
Internship Report

Bernard Léo

May-August 2023

Abstract

During my second-year internship at the University of Oldenburg, I worked with a six-
degree-of-freedom robotic arm. My primary objective was to establish a physical model of
the robot’s dynamic behavior using the Euler-Lagrange equation. To accomplish this, I im-
plemented the equation of motion in Python, enabling me to conduct tests on this equation.

Résumé

Pendant mon stage de deuxième année à l’Université d’Oldenburg, j’ai travaillé avec un bras
robotique à six degrés de liberté. Mon objectif principal était d’établir un modèle physique du
comportement dynamique du robot en utilisant l’équation d’Euler-Lagrange. Pour ce faire,
j’ai implémenté l’équation du mouvement en Python, ce qui m’a permis de mener des tests
sur cette équation.

1 Introduction

his report documents my internship experience at the Carl von Ossietzky University of Old-
enburg, situated in the north-west region of Germany (cf. fig 1). Specifically, the internship was
conducted within the Department of Computer Science and more precisely in the Department of
Distributed Control in Networked Systems.

The primary aim of this internship was to put the theoretical knowledge acquired during academic
coursework into practical applications within the domain of Robotics. Moreover, this internship,
conducted outside of France, sought to provide exposure to working within diverse linguistic and
professional frameworks, particularly employing English in technical and professional contexts.

During the course of this internship, I worked with a six-degree-of-freedom robotic arm. The
central objective revolved around constructing a comprehensive model of this robotic system, with
the aim of facilitating the subsequent development of an home-made control.

To realize this objective, the internship proceeded in three key phases : gaining an understanding
of the robotic arm’s mechanics and functionalities, establishing a physical model of the robotic
arm, and implementing and evaluating this model with the actual physical robot.

Figure 1: The Carl von Ossietzky University of Oldenburg in Germany

1



2 The six degrees of freedom robotic arm

The robotic arm I’ve worked with is a ViperX-300 6DOF, a model manufactured and sold by
the company Trossen Robotics. It comes with a ROS2 interface and a sdk.
We will first give a description of the mechanical arm, then present the software associated with
the robot.

2.1 The physical robot

Figure 2: Image of the ViperX 300S robotic arm

This robotic arm has six degrees of freedom, all rotational, they are described on the
kinematic diagram below1 It is equipped with a gripper as end-effector by default but it can be
changed.

P0

P1

P2
P3

P4
P5

P6 End-effector

x⃗0

y⃗0

z⃗0

z⃗6

x⃗6

y⃗6

θ1

θ2

θ3 θ4 θ5

θ6

d1

a2

γ2
γ3

d4 d6

Figure 3: kinematic model of the robot

d1 = 126.75mm a2 = 305.94mm d4 = 300mm d6 = 143.7mm γ2 ≈ 78.69° 2

1more info in appendix : 6.1
2for more info, refer to the technical drawing here : ViperX-300 6DOF - Specifications

2

https://docs.trossenrobotics.com/interbotix_xsarms_docs/specifications/vx300s.html


Each six Joints are actuated by servomotors, the shoulder and the elbow are actuated by two
coaxial servomotors as they are subjected to greater torque.
The servomotors used are from Dynamixel’s XM range of product1 from Robotis.

Figure 4: Servomotors actuators of the robotic arm

Those servos - connected in a serial chain - offer high resolution with a stall torque of 10.6Nm
and a powerful embedded controller with definable parameters.

Those motors offer various control modes and return several feedback information, the only
control mode used here is the position control and the interesting feedback for us are the mea-
surements of the position, velocity and current.

3



2.2 The ROS2 interface

The robot comes with a ROS interface (I used ROS2 humble distro). It includes various services
and topics allowing to control the robot or returning the feedback information.

The most interesting ones are the topics : /vx300s/commands/joint group which allows to
send a command to a group of joint (typically the group ’arm’). And the topic /vx300s/joint states

where are published the measured position, velocity and effort of each joint.

The ROS interface also includes several ROS2 packages for the robot. Let’s discuss a few
of them that played a crucial role in our project.

The first one is the Arm description package : it contains the URDFs and meshes of the robotic
arm, it allows to visualize the robot in real time in rviz software

Figure 5: Image of Rviz launched with the control package

The description package is also the one that allows to publish the position, velocity and effort
on the /joint states topic.

The second package is the Arm Control package : it initiates the SDK to enable the operation
of the robotic arm. it also includes a control panel on rviz

Those were the two most important packages for us, there are various others like a simulation
package to simulate the robot in gazebo and a moveit2 package for motion planning.

Figure 6: Image of the Gazebo simulation and motion planning with moveit2

There is also a Python-ROS API that works with the control package, this API allows to
control the robot using Python through already existing functions.

4



3 Establishing the dynamic model of the robotic arm

To establish the equation of motion of the robotic arm, we will use the Euler-Lagrange equation.
This equation is particularly well-suited for complex robotic systems with multiple degrees of
freedom, enabling us to model the arm’s behavior accurately and efficiently.

3.1 The Euler-Lagrange equation

The Euler-Lagrange equation is given by:

d

dt

∂L

∂q̇k
− ∂L

∂qk
= τk (1)

for the k-th degree of freedom of the system

Explanation:

- L is the Lagrangian of the system, which is the difference between the kinetic
energy (K) and potential energy (P ) of the system :

L = K − P

- q is the vector of generalized coordinates (each element θi corresponds to the
angle in the i-th joint of the system) :

q =


θ1
θ2
θ3
θ4
θ5
θ6


- τ is the torque applied in each joint :

τ =


τ1
τ2
τ3
τ4
τ5
τ6


To determine the Lagrangian, we have to calculate the kinetic and potential energy
of the system :

The kinetic energy K of the system is given by :

K =
1

2
· q̇T

n∑
i=1

[
mi · Jvi (q)

T · Jvi (q) + Jωi (q) ·Ri/0 (q) · Ii ·Ri/0 (q)
T · Jωi (q)

]
q̇ (2)

Explanation:

- mi is the mass of the i-th link

- Ii is the inertia matrix of the i-th link (expressed in frame i)

- Jvi is the linear velocity Jacobian matrix for the i-th link :

Vi = Jvi · q̇i

- Jωi
is the angular velocity Jacobian matrix for the i-th link :

ωi = Jωi · q̇i

- Ri/0 is the rotation matrix from the frame 0 (base frame) to frame i (attached to link i)

5



The potential energy K of the system is given by :

P =

n∑
i=1

mi · g · hi (3)

Explanation:

- g is the gravity

- hi is height of the center of gravity of the i-th link

By writing K in matrix form : K = 1
2 q̇T ·D(q) · q̇, where dij are the elements of the matrix D, we

can express the Euler-Lagrange equation as follows :

n∑
i=1

dkj(q) · q̈j +
∑
i,j

cijk · q̇i · q̇j + gk (q) = τk (4)

with : {
gk = ∂P

∂qk

cijk = 1
2

(
∂dkj

∂qi
+ ∂dki

∂qj
− ∂dij

∂qk

)
(cijk=cjik)

3 (5)

The equation is also written in matrix form :

D(q) · q̈ + C(q, q̇) · q̇ +G(q) = τ (6)

Physical interpretation of the elements of this equation :

- D(q) · q̈ : This term corresponds to the inertia and acceleration effects. It’s a function of
the joint angles (q) and represents how the masses of the different components of the robotic
arm are distributed and how they influence the system’s response to acceleration (second
derivative of the joint angles, q̈). In simpler terms, it quantifies the resistance of the arm to
changes in its motion due to its inertia.

- C(q, q̇) · q̇ : This term corresponds to the centripetal and Coriolis effects. It’s a function
of both joint angles (q) and their velocities (q̇). The centripetal effect is related to the
tendency of objects in motion to move towards the center of rotation, which occurs due to
internal forces within the system, creating a virtual force. The Coriolis effect comes from
the interaction of the arm’s motion with the rotation of the reference frame. Together, these
effects represent the forces due to the arm’s motion in relation to its angular velocities.

- G(q) : This term corresponds to the effect of the gravity on the robotic arm. It’s a function
of the joint angles (q) and essentially, it captures the forces that arise due to the arm’s weight
and the position of its center of mass relative to the joints. This term contributes to the
arm’s potential energy and affects its equilibrium positions.

- τ : This term represents the external torques applied to the joints. These torques can be
generated by various sources, such as the servomotors or external forces interacting with the
arm. It’s the control input that is used to control the motion of the robotic arm.

3See proof in appendix 6.1

6



3.2 Model of a two degrees of freedom arm

To begin, let’s apply this equation to a much simpler model than the six degrees of freedom : Let’s
consider a robotic arm with only two degrees of freedom.

Let’s call α1 and α2 the angles in the two joints, m1 and m2 the masses of the two links and
I1 and I2 their Inertia matrices.

The arm we are working with is represented on the following kinematic diagram :

x⃗

y⃗

z⃗

End-effector

x⃗1

x⃗2

α1

α2

Figure 7: Kinematic diagram of the two degrees of freedom arm

Let’s establish the equation of motion of this two degrees of freedom arm using
equation (6)

The generalized coordinates vector for this arm is : q =

(
α1

α2

)
We first have to calculate all the necessary terms to calculate the kinematic energy :

• the rotation matrices :

R1/0 =

 cos(α2) − sin(α2) 0
sin(α2) cos(α2) 0

0 1 0


R2/1 =

 cos(α1) − sin(α1) 0
sin(α1) cos(α1) 0

0 1 0


R2/0 =

 cos(α1 + α2) − sin(α1 + α2) 0
sin(α1 + α2) cos(α1 + α2) 0

0 1 0



• The Jacobian matrices :

- for rotational velocity :

Jω1
=

 0 0
0 0
1 0

 Jω2
=

 0 0
0 0
1 1



7



- and for linear velocity :

v⃗G1∈1/0 = lG1 · α̇1 · y⃗1 = lG1 · α̇1 · (cos(α1) · y⃗0 − sin(α1) · x⃗0)

v⃗G2∈2/0 =v⃗G2∈2/1 + v⃗G2∈1/0 = v⃗P∈2/1 + ⃗G2P ⊗ (α̇2 · z⃗1) + v⃗O∈1/0 + ⃗G2O ⊗ (α̇1 · z⃗0)
= [− sin(α1) · (l1 + lG2 cos(α2))− lG2 sin(α2) cos(α1)] · α̇1 · x⃗0

+ [−lG2 sin(α1) cos(α2)− lG2 sin(α2) cos(α1)] · α̇2 · x⃗0

+ [cos(α1) · (l1 + lG2 cos(α2))− lG2 sin(α2) sin(α1)] · α̇1 · y⃗0
+ [lG2 cos(α1) cos(α2)− lG2 sin(α2) sin(α1)] · α̇2 · y⃗0

⇒ Jv1 =

 −lG1 sin(α1) 0
lG1 cos(α1) 0

0 0

 , Jv2 =

 −l1 sin(α1)− lG2 sin(α1 + α2) −lG2 sin(α1 + α2)
l1 cos(α1) + lG2 cos(α1 + α2 lG2 cos(α1 + α2)

0 0


• Which means :

JT
v1 · Jv1 =

[
l2G1 0
0 0

]
, JT

v2 · Jv2 =

[
l21 + 2l1lG2 cos(α2) + l2G2 l1lG2 cos(α2) + l2G2

l1lG2 cos(α2) + l2G2 l2G2

]
• And :

JT
ω1

·R1/0 · I1 ·RT
1/0 · Jω1

=

[
0 0 1
0 0 0

]
I1

 0 0
0 0
1 0

 =

[
I1zz 0
0 0

]

JT
ω2

·R2/0 · I2 ·RT
2/0 · Jω2

=

[
0 0 1
0 0 1

]
I2

 0 0
0 0
1 1

 =

[
I2zz I2zz
I2zz I2zz

]

• We have : D =
∑n

i=1

[
mi · Jvi (q)

T · Jvi (q) + Jωi
(q) ·Ri/0 (q) · Ii ·Ri/0 (q)

T · Jωi
(q)

]
:

D

((
α1

α2

))
=

(
m1l

2
G1 +m2

(
l21 + 2l1lG2 cos(α2) + l2G2

)
+ I1zz + I2zz m2

(
l1lG2 cos(α2) + l2G2

)
+ I2zz

m2

(
l1lG2

cos(α2) + l2G2

)
+ I2zz m2l

2
G2

+ I2zz

)

• We can write : K = 1
2 q̇

TD(q)q̇ = 1
2d11α̇

2
1 + 2d12α̇1α̇2 + d22α̇

2
2

and then we have the cijk using (5) :

c111 = 1
2

(
∂d11

∂α1
+ ∂d11

∂α1
− ∂d11

∂α1

)
= 0

c211 = 1
2

(
∂d11

∂α2
+ ∂d12

∂α1
− ∂d21

∂α1

)
= −m2l1lG2 sinα2

c112 = 1
2

(
∂d21

∂α1
+ ∂d21

∂α1
− ∂d11

∂α2

)
= m2l1lG2 sinα2

c212 = 1
2

(
∂d21

∂α2
+ ∂d22

∂∂α1
− ∂d21

∂α2

)
= 0

c121 = c211

c221 = 1
2

(
∂d12

∂α2
+ ∂d12

∂α2
− ∂d22

∂α1

)
= −m2l1lG2

sinα2

c122 = c212 = 0

c222 = 1
2

(
∂d12

∂α2
+ ∂d22

∂α2
− ∂d22

∂α2

)
= 0



c211 = c121 = 1
2

(
∂d11

∂α2
+ ∂d12

∂α1
− ∂d21

∂α1

)
= −m2l1lG2 sinα2

c112 = 1
2

(
∂d21

∂α1
+ ∂d21

∂α1
− ∂d11

∂α2

)
= m2l1lG2 sinα2

c221 = 1
2

(
∂d12

∂α2
+ ∂d12

∂α2
− ∂d22

∂α1

)
= −m2l1lG2

sinα2

c122 = c212 = c111 = c212 = c222 = 0

8



• We can write the C matrix :

C(q, q̇) =

(
c111q̇1 + c121q̇2 c211q̇1 + c221q̇2
c112q̇1 + c122q̇2 c212q̇1 + c222q̇2

)
=

(
−m2l1lG2

sin (α2) α̇2 −m2l1lG2
sin (α2) (α̇1 + α̇2)

m2l1lG2
sin (α2) α̇1 0

)

In a second time, we calculate the potential energy and the G matrix :

P = m1glG1 sinα1 +m2g (l1 sinα1 + lG2 sin (α2 + α1)) + (m1 +m2) ghref
∂P
∂α1

= m1glG1 cosα1 +m2gl1 cosα1 +m2glG2 cos (α2 + α1) = g cosα1 (m1lG1 +m2l1) + g cos(α1 + α2)m2lG2

∂P
∂α2

= m2glG2 cos(α1 + α2)

⇒ G(q) =

(
m1lG1g cosα1 +m2l1g cosα1 +m2lG2g cos(α1 + α2)

m2lG2g cos(α1 + α2)

)

Now that we have the equation of motion for the two degrees of freedom robotic arm, we want
to use this equation to perform tests on a physical arm.

To conduct tests with this model, we will use a portion of the six degrees of freedom robotic
arm that we will consider to be a two degrees of freedom robotic arm (cf. fig below).

Figure 8: ”Artificial” two degrees of freedom arm using the six degrees of freedom arm

Initially, the goal was to evaluate the perturbations in each joint.

We approximated the perturbations to be an external torque, let’s write : τ = τmot + τpert

We then used the equation of motion with the measurements of q, q̇ and the ’effort’ measurement
which we considered to be τmot

4. To evaluate the perturbation torque we used this equation :

τpert = D(q) · q̈ + C(q, q̇) · q̇ +G(q)− τmot

4at that time, the ’effort’ measurement value seemed to be in mA, we took this value multiplied by a linear coeff
for τmot

9



Because the acceleration is not measured, let’s perform a static test (this way the acceleration is
equal to zero).

We get the following measurements for α1 = α2 = 0 (’home position’) :

Figure 9: Measurements for a static test for the 2DOF arm

And for these measurements, using the equation of motion, we get the following results for
the perturbations :

Figure 10: Calculated perturbations for a static test for the 2DOF arm

Analysis of these results :

The Observation of these calculated perturbation reveals notable inconsistencies.
Specifically, for joint 1, the obtained outcomes prove to be profoundly discordant, revealing per-
turbations that surpass even 100% of the motor torque, which is an unacceptable finding. On the
other hand, the results for joint 2 exhibit tolerable margins of error, around 5%, suggesting that
these results may be accurate.

How can we explain these results :
Firstly we realized the actuation of joint 1 involved the contribution of two servomotors rather than
a single motor. This discovery potentially explain the discrepancies observed for the first joint.
Nevertheless, substantial uncertainties persist regarding the precise interpretation of the measured
’effort’ value (and that in each joint).

10



The intricacy inherent in treating a portion of a robot with six degrees of freedom as a two-degree-
of-freedom arm inevitably introduces an error margin.
This approximation is especially critical, given that the pivot point of articulation 1, initially as-
sumed as fixed, is, in reality, held in position by the waist and shoulder servomotors. In addition,
the two links considered in this model consist of multiple actual links, held by ’internal’ servomo-
tors. These complexities, absent from the current model, undoubtedly contribute to the observed
discrepancy.

However, isolating and accurately evaluating the individual influence of each error source re-
mains impossible.
Moving forward in the analysis therefore requires a transition to a model that takes
into account the true configuration of the robotic arm, — i.e. a robot with six degrees
of freedom. This model revision aims to incorporate previously neglected parameters, and so it
should better reflect reality.

Moreover, if the errors remain consistent despite this update, it is reasonable to attribute these
errors to the transition from the measured ’effort’ value to the actual torque applied in each link.

11



3.3 The Equation of motion of the six degrees of freedom robotic arm

To obtain the equation of motion of our six degrees of freedom robotic arm using the previous
equation 6, we first have to identify the geometric and inertial characteristics of the robot (mi, Ii
and Ri/0). We then will have to calculate - as we did for the two degrees of freedom model - the
terms for the kinematic energy : the Jacobian matrices (Jvi and Jωi).

The first step in order to establish a model of the robot is to set the frames attached to each
link. For this, we will use the Denavit-Hartenberg convention (DH)5 as it provides an efficient
and systematic approach, making the whole process easier.

3.3.1 DH convention

We start by establishing the base frame R0 attached to a fixed part and we define the subsequent
frames based on the following assumption : axis xi must be perpendicular to axis zi−1 and intersect
it.

By applying this to our robot, we obtain the frames defined on the figure below :

O0

O1

O2
O3

O4
O5 O6

θ1

θ2

θ3 θ4
θ5 θ6

End-effector

x⃗0

z⃗0

y⃗0

x⃗1

y⃗1

z⃗1

x⃗2

y⃗2

z⃗2

z⃗3

x⃗3

y⃗3

x⃗4

y⃗4

z⃗4

z⃗5

x⃗5

y⃗5

z⃗6

x⃗6

y⃗6

Figure 11: Kinematic diagram of the robot with frames established according to the DH convention

The DH convention defines four variables for each frame (let’s call Ni the point of intersection
between xi and zi−1):

- ai is the distance from Oi to Ni along axis xi

- di is the distance from Oi−1 to Ni along axis zi−1

- αi is the angle between zi−1 and zi around axis xi

- θi is the angle between xi−1 and xi around axis zi−1

5To learn more about the DH convention and how to put it into practice, you can watch this video : Forward
Kinematics Using the DH Convention Part 1

12

https://www.youtube.com/watch?v=res2bPqD454
https://www.youtube.com/watch?v=res2bPqD454


We can then write the DH-table 6 :

θi di ai αi

R0− > R1 θ1 d1 0 π/2
R1− > R2 θ2 + γ2 0 a2 0
R2− > R3 θ3 + γ3 0 0 π/2
R3− > R4 θ4 d4 0 −π/2
R4− > R5 θ5 0 0 π/2
R5− > R6 θ6 d6 0 0

Using this table, we can write the homogeneous transformation matrices7 from one frame to
the next (let’s call them Ti/i−1) using this formula :

Ti/i−1 =


cos(θi) − sin(θi) cos(αi) sin(θi) sin(αi) ai cos(θi)
sin(θi) cos(θi) cos(αi) − cos(θi) sin(αi) ai sin(θi)

0 sin(αi) cos(αi) di
0 0 0 1



We then can calculate Ti/j with any i and j between 0 and 6 :

Ti/j =


Tj+1/j · Tj+2/j+1 . . . Ti−1/i−2 · Ti/i−1 if i > j

I if i = j(
Tj/i

)−1
if i < j

(7)

Those matrices contain the rotation matrices from a frame to another and the translation vector
between the origins of the frames (ie : geometric characteristics) :

Ti/j =

[
Ri/j ti/j
0 1

]
3.3.2 Calculating the Jacobian matrices

To calculate the linear velocity Jacobian matrix, we will first calculate the velocity of the
centers of gravity of each link : each column j of Jvi is the θj component of the velocity of the
center of gravity of link i (expressed in the base frame) (cf. definition of Jv).

To calculate the velocity of link i (in the base frame), we will use the systematic formula :

V⃗ (Gi ∈ i/0) =

i∑
k=1

V⃗ (Gi ∈ k/k − 1)

where V⃗ (Gi ∈ k/k − 1) =(((((((((
V⃗ (Ok−1 ∈ k/k − 1) +

−−→
GiOk−1 ⊗ (θ̇kz⃗k−1)

and
−−→
GiOk−1 =

−−−→
GiOi + Tk−1/i · 0⃗ expressed in frame i

so in base frame : V⃗ (Gi ∈ k/k − 1) = Ti/0 · (
−−−→
GiOi + Tk−1/i · 0⃗)

with Tk−1/i = T−1
i/k−1

(8)

To calculate the angular velocity Jacobian matrix, we have to determine the axes of
rotation z⃗i : each first i column j of Jω(i) contains the vector z⃗j−1.

To get the z⃗j axis we use this formula : z⃗j = Rj/0·

 0
0
1

 then Jω(i) =
[
z⃗0 . . . z⃗i−1 0 . . . 0

]
(9)

6the geometric constants are defined in Appendix - kinematic diagram
7To know more about homogeneous transformation matrices, check this video : Lecture 2 - 3: Homogeneous

Transformations (Robotics UTEC 2018-1)

13

https://www.youtube.com/watch?v=kmceHOsxFDI
https://www.youtube.com/watch?v=kmceHOsxFDI


4 Implementation and evaluation of the model

It is almost impossible to establish the equation of motion of the six degrees of freedom arm without
using a computer because the elements of the matrices are too long and too complex. That is why
we use python and symbolic calculation to compute the analytic form of the equation
of motion of our robotic arm. Once obtained, we will perform tests using the actual robot in
order to evaluate the correctness and accuracy of our model.

4.1 Python implementation of the model

We want to establish the equation of motion of the robotic arm on its analytic form, this way we
will be able to use it directly and won’t have to recalculate it for each measurement sample.

To establish the analytic expression of the equation of motion on python, we will implement the
calculation (from previous section) using symbolic calculation with sympy (python package).

The first step is to define the geometric and inertial constants of the arm and the vectors

required to establish the EOM (m, I,
−−→
OG, Ti/j ).

To define the describe the geometry of the robot, we need to define frames, the angles θ1 to
θ6 are left as symbols using sympy, this means that we keep the analytic expression and don’t use
the numeric values.

The masses mi and the Inertias Ii can be found in the URDF (Unified Robot Description

Format) file of the robotic arm, the
−−−→
OiGi vectors are obtained by transposing in DH-frames the

vectors found in the URDF file, finally the transformation matrices from frame i to frame j : Ti/j

are calculated using (7)

It is then easy to compute the Jacobian matrices using the formulas from the previous part
(3.3.2). We then calculate the kinetic and potential energies using equation (2) and (3). The D
matrix is derived directly from the kinetic energy, and the G matrix is obtained by deriving the
potential energy according to the different degrees of freedom using the derivation function offered
by the sympy module: ’diff’. Finally, we calculate the matrix C by deriving the terms of matrix
D.

The D, C, G matrices are transformed into functions of the vector q and q̇, which
means that when we will evaluate those functions, the symbols θi will be replaced by their numeric
values contained in the vector q. The functions are saved into a ”.pkl” file using the python package
cloudpickle and can now be loaded and used directly in any file.

For example : we can perform a measurement (of θi, θ̇i and i), create the vectors q and q̇ with
the measured angles and angular velocity and then calculate the values of the D, C, G matrices
using the saved functions. To use the complete equation of motion, we can derive q̈ from q̇ and τ
from i8.

cf. appendix 3 for informations on calculation time of the matrices

4.2 Evaluation of the model

Once the equation of motion established, we need to evaluate the correctness of it, which means
to what extent does it describe the behavior of the actual robotic arm accurately.

4.2.1 Evaluating the error of the model

To assess the accuracy of our model, we can try to measure the error it makes compared to the
reality.

We’re going to compare values calculated by the model with experimental values measured in
the actual robotic arm.

To set up such an evaluation, we’ll need to perform a test with the actual robotic arm and
record its state measured during this test. In parallel, we’ll need to run a simulation of the robot’s
behavior using our equation of motion (for example with Runge-Kutta simulation method) and
record the state calculated during the simulation.

8cf. section 4.2.2

14



Figure 12: Measurement of model error

The results obtained by calculation are then compared with the experimental results.

For this test to be relevant, we need to perform the simulation and the test with the
actual robot under the same initial conditions and with the same inputs at each time.

The problem is that for the actual system, the input is a trajectory, whereas for the model
we’ve built, the input is a torque command for each joint.

We don’t have access to the torque in the real robot, but the current applied to each motor is
measured, so we just need to find a relationship between torque and current to be able to run the
simulation with the same controls as the real robot.

4.2.2 The torque/current relationship

We want to determine the relationship between the measurement ”effort” i and the actual torque
τ applied by the motor in the joint.

There are two ways to do this : either use the theoretical torque/current relationship given in
the documentation of the servomotors or use the previously established equation (with q̈ derived
from the measured q̇) to evaluate τ and compare it to the measured i. The first one corresponds to
the behaviour of the servomotor isolated from the robot measured under conditions quite different
from the one in which it is used here, however the general behaviour should be the same. The
second contains only the model’s inaccuracies.

We assume the relationship between the current applied to the servomotor and the torque it
delivers to be a linear relationship 9

τ = Kc · i+ τ0

cf. doc of the motors : performance graph xm540-w270 and performance graph xm430-w350
with those values (obtained with a linear regression):

Servomotor model Kc τ0
XM540-W270 2.197 0.124
XM430-W350 1.835 −0.259

NB :

- The ”effort” value published on the joint states topic is 2.69 times the present current (which
is the value of ”current” in the performance graph).

- Joints 2 and 3 are actuated by dual motors, resulting in torque values twice as high compared
to single motor.

9cf. Appendix - current/torque relationship

15

https://emanual.robotis.com/docs/en/dxl/x/xm540-w270/#performance-graph
https://emanual.robotis.com/docs/en/dxl/x/xm430-w350/#performance-graph


- This relationship is an approximation, it does not take into account certain phenomenon
and is not accurate in some situations (for example, a probable non-linearity around 0 and
differences in behavior depending on the resistive load).

Lets consider that the model is correct to a certain extent.
To check the accuracy of the chosen linear relationship for the chosen recording, we now display

the measured current as a function of calculated torque alongside with the theoretical linear curve :

Figure 13: Image of the graphs of current (measured) as a function of torque (calculated)

On the top figures, you can compare the salmon curve which is theoretical with the lavender
one which corresponds to the model:

For each measurement (point), the torque is calculated using the equation of motion (with the
values of angle and angular velocity from the recording) and the current is the measured value; the
lavender curve is generated with a linear regression using those points. The color indicates time,
you can compare it with the graphs displayed above which represent the trajectories of each joint
during the recording.

Note that the range of torque needs to be wide for the comparison to be relevant, which is not
the case for most joints when doing a test at low speed (the default speed is low). That is why
those values correspond to a test performed at high speed.

We can see that the relationship appears to be linear, but each motor seems to have
a different slope and offset, and none of them seems to correspond exactly to the theoretical
relationship.

This also constitute an evaluation of the model as we compare the results obtained by the
model with experimental curves.

The model appears to be relatively correct, since experimental behavior is quite similar
to theoretical behavior. However, we can’t yet measure the accuracy of the model in this way,
since the theoretical relationship doesn’t seem to describe the engine behavior quite correctly.

4.2.3 Future Directions for Evaluation

We can consider different methods to go further in the evaluation:

• The simplest approach would be to add torque sensors to each joint (for example, Strain
Gauge Torque Sensors), as this would provide direct access to the torque, which is the input
to our model.

• We can also refine the current-to-torque relationship by conducting tests under various con-
ditions for each joint. These tests could include precise tests at very low torque to observe

16



behavior around zero, tests in both directions, and tests with a load in the robot’s hand. By
simply adding this mass to the model, we can assess the behavior of the joints with higher
torques, especially in the joints near the end-effector.

• Another option would be to rely on the relationship between the motor’s rotation speed and
torque, which would require access to the motor speed trajectory curves.

5 Conclusion

5.1 Technical conclusion

By leveraging the Euler-Lagrange equation and following the systematic Denavit-Hartenberg con-
vention, we successfully derived the motion equation for a robotic arm. This equation was im-
plemented in Python in its analytical form, thanks to symbolic calculations. Using trajectory
controls provided by the robot and measurements from each motor, we conducted tests to assess
the precision of our model, which yielded satisfactory results in its initial evaluation.

Looking ahead, we could to continue refining and evaluating this model further. It will serve as
the foundation for establishing an efficient control system for the robotic arm. Furthermore, the
model offers the flexibility to accommodate additional constraints, such as objects manipulated by
the end effector, or to address specific requirements in various applications.

5.2 What I’ve learned from this internship

• Giving presentations on the work carried out in English and in front of people with knowledge
in fields more or less distant from robotics

• Dealing with the difficulty of finding certain information on an already existing robot

• Adapt to the sensors present on the robot and the possible control modes, which may be
different from the variables we need

• Work completely independently to make progress and deal with problems

Acknowledgement

I would like to express my gratitude first and foremost to my teacher, Luc Jaulin, who passed on
this internship offer and made this enriching experience possible. I would also like to thank my
internship tutor, Andreas Rauh, for opening the doors of his team and creating pleasant working
conditions. I would also like to express my gratitude to the entire team at the Computer Science
Department at the University of Oldenburg, who welcomed me and with whom we spent these
four months. Last but not least, I’d like to thank Oussama Benzinane for his invaluable assistance,
his sound advice and, of course, his wonderful tajine, which brought sunshine in the face of the
German rain.

17



6 Appendix

6.1 Appendix 1 : More about hardware specifications

Figure 14: Robotic arm specifications

Figure 15: Connectic of the robot

The U2D2 controller (left) is a USB to TTL converter that allows for the control of the serial
line of DYNAMIXEL servos using a computer. The 6 Port, 3 Pin XM/XL Power Hub allows to
provide power to the DYNAMIXEL daisy chain, here in 12V.

Figure 16: Dynamixel Wizard 2.0

This software makes it easy to view and configure the registers of all the motors attached to
the U2D2 from a graphical interface. It also allows to perform tests and measure performance of
a single motor.

18



Appendix 2 : development of Euler Lagrange application
∂L
∂q̇k

=
∑

j dkj · q̇j ⇒
d
dt

∂L
∂q̇k

=
∑

j dkj · q̈j +
∑

i,j
∂dkj

∂qi
· q̇i · q̇j

∂L
∂qk

= 1
2

∑
i,j

∂dij

∂qk
· q̇i · q̇j − ∂P

∂qk

and :
∑

i,j
∂dkj

∂qi
· q̇i · q̇j = 1

2

∑
i,j

(
∂dkj

∂qi
+ ∂dki

∂qj

)
· q̇i · q̇j

⇒
∑

i,j

(
∂dkj

∂qi
− 1

2
∂dij

∂qk

)
· q̇i · q̇j =

∑
i,j

1
2

(
∂dkj

∂qi
+ ∂dki

∂qj
− ∂dij

∂qk

)
· q̇i · q̇j =

∑
i,j cijk · q̇i · q̇j

Appendix 3 : calculation time

The calculation time to calculate the matrices can be quite long (as their elements are very long
expressions). Moreover, the evaluation of the matrices generated can be time-consuming, that
cannot be overlooked.

The sympy package has various functions for simplifying the analytic expressions10, this feature
allows to reduce the time to evaluate the matrix.

However, it’s important to note that this process may require some time or even lead to recur-
sion limit errors.

Transforming the matrices into functions (using lambdify()) also takes some time, especially
for the more complex matrices (C and D).

→ Using non-simplified inertia matrices and minimal simplifications (only V, Jv, Jω and T),
the file eom 6dof.py took 4min15 to execute. The evaluation of the three saved matrices takes
about 0.2seconds (that is quite long as we will want to evaluate the eom hundreds of times per
recording).

→ Using simplified inertia matrices (by approximating negligible values to 0), it took 3min45
for an evaluation time of 0.11s.

The amount of simplification achievable using sympy features is restricted due to the consider-
able length of the expressions in our matrices. Since the simplification relies on recursive methods,
we often encounter recursion limit errors when attempting to simplify such extensive expressions.

→By maximising the simplifications made, we obtain an evaluation time of 0.08s for the ma-
trices (that makes 1.6sec of treatment for each second of recording). But the execution of the file
eom 6dof.py took 1 hour.

To achieve a significantly shorter evaluation time, we can simplify the inertia matrices further
(at the risk of losing precision).

6.2 Appendix 4 : Visualize data

The motion visu 6dof.py file allows to visualize both recorded measurements and computed quan-
tities derived from these measurements using the equation of motion.

When executing this file, you will be prompted to select the type of recording you want to
visualize and then enter the number of the recording - you can now visualize some figures.

NB:

- The calculated values are saved, eliminating the need for recalculation when visualizing the
same recording in the future.

- To visualize different figures, we can modify the ”array names” variable.

- The acceleration in each joint is calculated using two different methods : one using the
equation of motion, and the other by directly differentiating the speed.

It’s important to note that the measurement of the ”effort” represents the current in the joint
rather than the torque. We approximate the relationship between the current and the torque to
be linear (cf 4.2.2)

10we will only use trigsimp() as we have trigonometric expressions

19



Figure 17: Image of a motion visu 6dof.py graph

To check the accuracy of this relationship for the chosen recording, we display the current as a
function of torque as in fig ??. We also display the values of torque calculated using the eom and
using the theoretical relationship from the doc over time to compare them.

Appendix 5 : other features

The ”test.py” file provides additional functionalities:

- Replay the recording in rviz

- Conduct simulations of the behaviour of the robotic arm using the EOM. The simulation
uses Euler or Runge-Kutta 4 method. You can visualize the simulated trajectory with the
kinematic model in matplotlib or with rviz.

- Visualize the different components of the EOM (D,C,G) over time, allowing for comparison
and verification.

- Crop a recording if there are some useless parts at the beginning and/or the end of it.

- Perform calculation time tests with access to the matrices and the measurements.

20


	Introduction
	The six degrees of freedom robotic arm
	The physical robot
	The ROS2 interface

	Establishing the dynamic model of the robotic arm
	The Euler-Lagrange equation
	Model of a two degrees of freedom arm
	The Equation of motion of the six degrees of freedom robotic arm
	DH convention
	Calculating the Jacobian matrices 


	Implementation and evaluation of the model
	Python implementation of the model
	Evaluation of the model
	Evaluating the error of the model
	The torque/current relationship 
	Future Directions for Evaluation


	Conclusion
	Technical conclusion
	What I've learned from this internship

	Appendix
	Appendix 1 : More about hardware specifications
	Appendix 4 : Visualize data


