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Abstract

Magnetic levitation is a growing technology in the industry, as it allows for swift motions without friction
caused by the support. The goal of this presentation is to give a brief overview of the system and the
mathematical model used, as well as a study on stabilization and feedback control laws for this system.
The final objective of this study is to find a stable and robust control law design for a variety of different
desired outputs, first with standard methods, and then with the use of interval- or ellipsoid-based state
estimators, and making a comparison between the performance of the different methods.
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Chapter 1

Introduction

1.1 Motivation

Magnetic levitation (MagLev) or magnetic suspension, is a method by which an object is suspended with
no support other than magnetic fields. Magnetic force is used to counteract the effects of the gravitational
force and any other forces. The two primary issues involved in magnetic levitation are lifting forces,
providing an upward force sufficient to counteract gravity, and stability, ensuring that the system does
not spontaneously slide or flip into a configuration where the lift is neutralized. Magnetic levitation have
very high expectations in industry, as it allows for movements without friction, for example a MaglLev
train for a unidirectional translation movement, or a magnetic bearing for unidirectional rotation. Due
to Earnshaw’s theorem, static stability in magnetic levitation is impossible in most common use cases.
This implies the necessity to use dynamic stability using various ways, and most of the time we use
electromagnets and micro-controllers as it allows for more precision. For MaglLev systems, the output
performance in comparison to standard systems, allows for a higher precision in positioning, dynamic
tuning during the movement for better stability, especially against vibrations, and finally they can support
very high velocity outputs. As of now, MagLev technology is very restrictive and not very present in
the industry, as it require heavy infrastructures for high end performances, therefore being costly for the
benefits it provides.

1.2 Aim of this Work

We will test a one electromagnet system stability against various commands and find the best control
law for a robust and precise system. In this paper, we are going to use different command models and
algorithms, as well as filters to improve stability and robustness for our Magnetic bench. Another aim
of this paper, is a first attempt to use a real time implementation of an ellipsoid based approach state
estimation, from interval methods. The end goal of this paper is to give a comparative study of different
ways to implement a MaglLev command laws, and to find the one with the best results.

1.3 Structure of this paper

This paper will be divided in three main parts. The first part will be the study of the given system, which
includes various test of the test bench captors and reactions to inputs, as well as an in-depth study of the
chosen mathematical model and the different consequences it could have on the stability and precision.
The second part of this paper would be about the study of standard command laws and filters effects
on the performances of our system. The final part will then be about the real time implementation of a
C++ algorithm for an ellipsoid based approach of the system state, and the corresponding control law.



Chapter 2

The System and Model

2.1 System Overview

Figure 2.1: Inteco MaglLev bench

We are using the Inteco MaglLev bench in this paper, shown in figure 2.1. The state equations of this
system are described as :

Z:l = T2
i _Fem
Ty =—F>+g (2.1)
: 1
: F, 2 -r25 fipt ~ 7k
With Fe.p, = ﬁ - x3 - € Temp2 and f’ip = #; - e Tz

where x7 is the position of our ball, x5 is the velocity of the ball and z3 is the current inside the
coil. This is the system as described in the documentation, and the model we will be using for reference
in the following report. The system comes with a made PID controller, a few calibrations procedures
and a simulation, and from this model, we can start by looking at a few particularities.

2.2 Sensors

2.2.1 Position sensor

The sensor for the ball position is a light sensor, who is sensitive to outside light, so here is a graph
showing the evolution of the position measured for a fixed ball and a varying ambient light. From figure
2.2, for a given luminosity, the position is accurate with a +0.02 mm error. The exterior light can add a



14.37

Position [mm]

1
10 20 30 40 50 60
Time [s]

Figure 2.2: Extensive position sensor test

+0.1 mm offset to the actual measure, which might need to be taken into account during the calibration
of the sensor, or during extensive tests on the precision.

2.2.2 Current sensor
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Figure 2.3: Extensive current reaction test (1)

From a ramp input, we can also study the current response, as the input « in volt is converted into
PWM. For an input between 0 and 5 V, we can see that the PWM amplitude is about 1 V, and that
under a certain voltage, the current remains null (Figure 2.3). We can also see the influence of the
ball movements, as it makes small variations visible on the graph. From the current response, we can
estimate values for the differential equation parameters (later in the report).

With a better view of the current curve, for a stable input u = 0.2V, we can see that the spikes
are caused by the ball hitting the electromagnet and the ball leaving the electromagnet. From this test,
we can conclude that as long as the ball do not touch the electromagnet, the current should behave
according to the input u. This effect could also be the reason why the system is unstable when the ball

hit the magnet. We can also have the measure of the noise in the current measure, which is around
+0.25A (Figure 2.4).
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Figure 2.4: Extensive current reaction test (2)

2.3 Equations

From the state equations above, and the measure of the maximum current output, we can deduce some

useful information by studying the limit cases of the system. According to the equations, for a stable
ball at a constant distance from the electromagnet, we have :

Ty = —

2
om +g:0<:>Fem:2mg<:>x1:k2-ln< mg>

1°T3

With k& = f}””’; and ko = F_ilpz, assuming z3 and x; are constant. For sgmq. =~ 2.74 A, we obtain

r1 < 17 mm, Wwith the other pafi%meters according to the constructor. From that, we now have a formula
to find the limit of the electromagnet to lift the ball.

From the same limit case, we can also find the voltage input necessary for a certain desired position, and
the "Equilibrium" voltage at t,, for a constant desired output is obtained by :

g-m
[gm .
kq-eF2 @1 *

i

Ue = , as an example, for 1 = 10 mm, we have u = 0.38 V.

We can use that approximation as a way to validate our state equations using data from experiences.
A quick overview of the electromagnetic force expression allows us to see the the system can not have

static stability. For a constant current, the electromagnetic force is still dependant of the ball position.

If we suppose a stable position for a given current input, the electromagnetic force equation can be

expressed as : F.,, = a-e ?% with o and 3 constants. This expression is statically unstable for the

position z;. The stability of magnetic levitation using only one electromagnet can therefore only be
achieved using dynamic stability.



Chapter 3

Simulation

The first and forward method to improve the stabilisation and precision, is to use a simulation to find
optimal PID coefficients. For the optimisation, we use a custom error function, based on the mean square
error between the simulation result and the desired output, and the fminsearch function of Matlab. This
part was also inspired by the work of Peter Balko and Danica Rosinova [1].

3.1 First Method : Documentation Simulation

3.1.1 Parameters identification using the simulation

By using the provided simulation with Simulink and the provided internal parameters from the documen-
tation, we can therefore run optimisations on the PID controller to find the best possible combination for
a fast and stable response. The first objective is to make an accurate simulation, and by using the same
optimization method, we can make an estimation of the internal parameters of the test bench. For the
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Figure 3.1: Maglev Simulation model from documentation

identification of the internal parameters, we used two different methods. The first method is to use the
same generated desired output, which correspond to the blue blocks in Figure 3.1. By using the same
PID coefficients and sample time, as well as the adequate initial conditions, we can compare the result
of our simulation with the results measured on the test bench. The second method, is to use the voltage
and current data from a test run and directly using either of them as the input in our simulation.

From those results, we can see that the coefficients found by the simulation, displayed in the table
3.1, are correct in respect of the parameters from the documentation. In addition, the PID coefficients
values are in range of what was expected from the previous coefficients in the simulation, but they are
far from the ones used for the test they were optimized on. The simulation results are shown in Figure
3.2 and 3.3.
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Figure 3.2: Internal parameters optimization result
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Figure 3.3: PID optimization result

Unfortunately, as shown in Figure 3.4, the system is not stable and the coefficients are not working for
the test bench. The ball can not stabilize around the desired output (10 mm), and even worse, the ball
is bumping against the electromagnet. This could be explained by a variety of differences between the
test bench and the simulation model, or by the noise of the sensors, but we will go more in detail in the
next section. From these results, we can however question the simulation model from the documentation
that does not seem to be accurate.

3.1.2 Parameters identification using the test bench

We can also try to identify the internal parameters using the state equations and data acquired from the
test bench. From the equations, we have : Feoo = 2mg = ki - Ez . ek T

We can then find an expression of Fo,p1 and Femps @ Feppa = 5222 and
21n ( T3 )
2mg

emP1 ;L‘g’jQ'ekQ‘Ily’i .

For this set of data, shown in tables 3.2 and 3.3 we get : F.mpi1 =~ 6.64% 1072 H and F.,,po ~
5.691 * 1072 m. The values for both parameters are in range from the documentation, the average value
for Fe,,po is very close from the one in the documentation, but not Fg,,p;. Using these results, we can




m Fempl Fempl fipl fip2 kz C; KP KI KD

Zini | 0.0571 | 0.0175 | 0.0058 | 0.0001414 | 0.0046 | 2.516 | 0.0243 130 500 6

Zopta | 0.0571 | 0.0204 | 0.00745 | 0.0001574 | 0.005029 | 2.847 | 0.0194 | 1124.67 | 9989.1 | 17.27

Table 3.1: Coefficients comparison between documentation and optimization
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Figure 3.4: Run with the optimized PID coefficients

use them as a starting point to find the missing internal parameters. Unfortunately, the last optimization
did not yield any positive result, as shown in Figure 3.5.

Figure 3.5: Optimization of the last parameters

3.2 Second Method : Step by Step identification

3.2.1 First step : Current equation

From the state equations 2.1 and data from experiments, we can start by fitting the current curve of the
simulation on the measured one, as shown in Figure 3.6. The fitting was done on the four parameters,
fip1, fip2, ki and ¢; with the cost function set as the mean square error between the simulated current



Test n°1 | Test n°2 | Test n°3 | Test n°4 | Test n°5
T1,, [mm] 10 12 8 9 11
T3, |A] 0.7476 0.8820 0.6045 0.6987 0.8306
Table 3.2: Test values for position and current
Femp2,,,107% m | Test n°1 | Test n°2 [ Test n°3 | Test n°4 [ Test n°5

Test n°1 / 6 4.7 7.4 4.7
Test n°2 - / 5.3 6.4 8.3
Test n°3 - - / 3.5 4.7
Test n°4 - - - / 5.8

Table 3.3: Electromagnetic force parameters results

value of our model and the measured values.s We can see very clearly that the results are very good,
that the estimated current inside the coil is pretty accurate, and the uncertainties are reduced. The
simulation model of the coil that we assumed in the beginning can therefore be validated. This adjusted
current model can therefore be used for the next part of the simulation optimization process.
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Figure 3.6: Optimization of the current state equation

3.2.2 Second Step : Electromagnetic force and Newton’s second law

From the previous step, we managed to find accurate parameters for f;p1, fip2, ki and ¢;. From this valid
current simulation, we can add the remaining state equations, to estimate the actual Electromagnetic
force and for the application of Newton’s second law to find the acceleration, speed and position of the
ball. The results are shown in Figure 3.7. The actual simulation part for the estimation of the ball
trajectory is not working properly, as we have issues to find the real trajectory, and it could be because
of three different things : The support of the frame that is not properly implemented in the simulation, as
based on the captors, it is very hard to tell when the ball is resting on the support, the initial conditions
of the speed and the position of the ball, that both have an impact on the trajectory, and lastly, the
uncertainties in the measures from the sensor, that could make it hard for the optimization algorithm to
find suitable parameters.

The simulation model given by the documentation has a satisfying behavior given a set of inputs,
however when compared to the test bench measurements, the outputs are not accurate. This implies
that either the internal parameters of the system are wrong, even after optimizations and identifications,
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Figure 3.7: Optimization of the electromagnetic force parameters

that some perturbations were neglected when they do have quite an impact on the actual test bench,
or that just the noise of the sensors are enough to completely break the algorithms we used to find the
internal parameters. As the simulation can not be used to optimize the controller offline, we are going
to use other methods to improve the performances.

10



Chapter 4

Observers and Filters

4.1 Observers

4.1.1 Standard Observer

The first observer that we used was a very simple observer, based simply on integrators, as shown in
Figure 4.1. The use of such observer was to obtain a better estimation for the speed and acceleration
of the steel ball, and just as before we also used an optimization method for the three coefficients hq,
ho and hg. Unfortunately, we could not use this observer efficiently as it was too slow to give accurate
values on time.

xim

)

> L @

> H sy

Figure 4.1: Standard Integrators Observer Model with Simulink

4.1.2 Kalman Filter/Observer

To improve on that, we decided to implement a Kalman filter based on linear equations of our system :

.23'1 = T2
: Fep—d
To = —==¢ L4+g

2m

7 01 0 0 0 0 0 0
o 0 0 e L 0 1 0 u
. _ —1 k ~ k 1
=100 35 0 7o | 2+H| 70 0 7@ g
dy 00 0 0 0 0 0 0 1
do 00 0O 0 0 0 0 0

11



with 7 as the desired position, and with F,,, = k; -#3-e*2%1 and fip = f”’l e fw? From this equations
and a set of data, we could again try an optimization of the different mternal parameters for the Kalman
filter, to obtain the best fidelity possible. By doing that we get the two graphs shown in Figures 4.2 and
4.3, which represents a comparison between the data sheet values and our Kalman filter.
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Figure 4.2: Current from the Kalman Filter
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Figure 4.3: Position from the Kalman Filter

4.2 Filters

For the filters, we tried two kinds of filters, the first one is a low-pass filter and the second one is a
mean filter. The low-pass filter was setup on the frequency to smooth out the sensors uncertainties. This
filter worked well, but due to the computation time needed, it’s utilisation in a numerical model was
disregarded. For the mean filter, as in Figure 4.4, we kept the last five measurements, and the results
are shown below.

12
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Figure 4.4: Mean Filter representation in Matlab Simulink

Standard Deviation MSE
PID only 0.24561 22247.17
Kalman Filter 0.22855 21603.80
Mean Filters 0.09835 20918.48
Kaman + Mean Filters 0.07640 19074.31

Table 4.1: Comparison of the filters

4.3 Results

Using all those tools at our disposition, we tried various configurations as shown in the Figures below.
For all of the experiments, the PID values and the other various parameters were exactly the same.
For a better evaluation of the performance, we have the set of results shown in the table 4.1. The
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Figure 4.5: Standard PID

standard deviation is calculated over the stable period of the system, to get an idea of the stability. The
Mean Squared Error (MSE) is calculated over the span of the entire test, for an idea on the precision
and reactivity.

From table 4.1, we can clearly see that the mean filter greatly improves precision and stability over
time, and that the Kalman also helps a little over time.

4.4 Control Laws

In addition to filters and observers, we also tried improved command laws using feedback linearization.
The two command laws are written below, the first one being for the standard equations and the second

13
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Figure 4.7: Standard PID and Mean Filter

one for the Kalman state equations from before.

m-fi(z1)-e F2 71 fi(z1) ko 1
TR VT Ty we w3 (e — )

fi(#1) P 1 2 7
U= gt @ @3 — (6 — @3 + kida)

7

mfl (I~1)-f3 _
ki(Femp1@3+d1)

The v function represent the PID implementation, were the K, Kp, KpandK ps coeflicients can be
found by using a pole placing method. Those coefficients can also be optimized using algorithms and
numerical methods for better results.

t
v:KI*/(w—ml)-dt—I—Kp*(w—xl)—i—KD*(w—x2)+KD2*(1l)—;ﬁ2)+w(3)
0

The comparison between the standard PID control method and our method can be seen in Figure 4.9.
Unfortunately, this new control law could not be implemented in a satisfactory manner, as during real
time experiments, the control law was way too slow to react at first, and then became completely chaotic.

14
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Chapter 5

Ellipsoids

The main goal of this work was to implement a real-time ellipsoid state estimator for the MagLev system,
using the C++ language. Unfortunately, the interface between the C++ algorithm and the test bench
is not implemented yet, but all the results will be shown below.

5.1 Ellipsoids State Estimation

As shown in Figure 5.1, a system state is represented by a center and two bounds, following the interval
arithmetic norm. Making a state estimator using ellipsoids (Figure 5.2) only require to adapt the different
algorithm to perform the different steps.

B  inner Bound
B Cuter Bound

Thick Ellipsoid State Enclosure (2D)

Figure 5.1: Thick Ellipsoid representation

5.2 Algorithms

The first algorithm is the one used to predict the next state of our system, based on the actual state and
the system equation. In our cases, we used the Euler discretised equations.

16
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Figure 5.2: Ellipsoid state estimator

Ellipsoid State Prediction algorithm [2]:

Inputs : f(2), 1, T
Outputs : py, L'y 0,1y 1

L: (5] = prai + |l - [=151], ie[l,--,n
2: [X]:[ml]x...x[mn]

3 A=)

4: r,=A-T,

5 o= | ] (o)

6: B = (0" [Je] Ty — 1) - [15 1w

v p=sup (|I1]])

8: iy = fliz)

9 Fy;O:(1+p)'Fy

10: Fy,l:(l_P)‘Fy

The second algorithm is for the correction step, and is responsible for the incorporation of the measure-
ments in the overall state estimator.

Ellipsoids Intersection Algorithm [5]:

Inputs : Q1,Q2, p1, 2
Output : py,Qo, Q1

17



L=0Q:1 (@1+Q2)

py = p1 + L+ (p2 — 1)
Api:Qi—l/z'(uy—pi), foriell,2]

G=1—[Awl, G=1+[Aw|  forie]L,2]
Qr=2-(2-((6- Q)"+ -Q)~ )"
Qo=4-(2-((¢- Q)" +(&-Q) )"

S Ut s W N

5.3 C++ implementation

In this section, we are going to make a comparison between the original Matlab code implementation
and the new C++ version. The table 5.1 shows the different run times comparison between the Matlab
references and the C++ implementation :

As we can see, the C+-+ implementation is faster than the Matlab implementation, for the exact same

Execution time (magnitude) in s | Prediction | Correction | Prediction + Correction
Matlab let le=3 le !
C++ le™® le™® le=?

Table 5.1: Execution time comparison for the algorithms

inputs. For the MagLev system, that runs on a le 3s frequency, the Matlab implementation is not
sufficient, however, the C++ implementation will be fast enough to perform all calculations without
issues.

During the testing phase of the C++ implementation of the prediction algorithm, some minor differences
appeared in rare cases, but as shown in Figure 5.3, those differences does not seem to affect the overall
result, and it could be seen as a difference in the way both C++ and Matlab represent Ellipsoids matrices.

For the Ellipsoids intersection, as represented in Figure 5.4, we can obtain two bounds. In our case we
will only keep the outer bound of the intersection as it is the more important one for asserting stability.

Depending on the predicted and measured state, and the different uncertainties values that we chose,
the intersection of our Ellipsoids may vary. As shown in Figures 5.5 and 5.6, from the same state and
measurements, the intersection could be nonexistent. This can lead to abnormal prediction and results,
if the uncertainties are not selected properly.

Figure 5.7 is the representation of the overall estimation of the system for a given data set, using our
C++ implementation of the ellipsoid state estimator. The right graph represent the position in respect
to time, whereas the left graph represent the projected ellipsoids of the position in respect to speed.
This graph is showing us that our algorithms are working, but that the selected uncertainties needs to
be improved, as this estimator does not improve the position estimation enough from the measurements
to be useful.

18
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Figure 5.7: MagLev State Ellipsoid State Estimation




Chapter 6

Conclusion

Magnetic Levitation using a single electromagnet is a very unstable system and require a very robust
control law for satisfying performances. As seen in the first parts of this report, most of the different
strategies used did not bring useful results. The simulation used as a base for optimisation is working and
behaving in accordance to what is observed, however the simulation and the test bench results do not
match for the same parameters. Therefore, we can not yet rely on the simulation to improve the control
laws. However, we did nonetheless manage to levitate a ball using a manually setup control law using a
PID and some filters. For the ellipsoid state estimator and algorithms, their implementation in C++ did
improve the execution time by a good enough margin for it to bit used for real-time applications. This
work was merely a quick overview of the system and the few results can be used for further improvement.
The future of this work would be to improve the simulation so that it could be used to find the best
possible parameters for the controller model, improve the ellipsoid state estimator to gain in accuracy
for the state estimation, as described in the C++ source file. The next step would then be to use the
ellipsoid state estimator algorithm on a real experiment with the test bench, to test it’s performance
against a standard method.
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