaining battery. But this assumption needed
to be confronted.

2.2.1 A Li-Ion battery

Li-ion (Lithium Ion) batteries are a type of rechargeable battery known for their high energy
density, lightweight, and compact design. Li-ion batteries have become popular in the drone
industry due to their ability to provide consistent power, relatively long flight times, and a favor-
able balance between energy capacity and weight. Li-ion batteries are characterized by three key
parameters.

The first is the capacity, which measures the total energy storage of the battery in milliampere-
hours (mAh). The second parameter is the "number of cells," denoted by the "S" value (e.g., 4S,
6S). Each cell has a nominal voltage of 3.7 volts, and the number of cells determines the overall
voltage of the battery pack and thus the drone’s performance. The third parameter, "C-rating,"
represents the battery’s discharge rate capability in relation to its capacity. It specifies how quickly
the battery can deliver power in amperes (A). A higher C-rating indicates the ability to provide
more current.

Let’s take a look at the battery of an Eiger :

Figure 2.3: Eiger’s Li-ion battery : Foxtech’s Diamound HV

This 12S Foxtech Diamond HV Series Li-ion Battery has a capacity of 22Ah. It thus can pro-
vide 22A of current for one hour. The 15 C-rating indicates that this battery can safely deliver a
maximum continuous discharge current of 15 * 22 = 330A. This high C-Rating indicates that the
battery can handle relatively high power demands, for instance while in multicopter mode.

Traditional Li-ion batteries typically have a discharge range for each cell, spanning from 3.2
volts to 4.2 volts. In contrast, a High-Voltage (HV) battery operates within a range of 2.7 volts to
4.35 volts per cell. This difference in voltage range translates to a substantial variance in energy
capacity. For instance, a classic 12S 22Ah battery offers 976.8Wh of energy, while the HV variant
provides a higher capacity of 1042Wh. With an average power consumption during transit of 700
watts, this translates to an extension of nearly 6 minutes of flight that represents 10 kilometers.

2.2.2 How to estimate Li-ion’s battery percentage

Reading a Li-ion discharge voltage curve is essential for monitoring the battery’s state of charge
and understanding its performance during use. Here’s one :

Chapter 2. PX4 and Flight Review 12

Figure 2.4: Typical Discharge Curves of a 2000mAh Li-Ion Battery [1]

The discharge voltage curve of a Li-ion battery can vary with the load current or the rate at
which energy is drawn from the battery. High current draws, such as those required for accelera-
tion or power-hungry applications, can result in voltage sag, causing temporary drops in voltage.
This effect can lead to variations in the shape of the curve, especially during high-demand sce-
narios.

The voltage behavior of a Li-ion battery also changes with its state of charge (SoC). As the
battery discharges, the voltage gradually decreases. Different parts of the curve correspond to
different SoC levels. For example, the flat region in the middle of the curve represents the battery’s
usable capacity, while the steep drop towards the end signifies the battery reaching a critically
low SoC. Measuring the battery’s voltage provides a relatively quick and straightforward way to
gauge its state of charge. However, it does not provide accurate SoC readings if it is not associated
with a current measure to know the load current. This is why the Eiger is equipped with a voltage
sensor as well as a current sensor.

2.2.3 PX4 estimation

PX4 has differents ways to estimate the SoC [5]:

• Basic Battery Settings : In the default settings, the raw measured voltage of the battery
is compared to a range defined by "empty" and "full" voltages. However, this approach
provides only rough estimates because the measured voltage and its corresponding capacity
tend to fluctuate under load conditions.

• Voltage-based Estimation with Load Compensation: This method is designed to mitigate
the impact of load variations on capacity calculations. It adjusts the voltage-based estima-
tion to account for the effects of different loads.

• Voltage-based Estimation with Current Integration: In this approach, the load-compensated
voltage-based estimation is combined with a current-based calculation of the consumed
charge. This is the most accurate way to measure relative battery consumption and theoret-
ically allow for accurate remaining flight time estimation.

Since the Eiger is equipped with a current sensor, we can use the latter. This approach assesses
the remaining battery capacity by combining the voltage-based estimation of available capacity
with a current-based calculation of the consumed charge.

I had to take care of converting the power board calibration data to make them consistent with
the following PX4 parameters:

• BAT1_CAPACITY : Battery 1 capacity

• BAT1_R_INTERNAL : Defines the per cell internal resistance for battery 1

• BAT1_A_PER_V : Battery 1 current per volt (A/V)

• BAT1_V_DIV : Battery 1 voltage divider (V divider)

Chapter 2. PX4 and Flight Review 13

With the Voltage-based Estimation Fused with Current Integration method, the estimation of the
consumed charge over time is derived by mathematically integrating the measured current, a
method known for delivering highly precise energy consumption estimations.

Upon system startup, PX4 initially employs a voltage-based estimation to assess the initial
battery charge. This estimation is then combined with the result of current integration, resulting
in a more accurate combined estimate. The weight assigned to each estimate in the fused outcome
varies with the state of the battery. As the battery’s charge diminishes, a greater proportion of the
voltage-based estimate is incorporated, which serves as a safeguard against deep discharge (e.g.,
due to incorrect capacity configuration or initial values).

If you consistently begin with a fully charged and healthy battery, this approach closely re-
sembles the strategy used by smart batteries and that’s the next RigiTech’s step to improve the
estimation of the SoC.

2.3 Other improvements

2.3.1 Sprint process

As Flight Review became increasingly subject to change, a single structure became obsolete. We
therefore had to copy the structure that existed for the rest of the code, i.e. a development, test
and production version on GitLab.

This raised a new issue : knowing which version of Flight Review was being called up de-
pending on the server where the log was saved. I modified then the Dockerfile to call and print it
when the Docker is launched.

2.3.2 Failsafe parameters and logged messages

In the event of an emergency, such as the loss of the battery or leaving the flight zone, there is an
independent failsafe that will trigger emergency actions, including the deployment of a reserve
parachute.

Flight Review is one way of analysing a ULog file. Plot Juggler [6] is an other that will extract
more raw data. This is why RigiTech has used the ULog type for its failsafe logs. Initially, it didn’t
seem appropriate to use Flight Review to analyse this data because this was more of a back-end
job (not for customers) and PlotJuggler was sufficient and faster.

However, with the ongoing improvements to failsafe, it was thought useful for the client to
also have an analysis of these logs. Unfortunately, as it was too different from original ULog files,
these were not tolerated by Flight Review. I therefore had to develop a parallel version that could
read this data.

Chapter 2. PX4 and Flight Review 14

An especially valuable aspect of a ULog file is the inclusion of recorded PX4 parameters from
the flight, with a focus on identifying any parameters that have been altered.

Figure 2.5: PX4 parameters in Flight Review

As you can see in red, the previously mentioned PX4 parameters have been updated for a
more accurate SoC estimation.

The problem was that the parameters were only defined to be int, whereas the failsafe param-
eters were mostly string. I therefore sent the parameters to channel: ’Logged Messages’, and then
displayed them in an array corresponding to the failsafe parameters.

15

Chapter 3

Range Estimator

As mentioned above, RigiTech is starting to win more and more customers, and is present on
several continents. The company has made a pretty huge start in proving its capabilities, but now
needs to improve the robustness, resilience and reliability of its systems.

This means knowing whether the drone will be able to carry out a mission, both at the plan-
ning stage and in real-time. For example, if weather conditions have changed and the drone needs
to turn towards a rally point to land safely. As you have seen, calculating the remaining capacity
of a Li-Ion battery is no simple matter, so checking that PX4 gives a good estimate of the battery
SoC was also part of this quest for reliability.

At some point, there was a huge debate about where to develop this Range Estimator. Either
directly on the Navigation Node, or on the Cloud. The chosen solution was to develop a common
library, where the linked mathematics could be used both on the Cloud and by the drone.

3.1 Principle

The Range Estimator has two goals :

• To know if the drone has enough battery to accomplish the mission (the route), whether it’s
during mission planning or in live.

• Calculate the maximum distance that can be flown before landing. You can then consider
which Rally Point (defined further) you can go to if you do not have enough battery.

In either case, you need to know :

• The remaining route, its distance in multicopter, in fixed wings, its course, if you have to
drop a payload...

• Some drone parameters : its speed, consumption, battery capacity...

Let’s start by studying the route.

Chapter 3. Range Estimator 16

3.1.1 The route

A route is defined in PX4 by a JSON file. Here is an example of a route :

Figure 3.1: Take off waypoint from a JSON route

Each stage of the route (take off, transition, waypoint, landing) is defined by an item, charac-
terized by parameters. Thus, each parameter can be retrieved and implemented in a C++ structure
called Waypoint defined as follows:

s t r u c t Waypoint
{

f l o a t x _ l a t ;
f l o a t y_long ;
f l o a t z _ a l t ; / / AMSL
f l o a t t e r r a i n _ a l t i t u d e ; / / AMSL
cmd command ; / / Type o f Waypoint (Take − o f f , Landing . . .)
v t o l _ m i s s i o n _ s t a t e param1 ; / / M u l t i c o p t e r / F i x e d Wings
i n t param2 ; / / Remaining l o o p (s) t o do
f l o a t course_rad ; / / c o u r s e from t h e WP t o t h e nex t Waypoint
f l o a t loop_course_rad ; / / t emporary c o u r s e when do ing a l o o p

} ;

We can thus represent a route with a vector of Waypoint

3.1.2 Computation of energy and time

By knowing certain parameters of the drone, such as its speed and power consumption, we can
calculate the energy and time it will need to cover a certain distance.

Duration (s) =
Distance (m)
Speed (m/s)

Energy (Wh) = Power_consumption (W) ·
(

Duration (s)
3600

)
Understanding the energy in Watt-hours (Wh) is valuable as it provides insight into the available
energy stored in the battery using this particular unit of measurement.

Chapter 3. Range Estimator 17

3.1.3 The idea : flying backwards

Continuously calculating the remaining route to landing and deducting the energy and time
needed to complete the mission seems very costly and not at all optimized. A much more in-
tuitive way would be to say that the remaining route is equal to the route from the next waypoint
plus the route to that waypoint. For each waypoint, we will calculate a flight_dist structure defined
by :

s t r u c t f l i g h t _ d i s t
{

f l o a t MC_dist_m ; / / r ema in ing d i s t a n c e (m) in m u l t i c o p t e r
f l o a t MC_climb_m ; / / r ema in ing c l i m b (m) in m u l t i c o p t e r
f l o a t MC_descent_m ; / / r ema in ing d e s c e n t (m) in m u l t i c o p t e r
f l o a t FW_dist_m ; / / r ema in ing d i s t a n c e (m) in f i x e d wings
f l o a t FW_climb_m ; / / r ema in ing c l i m b (m) in f i x e d wings
f l o a t FW_descent_m ; / / r ema in ing d e s c e n t (m) in f i x e d wings
f l o a t f l i g h t _ t i m e _ s ; / / r ema in ing t ime (s) b e f o r e l a n d e d
f l o a t mean_course_rad ; / / c o u r s e a n g l e from t h e waypo int t o t h e l a s t one
v t o l _ m i s s i o n _ s t a t e VTOL_expected_state ; / / MC or FW
i n t a s s o c i a t e d _ w p l i s t _ i d x ; / / i n d e x in t h e Waypoint v e c t o r (t h e r o u t e)

} ;

A vector of flight_dist vectors would suffice to calculate the remaining distances for each flight
mode and subsequently determine the energy required to complete the mission.

An intuitive approach to calculate these structures would be to say that the MC_dist_m, which
represents the remaining multicopter distance from the associated_wp_list_idx index waypoint, is
equal to the MC_dist_m of the previous flight_dist, minus the distance between these two way-
points.

But I realized that this raised an issue, as we need to calculate the MC_dist_m of the previous
waypoint. The problem is that initialization doesn’t start at 0, but at the total distance to be
covered, and therefore calculated. I had to start where the initialization would be equal to 0, i.e.
the landing waypoint. Thus, the remaining route from a waypoint is the remaining route from
the next waypoint, minus the distance between the last waypoint and the next one.

Basically, it’s like flying backwards, starting with the landing. Of course, this is only possible
and relevant during mission planning. In flight, the drone will already have recorded these esti-
mates.

Subsequently, by applying the equations in 3.1.2, we can obtain a reasonably accurate estimate
of the remaining battery capacity after the mission and assess whether it is sufficient.

The estimation outcomes were relatively accurate, with an approximate 10% error observed
on a mission utilizing 50% of the battery capacity, which translates to a 20% margin of error. We’ll
see later how we were able to improve this estimate.

3.1.4 Rally points

If the battery is not sufficient, or if a problem has been encountered during the flight, RigiTech has
developed the possibility of reaching a Rally Point defined during the mission planning. It may
therefore be useful to look at things the other way round, and instead calculate the maximum
distance that can be covered knowing our remaining capacity in order to determine which Rally
Point the drone could reach.

So I coded an intermediate function that calculated the budget needed to make a back transi-
tion and therefore return by multicopter, make the distance needed by multicopter to go over the
Rally Point and land. With this budget, I was able to know the maximum range in fixed wing that
the drone was able to cover.

Chapter 3. Range Estimator 18

3.1.5 Approximations and improvements

For all these calculations, I used the equations in paragraph 3.1.2, which require knowledge of
speed. The speed of the multicopter was held constant at 5 meters per second, a velocity that was
effortlessly attained thanks to the drone’s utilization of its pusher propeller in conjunction with its
four other propellers. This was more complicated in fixed wing. For a number of reasons linked
to RigiTech’s different choices in the past, the drone’s fixed-wing speed was set at 29.5 metres per
second. However, this is an airspeed. The ground speed, needed for the calculus of the energy,
was obviously different [7].

vg =
√

v2
a + v2

w − 2vavw cos(δ − ω + α)

Here we can identify:

• The ground speed vg, the speed of the aircraft relative to the ground;

• The true airspeed va, the speed of the aircraft relative to the air it’s traveling in;

• The wind speed vw;

• The course δ, the planned direction of the plane;

• The wind direction ω;

• The wind correction angle α, the correction to the course to remain on route.

This required the calculation of the course between two waypoints, hence the addition of
course_rad to the Waypoint structure. I also needed the average heading for the route in each
flight_dist to calculate the budgets required for the maximum distance that could be covered with
the remaining battery. By taking the wind into account in a very simple way, this has reduced
estimation errors to around 5% on the same missions as before (in roughly similar conditions).
The error has therefore been halved.

However, the 10% error rate is still too high, and here are some of the reasons why:

• There wasn’t much available data on transition times and their energy consumption. When
I attempted to collect data, the introduction of new drone batches featuring different and
more powerful motors posed a potential source of data distortion.

• We observed that ground speed varied with the wind and factored that into our calculations.
However, I assumed that the power consumption remained constant, which is, of course,
an inaccurate assumption.

• I empirically gathered average consumption data by examining historical logs, probably
even before the consumption sensors were calibrated.

There are several ways to address these issues and improve the Range Estimator:

• The development of an ongoing project at RigiTech is the Batch Log Analysis, which enables
the simultaneous analysis of multiple logs, either for an individual drone or an entire fleet.
This analysis allows for the derivation of consumption statistics and other debugging data.

• Taking into account the actual power consumption during the mission and subsequently
updating the initial parameters would allow us to determine whether the drone consumes
more or less under various conditions, such as rain or wind, or even if a motor is starting
to age. This approach would also consider the payload weight, a factor that has not been
considered so far.

Chapter 3. Range Estimator 19

3.2 Transfer to RigiCloud

Any C++ insider wouldn’t encounter any specific issues when coding this Range Estimator using
the standard library. However, the primary goal of this Range Estimator was to serve as a shared
library between the drone and the Cloud, at least for the time being.

3.2.1 The solution : WebAssembly

"WebAssembly is a new type of code that can be run in modern web browsers — it is a low-level
assembly-like language with a compact binary format that runs with near-native performance
and provides languages such as C/C++, C# and Rust with a compilation target so that they can
run on the web. It is also designed to run alongside JavaScript, allowing both to work together."
[2]

Basically, WebAssembly (Wasm) enables the development of complex, high-performance web
applications that were previously challenging to implement purely with JavaScript. It allows to
code in C++ and run it into web applications like RigiCloud.

This is particularly interesting in the context of the Range Estimator because, in chronological
order, I had already implemented a real-time version within the drone, coded in C++.

3.2.2 Emscripten

Emscripten is a compiler that takes your existing C++ code and compiles it into WebAssembly.

Figure 3.2: WebAssembly through Emscripten [2]

In my case, Emscripten will generate a .wasm module that will be imported into RigiCloud’s
JavaScript project. This module will define the functions I’ve chosen to export. For instance, my
function float remaining_battery_given_route, which utilizes C++ data structures like vectors, will
still be able to return the float value representing the remaining battery after the given route as an
argument.

3.2.3 Spécifications

WebAssembly is powerful because it enables harnessing the performance of C++ code, but it does
have its limitations. The imported module will have been defined as a library or will directly
include the exported functions that one wishes to us. As I only needed a few functions, I didn’t
create any libraries.

However, it seems logical that not all functions can be exported. Those returning a type of
structure not recognized in JavaScript (vectors, lists, strings...) are obviously part of this category.
So, I had to modify the code to export only what interested me: a float representing the remaining
battery.

Handling strings was also complicated because the wasm module couldn’t directly receive a
JSON representing the route. So, I had to delve into how strings was intrinsically represented in
JavaScript to send the route to the Range Estimator.

Chapter 3. Range Estimator 20

It was necessary to allocate memory to be able to store the JSON’s size, convert the string to
UTF8, and send the address of the first character to the Wasm module.

On the C++ side, this involved an intermediary function that took this pointer to retrieve the
JSON by translating the UTF8 back into a string. Then, I converted this JSON into a vector of
Waypoint as defined in 3.1.1 to represent this route.

Finally, I successfully managed, with some modifications, to export my C++ code to be used
on RigiCloud. What’s even better is that with this Wasm library, each exported function can now
be used wherever it seems useful and necessary. It was quite laborious, especially for testing my
code because nobody at RigiTech was familiar with Wasm, and it required cross-functional skills:
C++, JavaScript, and HTML, and no one possessed all these skills.

21

Chapter 4

Conclusion

This internship at RigiTech has improved the drone’s robustness, accuracy and reliability. PX4
battery estimation has become more accurate. Flight Review log analysis has become more rele-
vant for both developers and customers.

I’m proud to have been given responsibility for concepts as important as flight safety. Indeed,
except in certain cases, the operator is still the main actor in emergency triggers. Once the Range
Estimator has been properly tested and improved, the drone will be able to rely on it and take
appropriate action.

The estimate still has errors, but these are taken into account. It was deployed on the test
server when I left and should be deployed in the next few weeks on the production server.

I consider myself fortunate to have had the opportunity to work in a burgeoning startup,
alongside a top-tier product that enjoys international success, and with a team of highly skilled
and dedicated individuals. The process of integrating into an established team proved to be an
intriguing experience, allowing me to appreciate the significance of coding with proper documen-
tation. Naturally, the use of Git is both pertinent and essential.

Nonetheless, communicating with overseas developers in a language distinct from my native
tongue presented a significant obstacle to the efficiency of my work. This challenge prompted a
transformation in my perspective and comprehension of collaborative telecommuting.

22

Bibliography

[1] R. Technology, “Designing applications with li-ion batteries.” https://www.richtek.com/
battery-management/en/designing-liion.html.

[2] Tutorialzine, “Getting started with webassembly.” https://tutorialzine.com/2017/06/
getting-started-with-web-assembly.

[3] PX4, “Open source autopilot.” https://px4.io/.

[4] PX4, “Flight review :fon open source autopilot.” https://review.px4.io/.

[5] PX4, “Battery and power module setup.” https://docs.px4.io/main/en/config/battery.
html.

[6] PlotJuggler, “Fast, intuitive and extensible time series visualization tool.” https://
plotjuggler.io/.

[7] D. Borchia, “Ground speed calculator.” https://www.calctool.org/kinetics/
ground-speed.

https://www.richtek.com/battery-management/en/designing-liion.html
https://www.richtek.com/battery-management/en/designing-liion.html
https://tutorialzine.com/2017/06/getting-started-with-web-assembly
https://tutorialzine.com/2017/06/getting-started-with-web-assembly
https://px4.io/
https://review.px4.io/
https://docs.px4.io/main/en/config/battery.html
https://docs.px4.io/main/en/config/battery.html
https://plotjuggler.io/
https://plotjuggler.io/
https://www.calctool.org/kinetics/ground-speed
https://www.calctool.org/kinetics/ground-speed

23

Appendix A

range_estimator.hpp

/ * *
* @ f i l e r a n g e _ e s t i m a t o r . hpp
* @ b r i e f B a s i c range e s t i m a t o r
* @author Thomas Stauber , Martin G a l l i o t
* /

include " j son . hpp"
include <cmath>
include < c s t d l i b >
include < c s t r i n g >
include <iostream >
include < l i s t >
include < s t d i n t . h>
include < s t r i n g >
include <tuple >
include <vector >

ifndef RANGE_ESTIMATOR_HPP
define RANGE_ESTIMATOR_HPP

define square (a) ((a) * (a))

typedef enum
{

MC_state = 3 ,
FW_state = 4 ,
INIT = −1

} v t o l _ m i s s i o n _ s t a t e ;

typedef enum
{

NAV_WAYPOINT = 16 ,
NAV_LAND = 21 ,
NAV_TAKEOFF = 22 ,
DO_VTOL_TRANSITION = 3000 ,
DO_JUMP = 177 ,

} cmd ;
s t r u c t f l i g h t _ d i s t
{

f l o a t MC_dist_m ; / / r ema in ing d i s t a n c e (m) in m u l t i c o p t e r
f l o a t MC_climb_m ; / / r ema in ing c l i m b (m) in m u l t i c o p t e r
f l o a t MC_descent_m ; / / r ema in ing d e s c e n t (m) in m u l t i c o p t e r

Appendix A. range_estimator.hpp 24

f l o a t FW_dist_m ; / / r ema in ing d i s t a n c e (m) in f i x e d wings
f l o a t FW_climb_m ; / / r ema in ing c l i m b (m) in f i x e d wings
f l o a t FW_descent_m ; / / r ema in ing d e s c e n t (m) in f i x e d wings
f l o a t f l i g h t _ t i m e _ s ; / / r ema in ing t ime (s) b e f o r e l a n d e d
f l o a t mean_course_rad ; / / c o u r s e a n g l e from t h e waypo int t o t h e l a s t one
v t o l _ m i s s i o n _ s t a t e VTOL_expected_state ; / / MC or FW
i n t a s s o c i a t e d _ w p l i s t _ i d x ; / / i n d e x in t h e Waypoint v e c t o r (t h e r o u t e)

} ;

s t r u c t Waypoint
{

f l o a t x _ l a t ;
f l o a t y_long ;
f l o a t z _ a l t ; / / AMSL
f l o a t t e r r a i n _ a l t i t u d e ; / / AMSL
cmd command ; / / Type o f Waypoint (Take − o f f , Landing . . .)
v t o l _ m i s s i o n _ s t a t e param1 ; / / M u l t i c o p t e r / F i x e d Wings
i n t param2 ; / / Remaining l o o p (s) t o do
f l o a t course_rad ; / / c o u r s e from t h e WP t o t h e nex t Waypoint
f l o a t loop_course_rad ; / / t emporary c o u r s e when do ing a l o o p

} ;

/ / JSON f u n c t i o n
/ * * @ b r i e f Trans form a j s o n (p o i n t e r) t o a v e c t o r o f Waypoint

*
* @param j s o n _ p t r p o i n t e r t o a j s o n s t r i n g
* @return s t d : : v e c t o r <Waypoint >
* /

std : : vector <Waypoint> json_to_wpvector (const char *) ;

/ * * @ b r i e f Update drone ’ s p a r a m e t e r s wi th t h o s e in t h e j s o n
*
* @param json_param
* /

void updateParams (const char *) ;

/ / Computat ions f u n c t i o n s

/ * * @ b r i e f Compute ground s p e e d in FW, in m/ s
*
* @param wind_m_s wind in m/ s . P o s i t i v e means t a i l w i n d
* @param w i n d _ d i r e c t i o n _ r a d North −>South=pi , South −>North=0
* @param a i r _ s p e e d _ m _ s a i r s p e e d in m/ s , mainly g_FW_cru i s e_a i r spe ed_m_s
* @param c o u r s e _ r a d d i r e c t i o n o f t h e c o u r s e
* @return f l o a t
* /

f l o a t compute_fw_ground_speed_m_s (const f l o a t , const f l o a t ,
const f l o a t , const f l o a t) ;

/ * * @ b r i e f Compute t h e d i r e c t i o n be tween two GPS p o i n t s
*
* @param l a t 1 d
* @param lon1d
* @param l a t 2 d
* @param lon2d

Appendix A. range_estimator.hpp 25

* @return f l o a t
* /

f l o a t compute_course_angle_rad (const double , const double , const double ,
const double) ;

/ * * @ b r i e f Compute t h e d i s t a n c e be tween two GPS p o i n t s
*
* @param l a t 1 d
* @param lon1d
* @param l a t 2 d
* @param lon2d
* @return f l o a t
* /

f l o a t distanceEarthMeters (const double , const double , const double ,
const double) ;

/ * * @ b r i e f C a l c u l a t e t h e t ime (s) and consumpt ion (Wh)
*
* @param d i s t in m e t e r s
* @param r a t e in m/ s
* @param power in W
* @return s t d : : t u p l e < f l o a t , f l o a t >
* /

std : : tuple < f l o a t , f l o a t > compute_time_s_and_consumption_Wh (
const f l o a t , const f l o a t , const f l o a t) ;

/ / F u n c t i o n s used f o r P lanner
/ * * @ b r i e f C r e a t e a f l i g h t _ d i s t from t h e r o u t e g i v e n

*
* @param j s o n _ r o u t e p o i n t e r t o t h e j s o n r o u t e
* @param wind_m_s wind in m/ s . P o s i t i v e means t a i l w i n d (not use f o r now)
* @param w i n d _ d i r e c t i o n _ r a d North −>South=pi , South −>North=0
* @return f l i g h t _ d i s t
* /

f l i g h t _ d i s t initRemainingRouteMatrix (const char * , const f l o a t ,
const f l o a t) ;

/ * * @ b r i e f C a l c u l a t e s t a k e o f f , land , t r a n s i t i o n , mc c l imb , fw c l i m b
(i e a l l v e r t i c a l budge t ne eded f o r t h e r _ r o u t e) f i x e d t ime and budge t

*
* @param r _ r o u t e
* @return s t d : : t u p l e < f l o a t , f l o a t >
* /

std : : tuple < f l o a t , f l o a t > compute_vertical_budget_s_and_Wh (f l i g h t _ d i s t) ;

/ * * @ b r i e f C a l c u l a t e s t a k e o f f , land , t r a n s i t i o n , mc c l imb , fw c l i m b
(i e a l l h o r i z o n t a l budge t ne ede d f o r t h e r _ r o u t e) f i x e d t ime and budge t

*
* @param r _ r o u t e
* @return s t d : : t u p l e < f l o a t , f l o a t >
* /

std : : tuple < f l o a t , f l o a t > compute_horizontal_budget_s_and_Wh (f l o a t ,
f l o a t , f l i g h t _ d i s t) ;

/ * * @ b r i e f C a l c u l a t e t h e t ime and consumpt ion in m u l t i c o p t e r mode (MC)
ne eded f o r t h e r _ r o u t e

*

Appendix A. range_estimator.hpp 26

* @param r _ r o u t e
* @return s t d : : t u p l e < f l o a t , f l o a t >
* /

std : : tuple < f l o a t , f l o a t > compute_mc_climb_and_descent_s_and_wh (f l i g h t _ d i s t) ;

/ * * @ b r i e f C a l c u l a t e s t h e e x t r a ene rgy consumed t o c l i m b in f i x e d
wing (FW) >0 in c l imb , <0 in d e s c e n t

*
* @param r _ r o u t e
* @return f l o a t
* /

f l o a t compute_fw_total_extra_energy (f l i g h t _ d i s t) ;

/ / F u n c t i o n s used f o r l i v e e s t i m a t i o n

/ * * @ b r i e f Computes t h e budge t (s and Wh) t o land , i n c l u d i n g a b a c k
t r a n s i t i o n i f in FW

*
* @param a l t i t u d e
* @param i s _ f w
* @return s t d : : t u p l e < f l o a t , f l o a t >
* /

std : : tuple < f l o a t , f l o a t > compute_landing_budget_s_and_Wh (const f l o a t ,
const bool) ;

/ * * @ b r i e f Gives t h e maximum range in FW i n c l u d i n g a l l t r a n s i t i o n s
and MC l e f t and i n c l u d i n g t h e v e r t i c a l budge t
(eg t o r e a c h a l a n d i n g p o i n t h i g h e r)

*
* @param usab le_energy_Wh
* @param r _ r o u t e
* @return s t d : : t u p l e < f l o a t , f l o a t >
* /

std : : tuple < f l o a t , f l o a t > max_fw_range_km_and_time_minutes_given_battery
(const f l o a t , const f l o a t , const f l o a t , f l i g h t _ d i s t) ;

/ * * @ b r i e f Gives t h e maximum range in FW i n c l u d i n g on ly a b a c k
t r a n s i t i o n and t h e MC nee ded t o l and from t h e a l t i t u d e)

*
* @param usab le_energy_Wh
* @param a l t i t u d e
* @param r _ r o u t e
* @return s t d : : t u p l e < f l o a t , f l o a t >
* /

std : : tuple < f l o a t , f l o a t >
max_fw_range_km_and_time_minutes_given_battery_and_alt_just_landing

(const f l o a t , const f l o a t , const f l o a t , const f l o a t , f l i g h t _ d i s t) ;

/ * * @ b r i e f Gives t h e maximum range in MC i n c l u d i n g on ly
a b a c k t r a n s i t i o n and t h e MC need ed t o l and from t h e a l t i t u d e)

*
* @param usab le_energy_Wh
* @param r _ r o u t e
* @return s t d : : t u p l e < f l o a t , f l o a t >
* /

std : : tuple < f l o a t , f l o a t > max_mc_range_km_and_time_minutes_given_battery
(const f l o a t , f l i g h t _ d i s t) ;

Appendix A. range_estimator.hpp 27

/ * * @ b r i e f Gives t h e maximum range in MC i n c l u d i n g t h e l a n d i n g
from t h e a l t i t u d e)

*
* @param usab le_energy_Wh
* @param a l t i t u d e
* @return s t d : : t u p l e < f l o a t , f l o a t >
* /

std : : tuple < f l o a t , f l o a t >
max_mc_range_km_and_time_minutes_given_battery_and_alt_just_landing

(const f l o a t , const f l o a t) ;

/ / d e f i n e f u n c t i o n s as e x t e r n a l , n e e ded f o r Wasm
i f d e f __cplusplus
extern "C"
{
endif

/ * * @ b r i e f Computes t h e % o f b a t t e r y and t h e t ime nee ded t o
do a r o u t e r e p r e s e n t e d by a mavros waypo int l i s t

*
* @param json_param c h a r * p o i n t e r p o i n t i n g t o drone p a r a m e t e r s
* @param j s o n _ r o u t e s t r i n g o f t h e j s o n r o u t e
* @param wind_m_s f l o a t windspeed in m p e r s
* @param w i n d _ d i r e c t i o n _ r a d f l o a t wind d i r e c t i o n : North −>South=pi ,

South −>North=0
* @return a p o i n t e r t o an a r r a y o f two f l o a t
* /

f l o a t remaining_battery_given_remaining_route (const char * ,
scons t char * , const f l o a t , const f l o a t) ;

i f d e f __cplusplus
}
endif

endif / / !RANGE_ESTIMATOR_HPP

	Abstract
	Acknowledgements
	Introduction
	Presentation of RigiTech
	What they offer
	The Eiger
	Purpose of the internship

	PX4 and Flight Review
	Fix mileage consumption
	Rectangle Method
	Trapezoidal Rule
	Simpson's Rule
	Comparison and conclusion

	PX4 parameters
	A Li-Ion battery
	How to estimate Li-ion's battery percentage
	PX4 estimation

	Other improvements
	Sprint process
	Failsafe parameters and logged messages

	Range Estimator
	Principle
	The route
	Computation of energy and time
	The idea : flying backwards
	Rally points
	Approximations and improvements

	Transfer to RigiCloud
	The solution : WebAssembly
	Emscripten
	Spécifications

	Conclusion
	range_estimator.hpp

