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Abstract

AUVs may sometimes faces challenges during their missions. Those challenges may occur in such way
that a motor is damaged or lost. In such a case, if the AUV was made robustly, it should be able to
continue its mission. Another example may be when the AUV has a high velocity. In this situation,
some motors might become inefficient and may be turned off to save energy. A controller that takes the
temporal variation of the system is thus required.
Path following is the main mission. Algorithms exist, but none account for a varying actuation. Path
following algorithms may help in Karstic exploration which is the exploration of underground cavities
containing fresh water.

Introduction

In the validation of the Masters 1 at ENSTA Bretagne, students such as myself are required to complete
a 4 or 3 months internship in a company or in an university laboratory. Having always had a attraction
to mathematics I often felt a faint lack of this at ENSTA Bretagne. That is due to the fact that in the
Autonomous Robotics specialty, which I am enrolled in, we do a lot of practice and that is very good. I
just wished for a bit more theory and therefore I chose to do my internship in a research laboratory to
complete this lack that I felt I wanted to fill. Moreover it allowed me to discover the world of research
and what it truly meant to do research.
My internship was completed at LIRMM (Laboratoire d’informatique, de robotique et de microélectronique
de Montpellier) situed in Montpellier where I was kindly received by my tutor Mr Lapierre. It started
on the 2nd of May and was over on the 31st of August.
During my internship I got to learn new control methods such as the Lyapunov technic, understand
actuation and its importance and I got to familiarize myself with the changes in frame of reference that
we studied this year but never really got the time to fully apprehend.
During this internship I also got to develop ”soft skills” such as: creativity & strategy implementation
and optimizing my efficiency in the work environment. Until now, meeting were almost not necessary
because the problems given to us did not require much exchange. But in this internship, they became
obviously important as I used to spend hours brainstorming with my tutor to find new strategies and
debate about results. I almost felt that I did not have enough meetings sometimes.
Notice how I did not mention communication or teamwork in the skills developed. Indeed, I spent my
days in front of a computer. Even though I worked with another intern Manas Uteshev coming from Ecole
Polytechnique (X) and we had different although related subjects, we did not manage to combine our
findings a lot because of the different goals we were assigned. We often communicated to ask questions
about specifics like ”how to change a parameter in the simulation” etc. (because I designed the UI of the
simulation since I did a lot of it this year in class). The only communication I did was with my tutor
and I do not consider it as the ”real communication skill”. For me, this skill would have been developed
if I had to manage a team and put in place a strategy which would have required explanation, but I did
not.
The most important skill, by far, was creativity. For the first time, I was ”left in the wild” and there was
no ”right answer to implement”. The problem was that until now, as students, we were given a solution
which we knew worked, it just had to be implemented. My internship showed me, first, how hard it is
sometimes to find a solution. And second, that you do not know if the solution will work, so careful
consideration is required in order to not waste time on something that might not work.
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1 The LIRMM and the stakes of the projet

1.1 Presentation of the laboratory and its missions

The LIRMM is a research center belonging to both the University of Montpellier and the Centre National
de Centre National de la Recherche Scientifique and is located on the Saint-Priest Campus (Right next
to ”Domaine D’Ô). The fields of research studied at the LIRMM are in particular embedded systems,
algorithmic studies, bioinformatics, human-computer interaction and robotics. The laboratory is divided
into three scientific research departments: Computer Science, Microelectronics and Robotics.
The Robotics Department is mainly concerned with medical and manipulation robotics (DEXTER team),
perception and underwater exploration robotics (EXPLORE and ICAR teams) as well as physical human-
robot interaction and humanoid robotics (IDH team). These research activities are notably applied to
the manufacturing industry, health, the environment and the day to day environment of humans.
My tutor belongs to the EXPLORE team and is in fact the leader of the team. The EXPLORE team
is mainly interested in underwater robotics. One of the missions that they are focused on is Karstic
Exploration, which is the mapping of underground fresh water cavities.
The intern I mainly worked with was Manas UTESHEV (Polytechnique). The others were Charles
DRAME (ENS Rennes), Ibrahim ABDELRAHMAN (SeaTech Toulon) and Mathis CAPRIO-LOMBARD
(BTS CIM Lycée Charles Renouvier). They were working on completely different aspects of the subject
(CAD & Design mostly).

1.2 The stakes of Karstic Exploration

The addressed problem involved path following. Intuitively, following a path means joining a curve in a
3D or 2D space, described by an equation.
Mathematically, joining expresses that the center of mass of the robot and its orientation have to tend
asymptotically to a particular value. The particular value is such that the robot is on the path and its
orientation is aligned with the path (or has some arbitrarily chosen value).
The path following problem has been studied before my arrival by researchers around the world and in
particular by those present at the LIRMM such as my tutor Mr. Lapierre. In other words, there are
solutions to the problem. My tutor in interested in the path following problem coupled with a variable
actuation (losing actuators during a mission). There is no general solution that takes into account the
temporal evolution of the number of actuators of the system or how to use them when ”there are more
actuators than what the system needs” for the mission. An actuator is a motorized part of the system.
The systems considered in Karstic Exploration are usually over actuated or under actuated and do not
behave in the same way in terms of control. The number of actuators is important because it expresses
whether or not the system can go in all the directions or rotate in any orientation. In a 3D space, there
are 6 degrees of freedom (3 translations and 3 rotations). In a 2D space there are only 3 (2 translations
and one rotation). An iso-actuated system is a system carrying as many actuators as degrees of freedom.
Under-actuated systems are those with less and over actuated systems are those with more. Systems can
be designed to be under-actuated or over-actuated, in order to have more fail-safes, robustness, or simply
save energy.
Thus, what is the link between an over actuated, iso-actuated and under-actuated system in terms of
control? In some cases, the 3 types of systems can follow a path.
For example, a system can be designed to be over actuated in order to have more robustness. One motor
could be lost or be turned off in order to save energy.
Can the system still follow the path in that case? What directions can the system follow and which can
it not?
One approach to cope with the loss of a motor would be to design different controllers for the different
situations. Nevertheless, the problem is that the controllers would only apply to a particular system.
Not to mention, that there would be a discontinuity in the system when switching from one controller
to another. And even if this approach were to be adopted, there is still the question of proving that
such an approach guarantees mathematically that the system converges to the path and does not have
singularities or divergences.
That is the subject on which I will work. My internship thus revolves around taking an existing solution to
the path following problem and generalize it in order to take into account under, iso and over-actuation.
The stakes of this internship are important as this is related to Karstic Exploration. The recent droughts
that swept across Europe make the stakes of finding fresh water cavities, being able to map and asses them
even more important. Indeed, since the cavities are very irregular and difficult to navigate territories, the
mapping and the exploration are usually done by professional divers equipped with cameras. Not only is
this dangerous for the divers but mapping the cavities is not precise since the construction of the map is
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done by hand using footage. Here are photos of the AUVs that I was presented (Figure 1) which went
or might go to accomplish this kind of mission:

Figure 1: The differents underwater Robots

The goal of this internship is to design an analytical function of control that takes into account actuation
and allows a Robot to follow a predefined path. My tutor would like ”something continuous” for the
function. I started with the 2D case, the thinking being that, once the solution in 2D is found, it should
be easily transposable in 3D. In the end, as me and my Tutor brainstormed we came to the conclusion
that a continuous solution might not be possible because of the nature the discontinuity that is created
when an actuator is lost. I thus provided an analytical non continuous function to the problem.
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2 Preliminary results

This is a section whose purpose is to present the work that has been done by the researchers at the
LIRMM, but also to introduce the notations and equations that will be used throughout this entire
paper.

2.1 The unicycle Robot

The unicycle type robot is the default example of robotics. It is introduced to every student studying
robotics. It is studied because it has interesting properties and is (in appearance) a simple example to
control.

2.1.1 The kinematic equations of the error

Let a Robot evolving in the z = 0 plane be described by its 2D position P and orientation θm such as in
Figure (2):

Figure 2: Unicycle
robot

If A is a point, let a denote the vector −→
OA. R(θ) will denote

the 2D rotation matrix of angle θ and R3(θ) will denote the 3D
rotation matrix of angle θ around the ẑ axis:

R(θ) =
(
cos(θ) −sin(θ)
sin(θ) cos(θ)

)
and R3(θ) =

cos(θ) −sin(θ) 0
sin(θ) cos(θ) 0

0 0 1


Then, as shown in Figure (2), we have the following equalities,

which are: p = q + r,p =
(
X
Y

)
I

= −−→
OP and r =

(
s1
y1

)
F

= −−→
QP

q can be expressed by its curvilinear abscissa and be thus de-
scribed in the Frenet Frame (F) as q =

(
s
0

)
F

.

Thus:
dp
dt

= dq
dt

+ d(R(θc) × r)
dt I

(1)

We will take the following notations: θ = θm − θc, ν = ∥Vt∥

and Vt =
(
u
0

)
F

With: d(R(θc) × r)
dt

= θ̇cR(π/2)R(θc)r +R(θc)ṙ and θ̇c = ccṡ

(2)
(Note that in 2D, rotation matrix’ commute)
Where cc = cc(s) = dθc

ds (s) is the curvature of the path at point s.

This yields,

dp
dt

= dq
dt

+ θ̇cR(θc)R(π/2)r +R(θc)ṙ

⇐⇒ R(θc)T dp
dt

= R(θc)T dq
dt

+ ccṡR(π/2)r + ṙ

⇐⇒ R(θc)TR(θm)Vt =
(
ṡ
0

)
F

+ ccṡ

(
−y1
s1

)
F

+
(
ṡ1
ẏ1

)
F

⇐⇒
(
ṡ1
ẏ1

)
F

= R(θm − θc)Vt − ṡ

(
1 − ccy1
ccs1

)
F

(3)

⇐⇒
(
ṡ1
ẏ1

)
F

= R(θ)Vt − ṡ

(
1 − ccy1
ccs1

)
F

(4)

At this point it is important to note that Q is an arbitrarily chosen point on the path. Q could be for
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example chosen such as the orthogonal projection on the path (i.e. the nearest point from the robot to
the path). This would imply s1 = 0, constantly. This will put a constraint on the system and force us
to solve for ṡ. Indeed equation (3) shows that if s1 = 0, then 0 = cos(θ)u − ṡ(1 − ccy1) and solving for
ṡ, gives us ṡ = cos(θ)u

(1−ccy1) , thus engendering a singularity at y1(s) = 1
cc(s) . This means that the robot is

coincident with the center of the curvature circle of the path at point s, where the closest point to the
path is not unique. This constraint could be solved by constantly having |y1| < 1/cc,max. As pointed in
[1], this constraint imposes that the initiation position of the robot is included in a tube surrounding the
path of width equal to 1/cc,max).

2.1.2 Kinematic Controller

Equation (4) is the differential equation of the error between the unicycle position and the defined point
Q on the path. Paper [2] proposes a kinematic controller of the type (u, ṡ, θ̇) for an unicycle type robot,
such that (s1, y1, θ − δ) −→

t→∞
(0, 0, 0), where δ is an angle of approach and will be defined later in this

paper. Indeed, usually Q is defined as the orthogonal projection of point P on the path and thus as
stated in the previous section, induces a constraint of the type |y1| < 1/cc,max. In order to get rid of this
constraint, [2] had the idea of controlling ṡ as a virtual control input. This relaxes the constraint on y1
and the singularity at y1(s) = cc(s) vanishes. Here is the controller that they propose:(

ṡ

θ̇

)
=
(

ucos(θ) + k1s1

δ̇ − γy1usin(δ) sin(θ)−sin(δ)
θ−δ − k2(θ − δ)

)
(5)

With k1 and k2 being arbitrarily chosen positive gains.
Equation (5) was obtained using a Lyapunov-based method. This method relies on the following theorems:

2.1.2.1 Theorems

Barbalat’s Lemma
If f : R −→ R is a double differentiable, f ′ is uniformly continous function and lim t→∞ f(t) ∈ R,
Then lim t→∞ f ′(t) = 0.
Uniform continuity sufficient condition
If f : I ⊂ R −→ R is differentiable and f ′ bounded, then f uniformly continuous on I.
Corollary of Barbalat’s Lemma
If f : R −→ R is a double differentiable function, lim t→∞ f(t) ∈ R and f ′′ is bounded,
Then lim t→∞ f ′(t) = 0.
LaSalle’s invariance principle
Let Ω be a positively invariant set of the autonomous system. Suppose that every solution starting in
Ω converges to a set E ⊂ Ω and let M be the largest invariant set contained in E. Then every bounded
solution starting in Ω converges to M as t −→ ∞.

Let us consider the following scalar quantity which depends on time:

L1(t) = 1
2(s2

1 + y2
1 + 1

γ
(θ − δ)2) ≥ 0 (6)

δ is a function of the variable (y1, u). It is the ”angle of approach”, and is part of the guidance strategy.
It is the angle with which the vehicle will approach the path. δ that verifies the following properties:

1. δ(y1 = 0, u) = 0

2. ∀(y1, u) ∈ R2, y1usin(δ(y1, u)) ≤ 0

(One example of such a function is δ = −π/2 × tanh(Ky1uy1) )

Then,
L̇1 = s1ṡ1 + y1ẏ1 + 1

γ
(θ − δ)(θ̇ − δ̇) (7)

And using the equations that ṡ1, ẏ1 and θ̇ satisfy, implies that:

L̇1 = s1(ucos(θ) − ṡ) + y1usin(δ) + 1
γ

(θ − δ)(θ̇ − δ̇ + γy1u
sin(θ) − sin(δ)

θ − δ
)
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The choice ṡ = ucos(θ) + k1s1 and θ̇ = δ̇ − γy1usin(δ) sin(θ)−sin(δ)
θ−δ − k2(θ − δ), implies:

L̇1 = −k1s
2
1 + y1usin(δ) − 1

γ
(θ − δ)2 ≤ 0

Moreover, L̈1 is bounded because of its mathematical expression. Thus L̇1 is uniformly continuous, result
following form the uniform continuity theorem. Furthermore, lim t→∞ L1 exists and is finite because
L1 ≥ 0 and L1 is a decreasing function. Using Barbalat’s Lemma implies lim t→∞ L̇1 = 0. L̇1 being a
sum of negatives terms and tending to zero implies that each term tends to 0: (s1, y1, θ − δ) → 0.

2.2 General 2D Robot

The unicycle robot is an under actuated system. It can not produce any sway. A more general type of
robot will now be considered. This system which will be able to have a speed along û and v̂. Such a
robot will have a total speed Vt =

(
u
v

)
V

of whose angle with the axis û will be denoted β as shown in

Figure (3):

Figure 3: General 2D Robot

2.2.1 Kinematic Equations of the error space

The kinematic equations of the error space (4) still hold. The main difference is now that Vt is not longer

equal to
(
u
0

)
V

, but to
(
u
v

)
V

. Thus, the equation becomes:

(
ṡ1
ẏ1

)
F

= R(θ)
(
u
v

)
− ṡ

(
1 − ccy1
ccs1

)
F

(8)

2.3 Actuators and dynamics

Actuators produce forces which then induce accelerations. In order to take actuation into account we
need to consider a dynamical model. That is, considering forces, torques and geometrical parameters of
the system. In a kinematic model, we control the system using speeds and angular velocities, which is to
say that we can control the system’s position using first order derivatives. In a dynamical model, we use
accelerations and angular accelerations in order to control the robot’s position. In other terms, we use
2nd order derivatives to influence the system’s position.
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2.3.1 The dynamic model of the system

In order to cope with the actuation problem, a dynamic model is required. Let us consider a robot with
n actuators such as in Figure (4) :

Figure 4: Robot with n actuators

Each fi is a force that is produced by an actuator. Each force is placed at distance Li between point P
and the point Qi where the force is applied. The vector −−→

PQi has an angle with the û axis of βi. The force
fi has an angle γi with the vector −−→

PQi. When γi = 0 the force points outwards (in the same direction
as the vector −−→

PQi). We will take the following notation: αi = γi + βi. The dynamic equation will be
written in the body frame of the robot in the next paragraph.

2.3.2 Dynamic Equations

Foremost, let P =

xy
z


I

be the position of the robot in the reference frame I. Let Vr =

uv
w


V

be

the speed of the robot expressed in the robot frame V. Thus, Ṗ = RVt with R = R3(θm). Therefore,
P̈ = ṘVr + RV̇r, which amounts to V̇r = RT P̈ − RT ṘVr. The term RT ṘVr is equal to ωr ∧ Vr,
where ωr is the rotation vector of the robot expressed in the body frame.

The second law of Newton tells us that RT P̈ = 1
mFr, where Fr are the external forces expressed

in the robot frame. We can write Fr =

Fu

Fv

Fz

. Fz = 0 in our case. Thus: V̇r = 1
m Fr − ωr ∧

Vr. As for ωr, since we are in the plane, ωr =

 0
0
θ̇m

 and Newton law in rotation tells us θ̈m =

1
J

(
L1sin(γ1) L2sin(γ2) . . Lnsin(γn)

)

f1
f2
.
.
fn

, where the Li = ∥
−−→
PQi∥, J the moment of inertia of

the robot around the ẑ axis and as stated n is the number of actuators.
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The product
(
L1sin(γ1) L2sin(γ2) . . Lnsin(γn)

)

f1
f2
.
.
fn

 can be denoted Γ and is the torque along

the ẑ axis.

Since we are working the in plane, the third component of ωr ∧ Vr is equal to 0. We can express the first
2 lines of the vectorial product as such:

(
1 0 0
0 1 0

)
ωr ∧ Vr = −θ̇mR(π/2)Vt

On the other hand, the force fi can be expressed by a vector in the body frame as such: Fi,r =

R(αi)
(
fi

0

)
= fi

(
cos(αi)
sin(αi)

)

If we let F =


f1
f2
.
.
fn

, the equation can be rewritten as:

V̇t = 1
m

(
cos(α1) cos(α2) . . cos(αn)
sin(α1) sin(α2) . . sin(αn)

)
F − θ̇mR(π/2)Vt

θ̈m = 1
J

(
L1sin(γ1) L2sin(γ2) . . Lnsin(γn)

)
F

(9)

The matrix

 cos(α1) cos(α2) . . cos(αn)
sin(α1) sin(α2) . . sin(αn)
L1sin(γ1) L2sin(γ2) . . Lnsin(γn)

 has a significant role in our study.

It will therefore be denoted A’. A will be reserved for another Matrix which will be called Actuation
Matrix. This matrix is formed using A’ and will be introduced in the next paragraph.

2.3.3 Modeling the loss of a motor

Losing a motor is such that the force that is produced is equal to 0 independently of the input fi given
for that motor. It is as setting a column in the Matrix of system (9) that ties the force F to V̇t and θ̈m to
the null column. This could be modeled by replacing the force F by DF , where D = diag(d1, d2.., dn).
If motor number i stopped working or is half as efficient then di could be set to 0 or 1/2 respectively. F
is then the desired force to be produced by the motor and D × F the actual resulting force. Notice that
when all the motors work correctly, D = In with In being the identity matrix of size n.
With the matrix D in mind, let us introduce the Actuation Matrix A defined as A = A’ × D:

A =

 d1cos(α1) d2cos(α2) . . dncos(αn)
d1sin(α1) d2sin(α2) . . dnsin(αn)
d1L1sin(γ1) d2L2sin(γ2) . . dnLnsin(γn)


2.3.4 Particular case, n=3

Here is an example of the particular case in which n = 3, γi = π/2, β1 = 0, Li = L. By taking into
account the formalism that replaces F by DF , the dynamic equations can be written as the following:

V̇t = 1
m

(
0 −d2sin(β2) −d3sin(β3)
d1 d2cos(β2) d3cos(β3)

)
F − θ̇mR(π/2)Vt

θ̈m = L

J

(
d1 d2 d3

)
F

(10)

An illustration of the situation is given in Figure (5):
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Figure 5: Particular case: n = 3, γi = π/2, β1 = 0, Li = L

2.4 Polar Coordinates

The equations (9) can be written in a polar form. The polar form would involve the norm of the speed
ν = ∥Vt∥, the angle between Vt and the û axis, denoted β, and at last, the angle of the speed relative
to the path ψ = θ + β. The polar coordinates can be deduced by changing coordinates. The following
relation Vt = R(β)

(
ν
0

)
, implies:

V̇t = β̇R(β)R(π/2)
(
ν
0

)
+R(β)

(
ν̇
0

)
=⇒ V̇t = R(β)

(
ν̇

β̇ν

)
=⇒

(
ν̇

β̇

)
=
(

1 0
0 1

ν

)
R(β)T V̇t

(11)

And injecting V̇t into (11) yields the dynamic equations for ν and β and ψ:

(
ν̇

β̇

)
= 1
m

(
1 0
0 1

ν

)
R(β)T

(
cos(α1) cos(α2) . . cos(αn)
sin(α1) sin(α2) . . sin(αn)

)
F −

(
0
θ̇m

)
ψ̇ = θ̇m − θ̇c + β̇

θ̈m = 1
J

(
d1L1sin(γ1) d2L2sin(γ2) . . dnLnsin(γn)

)
F

(12)

3 The employed strategy and the statement of the problem

3.1 Analysis

The goal of the path following algorithm is to bring the center of mass of the robot to the path. Moving
a point in 2D space requires 2 degrees of freedom. Thus, in order to follow the path, we could control
ν and ψ. It is needed that the robot has a speed ν strictly greater than 0 and is able to control the
direction ψ of that speed accordingly. Indeed, if the speed is 0, the robot can not follow the path.
Two options are available to control ψ: θm and β. They are related to the forces and torques that are
applied on the system but not for the same derivative order. As shown by the relation in equation (11),
β̇ is directly related to the forces applied on the system whereas θ̇m is not, though, θ̈m is.
Two strategies then emerge in order to drive ψ to a desired value (value being the guidance reference
function δ = −θatanh(Ky1),K > 0, θa ∈ [− π

2 ,
π
2 ]).

In [3] it was shown that as long as ψ− δ −→
t→∞

0 and ν > 0 then (s1, y1) −→
t→∞

(0, 0). This was proved using
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Lasalle’s principle. Moreover, in the proof, it did not matter how ψ − δ −→
t→∞

0. The meaning of this is
that ψ can satisfy any differential equation and as long as that equation is such that ψ − δ −→

t→∞
0, then

(s1, y1) −→
t→∞

(0, 0). That will come in handy later.
Since ψ = θm + β − θc, we can either control ψ̇ using β̇ or control ψ̈ using θ̈m. Controlling ψ̇ or ψ̈
means that we will find a differential equation of the first or second order (not necessarily linear) that if
ψ satisfies, then ψ − δ −→

t→∞
0. Choosing a variable among β̇ and θ̈m to control ψ̇ or ψ̈ will necessarily

require that the other variable becomes a measurement. In other words, it needs to become a state
variable. For example, if we control ψ̈ using θ̈m then we need to be able to measure β̈.
Therefore, let us state the requirements that the robot has to satisfy:
Foremost, the robot has to prioritize following the path, as long as the actuation allows it. In fact, we
will see that, as long as 2 motors work and are well positioned, it is possible to follow the path.
Secondly, if the robot has 3 or more motors which are well positioned (we will see what well positioned
means further down), then we have to use them to accomplish some optional task. Here are some
examples: orient the vehicle to a desired orientation (for example, always face a stationary chosen point),
be reactive (this might come in handy in obstacle avoidance), avoid motor dead-zones (it is the minimum
command required in order for the motor to start produce a force/torque) etc.
The controller has to take actuation into account. Indeed, if we had 3 motors, and chose as an optional
task the orientation of the vehicle, then if one motor was lost, the control would have to drop the
orientation of the vehicle and prioritize following the path. As stated, we have at hand two strategies to
ensure ψ − δ −→

t→∞
0. We will try the two methods and see that each has ”singularities”. Because these

singularities exist, 2 controllers had to be developed in order to cope with them. The goal would be to
be to have one controller that unites the 2 cases.

3.2 A has a rank equal to 3

When the Actuation Matrix has full rank, the path can be followed and an optional task can be accom-
plished as well. I chose to start with the orientation of the robot.

3.2.1 Following the path

Let’s begin with trying to control ψ̇ through the means of β̇. If A is the Actuation Matrix, then its first
two lines must form a matrix whose rank is 2 to insure that we can control β̇ and ν̇ independently:

A =

l1l2
l3

 =⇒ (rank
(
l1
l2

)
= 2 =⇒ following the path is possible )

This could also be expressed otherwise. Indeed, if we write
(
l1
l2

)
=
(
c1 c2 . . cn

)
, then we need

that det(ci, cj) ̸= 0 for one pair of (i, j), i ̸= j to satisfy the condition. We have ci =
(
dicos(αi)
disin(αi)

)
. Thus

det(ci, cj) =
∣∣∣∣dicos(αi) djcos(αj)
disin(αi) djsin(αj)

∣∣∣∣ = didj

∣∣∣∣cos(αi) cos(αj)
sin(αi) sin(αj)

∣∣∣∣ = didjsin(αj − αi).
Thus we have the following equivalence:

rank

(
l1
l2

)
= 2 ⇐⇒ ∃(i, j), i ̸= j / didjsin(αj − αi) ̸= 0 (13)

This condition means the system has at least two non-colinear motors that are still working.
With this condition verified, we now need to find a differential equation that if ψ verifies, then ψ−δ −→

t→∞
0.

A proposition is the following equation:

ψ̇ = δ̇ + k(δ − ψ), k > 0 (14)

For more information on why this implies ψ − δ −→
t→∞

0 please refer to the Appendix. From the equality
ψ̇ = β̇ + θ̇m − θ̇c, we can deduce that if β̇ = δ̇ + k(δ − ψ) − θ̇m + θ̇c, then ψ would satisfy (14). This
can be done because β̇ is controllable. Driving ν to a desired reference νd speed is fairly easy. If we let
ν̇ = ν̇d + k′(νd − ν),k′ > 0, then ν − νd −→

t→∞
0.
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3.2.2 Optional task: Orienting the system

Moreover, since A is full rank, we can try to orient the vehicle to a desired orientation θd. Following the
path is assured by the variables β̇ and ν̇ which are chosen to drive ψ − δ −→

t→∞
0 and assure ν > 0. As

shown in [3], this implies that (s1, y1) −→
t→∞

(0, 0). To orient the robot, we can use θ̈m. Let θd be the
desired orientation of the robot.
Let us set θ̈m = θ̈d + k1(θ̇d − θ̇m) + k0(θd − θm) with k1, k0 some positive well chosen coefficients.
Then θm − θd −→

t→∞
0. For more information on this, please refer to the Appendix.

3.3 A has a rank equal to 2
When the rank of A is equal to 2, it means physically that we have 2 motors. We will not consider the
case where two motors are place identically in the same place with the same orientation as such a case is
physically impossible.
We will distinguish 2 cases: The 2 motors are not colinear & the 2 motors are colinear. That is because
of condition (13). We will see that, even if conditon (13) is not satisfied, it is still possible to follow the
path, though the structure of the control will have to change.

3.3.1 Following the path: Two non-colinear motors are available

Let’s assume that condition (13) is verified. In that case we can use the same equations as above which
are:

(C) :


ν̇ = ν̇d + k′(νd − ν)
β̇ = δ̇ + k(δ − ψ) − θ̇m + θ̇c

θ̈m = θ̈d + k1(θ̇d − θ̇m) + k0(θd − θm)
(15)

All the k-coefficients are strictly positive.
In this scenario, we have to prioritize following the path and therefore can not orient the vehicle. To
model the discontinuity that happens when a motor is lost will require the introduction of the following
function whose input is the Actuation Matrix:

ζ(A) =


03 if Rank(A) ≤ 1(

1 0 0
0 1 0

)
if Rank(A) = 2

I3 if Rank(A) ≥ 3

(16)

Equation (12) shows that ν̇, β̇, θ̈m are related to the forces F by a affine relation such as: ν̇

β̇

θ̈m

 = BADF + b (17)

Where b =

 0
−θ̇m

0

 ,B =

 cos(β)
m

sin(β)
m 0

− sin(β)
mν

cos(β)
mν 0

0 0 1
J

. B is invertible. In the case where Rank(A) = 3 we

inverted as such:

F = (BA)−1

 ν̇

β̇

θ̈m

− b

 (18)

We have to ”invert” only the first two lines of equation (20) because we have a rank of two and want to
prioritize following the path. In order to do so, we need to use the Penrose inverse on the first two lines
of BA Matrix as such:

F =
((

1 0 0
0 1 0

)
BA

)+(1 0 0
0 1 0

) ν̇

β̇

θ̈m

− b

 (19)

This can be rewritten with the ζ function in a very compact form and generalizes both cases (Rank(A) =
2 or 3):

F = (ζ(A)BA)+ζ(A)

 ν̇

β̇

θ̈m

− b

 (20)
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The ζ function can be further improved using the work done in [4]. Indeed, the ζ function is using
conditions based only on the rank of A, but in [4], it was pointed that in practice A is usually full rank
but that does not necessarily mean that we have to consider it as such. One example is when we have 3
motors, 2 parallel and one orthogonal to the others. If we had to consider an AUV that moves at high
speeds under water along the direction of the first 2 colinear motors then the third motor would become
inefficient because in order for the flow of water to be aspired by the third motor, it would have to make
a 90° turn. The third motor should thus be considered as ”lost” in this case. The ζ function could be
improved by taking this into account. In our example, it could consider that it should only use 2 motors
if (Rank(A) > 2 AND Motor 3 produces enough force per unit of power) OR Rank(A) = 2.

3.3.1.1 What happens to θ̇m ?

An important matter to study is what happens to θ̇m. As it is not controlled, it will be free. It is rather
difficult to find the asymptotic limits of our system. Thus I resorted to simulations. Paths can be in
practice approximated by the concatenation of pieces of circles and straight lines. Thus, I created multiple
simulations with different actuation properties in which the robot follows circles of different Radius and
lines of different slopes. The circles have diameters of 10m, 15m,.. 35m and 40m. The simulation was
done using the particular case and setting d1 = 0, d2 = d3 = 1 and varying β2 and β3. Here are the
simulation results for the following actuation configurations:

Figure 6: Simulation for circular and linear paths

The rest of the simulations are found in the Appendix. The curves are very similar which is why only
2 are shown here. We can notice using those curves that θ̇m seems to have a real limit as t −→ ∞.
Although this is no proof by any means, it suggests nevertheless that the system does not spin infinitely
fast as time goes on. The simulations were all done using the following starting condition :

X0 = (x0, y0, u0, v0, s0, θm,0, θ̇m,0) = (−5, 10, 0.5, 0, 0, 0, 0)

3.3.1.2 Two colinear motors are available: a change in the controller structure is required

Condition (13) seems reasonable. The problem comes when we consider a robot with 2 motors which are
colinear. Then, our controller has singularities for some values of β. We intuitively know that we can still
follow the path and our intuition is proven in [3] because a controller for such a case in provided. Although,
this is not a complete proof, because in [3], fluid friction is taken into account and our model does not
take that into account. Not a proof, but more of a demonstration is the following simulation (Figure (7))
where the vehicle (without friction) which has 2 colinear motors was driven using the keyboard (humanly
operated):
This suggests that a controller should exist.
The physical explanation of the singularities for some values of β is that when two motors are colinear
and Vt is aligned with the two motors, accelerating does not change the angle β.
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Figure 7: The path was followed using the keyboard

Now, let’s assume that only two motors are working and that they are colinear with each other. This
can be achieved by setting n = 2, d1 = d2 = 1, α1 = α2 (π) in the Actuation Matrix. This implies that
cos(α1) = ±cos(α2) and sin(α1) = ±sin(α2). Let’s let α1 = α. The previous method does not work

anymore because
(
l1
l2

)
=
(
cos(α) ±cos(α)
sin(α) ±sin(α)

)
is of rank 1. Equation (12) expresses the singularity:

β̇ = sin(α− β)
mν

(f1 ± f2) − θ̇m

β̇ can not be controlled by the fi when β = α (π). We need to deal with this singularity, and to do so,
we will use [3] to find a controller for this situation.
When we consider a robot with only 2 motors that are colinear, β̇ can not be controlled for β = α. θ̈m

is now a potential candidate in order to drive ψ to δ.
In the previous section, it was absurd to talk about ”directions in which the robot can go”. Now, not
only does it make sense, but it’s necessary. Since two motors are colinear, there is a ”forward” direction.
We need to find that direction. Once it is found, we can make a change of coordinates which will simplify
the equation and bring us to a case familiar to [3].
As stated previously, we have α = α1 = α2 (π). Two cases are then to be distinguished: we either
have α1 = α2 or α1 = α2 + π. Those two cases are in fact the same. It is only a change in sign in the
input of the force applied. We can thus choose one of the cases. We will thus make the assumption that
α1 = α2 = α.
Let’s begin by making the change in coordinates which will simplify equation (9). In our case, it can be
written as such:

V̇t = 1
m

(
cos(α) cos(α)
sin(α) sin(α)

)
F − θ̇mR(π/2)Vt = 1

m
(f1 + f2)

(
cos(α)
sin(α)

)
− θ̇mR(π/2)Vt

θ̈m = 1
J

(
L1sin(γ1) L2sin(γ2)

)
F

(21)

The ”forward” direction is clearly
(
cos(α) sin(α)

)T . We will name Vt,ρ =
(
uρ vρ

)T the speed of the
robot in that frame. Therefore, we have Vt = R(α)Vt,ρ and thus V̇t = R(α)V̇t,ρ. Therefore:

V̇t,ρ = R(α)T V̇t

V̇t,ρ = R(α)T ( 1
m

(f1 + f2)
(
cos(α)
sin(α)

)
− θ̇mR(π/2)Vt)

V̇t,ρ = 1
m

(f1 + f2)
(

1
0

)
− θ̇mR(π/2)Vt,ρ

With this done, we have:(
uρ

θ̈m

)
=
( 1

m
1
m1

JL1sin(γ1) 1
JL2sin(γ2)

)(
f1
f2

)
+
(
θ̇mvρ

0

)
= AρF + b (22)

We thus need that rank(Aρ) = 2. Which is to say that:
1
Jm

(L1sin(γ1) − L2sin(γ2)) ̸= 0 (23)

⇐⇒ (L1sin(γ1) − L2sin(γ2)) ̸= 0 (24)
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The physical explanation is that there must not be a line that passes through the 2 forces. Here is an
example where this condition is not satisfied:

Figure 8: L1sin(γ1) − L2sin(γ2) = 0

It can clearly be seen that in such a case, the system is of rank 1 and can not turn and go forward
independently. Such a case is to be dismissed. We will assume going forward that (24) is satisfied.
The goal is now to that insure ψ−δ −→

t→∞
0 and uρ > 0. The difference with the previous paragraph is that

ψ will not satisfy a first order differential equation like (14) but another one. As stated in the introductory
paragraph, when [3] proved that their controller worked, they used Lasalle’s Invariance Principle.
Foremost, they showed that their controller drove ψ− δ to 0 as t −→ ∞. Then, they considered the state
space where ψ was exactly equal to δ. Being in that state space implied that (s1, y1) −→ (0, 0).
Lasalle’s principle tells us that as long as ψ − δ −→ 0 and ν > 0, the system converges to a state where
(s1, y1) = (0, 0). We can use this here. Please refer to the Appendix for the theorem on differential
equation with constant coefficients in order to understand the following.
With the result stated in the Appendix in mind, if we let y = ψ − δ and choose the coefficients of a
polynomial accordingly, then y = ψ − δ −→

t→∞
0.

In previous paragraph, we tried to control ψ̇ through β̇. We have ψ̇ = θ̇m + β̇ − θ̇c. β̇ is related to
the first derivative of ψ. We thus exhibited the polynomial P = X + k, k > 0 and set P (δ − ψ) = 0,
i.e. (δ̇ − ψ̇) + k(δ − ψ) = 0 to be the differential equation that we wanted ψ to satisfy. We then let
β̇ = (δ̇ + k(δ − ψ)) − θ̇m + θ̇c. The choice of this β̇ insured that ψ satisfied the desired differential
equation.
Now, if we try to control ψ using θ̈m, we will have to exhibit a differential equation of ψ of the second
order because θ̈m is related to ψ̈. Let us choose the polynomial P = X2 +k1X+k0 such that its roots are
strictly negative. Then ψ has to verify (δ̈ − ψ̈) + k1(δ̇ − ψ̇) + k0(δ − ψ) = 0 which is equivalent to saying
that ψ̈ = δ̈+k1(δ̇− ψ̇)+k0(δ−ψ). Since ψ̈ = θ̈m + β̈− θ̈c, setting θ̈m = θ̈c − β̈+ δ̈+k1(δ̇− ψ̇)+k0(δ−ψ),
will insure that ψ satisfies the desired differential equation which then implies ψ − δ −→ 0.
In [3], the authors used a Lyapunov method and backstepping techniques, but they landed on the same
result.
To insure ν > 0, we can set uρ = u̇d,ρ + k(ud,ρ − uρ), which implies that ud,ρ − uρ −→

t→∞
0, which implies

ν > 0 because ν =
√
u2

ρ + v2
ρ. ud,ρ > 0 is a reference forward velocity profile.

3.3.1.2.1 Singularity

As stated before, using one variable for control means that the other variable becomes a measurement.
One problem with driving ψ towards δ using θ̈m is that the term β̈ (which has to be a measurement now)
appears and hides terms such as u̇, ü, v̇, v̈ which depend on the forces Fu, Fv and their time derivatives.
The equations used in [3] are the equations of an AUV, which takes into account fluid friction:

u̇ = 1
mu

(Fu − du)
v̇ = 1

mv
(Fv − dv −murur)

θ̈m = 1
mr

(Γ − dr)

du = −Xuuu
2 −Xvvv

2

dv = −Yvuv − Yv|v|v|v|
dr = −Nuvuv −Nv|v|v|v| −Nrur

Xij , Yij , Nij and mi are constant coefficients.
In [3], this issue was overcome because the force Fu was set to Fu = du + 1

mu
(u̇d + k(ud −u)) and Fv was

equal to 0 because the AUV did not have sideways motors mounted. These forces are therefore functions
of the state of the system. Thus Ḟu and Ḟv can also be expressed in terms of the state of the system.
With those forces being chosen, one could find the value of β̈ using the dynamical equations and then
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find what Torque Γ to apply.
In summary, the issue was overcome because Fu and Fv were chosen before hand to be state functions,
which then let the authors find the measurement β̈, which was then used to calculate the torque Γ.
Usually we have the needed measurements without having to impose the forces. We then inject this
information into a guidance system. This guidance system gives the accelerations necessary in order
to insure that we go where we want. Then, those accelerations go into the controller which gives the
commands or forces that we need to provide in order to follow the chosen path. Our case is a bit unique
because we were forced to choose the forces Fu and Fv before hand, and that allowed us to find the
Torque Γ.
In doing so, β̈ can be expressed in terms of the state of the system and the issue is gone (almost).
In solving for β̈, the authors of [3] arrived at an equation of the form β̈(1 − mur

mv
cos(β)2) = g(X) where

X is the state of the system. To be able to isolate β̈ and have no division by 0, it was necessary that
mur

mv
< 1. This condition means that there is a preferential movement direction and when we turn, we do

not slip sideways completely but get slowed, a bit like a unicycle-type robot. This factor makes the AUV
look similar to the Unicycle. The unicycle is in fact a case where we get slowed infinitely because we do
not slip sideways when we turn. The fluid friction is what allowed the authors to drive the vehicle a bit
similarly to a unicycle.
In fact, if we tried to apply a similar method on our circle-type-robot system, we would arrive at a
equation of the type β̈(1 − cos(α− β)2) = g(X). This equation can not be solved for β̈ when β = α (π).
The friction is necessary in order to not have singularities with this method. Thus we are stuck. The
method used in [3] can not be applied to our system because we do not have fluid friction and also we
do not have a preferential movement direction. Our equations are symmetrical in the u and v directions
whereas in [3] they are not. Let us thus consider the equations of the AUV stated above. They can be
written and such:  u̇

v̇

θ̈m

 = M−1

Fu

Fv

Γ

− d

 = M−1 (AF − d) (25)

With M−1 = diag( 1
mu

, 1
mv
, 1

mr
) and d = (du, dv +murur, dr)T . From this we can deduce that: ν̇

β̇

θ̈m

 =

1 0 0
0 1

ν 0
0 0 1

R3(β)TM−1 (AF − d) (26)

Thus using the same method as above we can inverse using the ζ function:

F = (ζ(A)

1 0 0
0 1

ν 0
0 0 1

R3(β)TM−1A)+ζ(A)

 ν̇

β̇

θ̈m

+

1 0 0
0 1

ν 0
0 0 1

R3(β)TM−1d

 (27)

This only works when condition (13) is satisfied. For colinear motors, in our non friction system, we first
found the ”forward direction” and then made a change in coordinates. Our system was symmetrical.
What happens when we take the equations of an AUV and try to find the ”forward direction” ? Let’s
assume that there is a forward direction ρ of angle α with the û axis. Let M ′ = M [0 : 2], d′ = d[0 : 2].As
stated above we can write: (

u̇
v̇

)
= M ′−1((f1 + f2)

(
cos(α)
sin(α)

)
− d′)

= M ′−1(R(α)
(
f1 + f2

0

)
− d′)

=⇒
(
u̇ρ

v̇ρ

)
= R(α)TM ′−1(R(α)

(
f1 + f2

0

)
− d′)

= R(α)TM ′−1R(α)(
(
f1 + f2

0

)
−R(α)T d′).

(28)

The matrix R(α)TM ′−1R(α) would be diagonal for every α if mu = mv. This implies a symmetry in the
system. d’ is replaced by R(α)T d′. In the following paragraphs we will indenfity d to R3(α)T d and M−1

to R3(α)TM−1R3(α).
For colinear motors, we will use the second controller stated previously:

(C ′) :
{
uρ = u̇d,ρ + k(ud,ρ − uρ)
θ̈m = θ̈c − β̈ + δ̈ + k1(δ̇ − ψ̇) + k0(δ − ψ)

(29)
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In this case we have, using the same logic, the following expression for F :

F =
(
diag( 1

mu
,

1
mr

)A
)+((

u̇ρ

θ̈m

)
+ diag( 1

mu
,

1
mr

)d[0 : 2]
)

=
((

1 0 0
0 1 0

)
M−1A

)+(1 0 0
0 1 0

) u̇ρ

θ̈m

0

+M−1d


=
(
ζ(A)M−1A

)+
ζ(A)

 u̇ρ

θ̈m

0

+M−1d


(30)

Both cases can be unified using the following functions of the state of the system X:

ζ1(X) =
{
diag(1, 1

ν , 1)R3(β)TM−1 if (13) is satisfied
M−1 else

ζ2(X) =



 ν̇d + k′(νd − ν)
δ̇ + k(δ − ψ) − θ̇m + θ̇c

θ̈d + k1(θ̇d − θ̇m) + k0(θd − θm)

 if (13) is satisfied

(
u̇d,ρ + k(ud,ρ − uρ)

θ̈c − β̈ + δ̈ + k1(δ̇ − ψ̇) + k0(δ − ψ)

)
if (24) is satisfied and (13) is not

(31)

Finally, F can be written in a general form including all cases as such:

F = (ζ(A)ζ1(X,A)A)+ζ(A) (ζ2(X,A) + ζ1(X,A)d) (32)

Note: to find β̈ you shall use the method in [3].

3.3.2 Summary

Here is a summary of this entire section:
Everything worked as long as we had 2 non colinear motors in our system. The condition expressing this
is (13). When we have 2 motors that are colinear, they must not be align on a same line. That is because
otherwise the system is of rank 1 and can not follow the path. The condition expressing this is (24).
When we consider such a system, we use θ̈m to impose ψ − δ −→

t→∞
0. In doing so, we need to measure

β̈. β̈ can be obtained using the dynamic equations and expressed in terms of the state of the system
(almost). In [3], they managed to do such thing because of fluid friction. Because fluid friction exists,
an AUV could be constructed such that it has a preferential movement direction ( mur

mv
< 1) and thus be

more and more similar to a unicycle-type robot. This allowed the authors to isolate β̈. Our system is
symmetrical and does not have such a constraint to allow us to isolate β̈. In conclusion, we needed to
consider system with friction. In the case of the AUV, our controller would have the following structure
which is a concatenation of the controller developed above and that in [3]:

F = (ζ(A)ζ1(X,A)A)+ζ(A) (ζ2(X,A) + ζ1(X,A)d) (33)

The ζ and ζi functions being stated above.

3.3.3 Conclusion

To sum up, losing actuation creates discontinuities in the first controller that was developed. This comes
when we only have two motors and they are colinear. To cope with this discontinuity, we used [3]. It
would be preferable to have one controller that unifies both. In [3], the authors could develop their
controller because of a preferential movement direction that the system had. This direction could be
given to the system because of fluid friction. The system they considered was a torpedo and thus moving
forward is more advantageous than moving sideways. The proof needed to show that by unifying the
two controllers the system remains stable is simple. Both controller drive ψ − δ −→

t→∞
0. Since we have a

finite number of switches, after all the switches have been done, one control structure will remain which
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insures ψ − δ −→
t→∞

0. Thus the system is stable.
The ζ and ζi functions can be improved using the work done in [4]. Indeed, sometimes a robot will be
able to go in all direction, but some of the direction will be very costly. The ζ and ζi could take this into
account by finding if forward and sway costs are roughly the same, or if one is much more costly than
the other. In the first case, the robot could use the first control structure (C) developed. In the second,
it would have to use a ”go forward and turn” approach that the second control structure provides (C’).
All the code built during the internship can be found on the github at :

https://github.com/Dada462/Path-following-and-actuation

4 Conclusion of the Internship

In conclusion, I developed a discontinuous function to control the robot and which takes into account
actuation. This function is very ”raw” and could be improved using [4] done by my internship colleague
Manas UTESHEV. I could only develop this function to go as far as taking into account the orientation
of the robot. In the future, other functionality should be added to the function such as making the robot
more reactive etc. when the actuation allows it.
My internship gave me what I was looking for, which is more theoretical luggage. On the other hand, it
contributes to a cause (Karstic exploration) that is more and more important as climate change creates
more and more unforeseen weather events such as very intensive droughts. I got to sharpen my technical
& theoretical skills. I wish I had the time to implement my algorithms on a real robot to also sharpen
my practical skills because that is completely different from simulation.
Nevertheless it was a very pleasant experience and I got to discover Montpellier which is a very beautiful
and animated city.
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5 Appendix

5.1 Theorem: Differential equation with constant coefficients

Let us state a general property about differential equations:

Let y be a real number function. Let m > 0 be an integer and k0, k0, .., km−1 be the coefficients of
the polynomial P = Xm +

∑m−1
i=0 kiXi

Let P be written in prime factors P = (X − α1)γ1(X − α2)γ2 ..(X − αn)γn , with αi being the complex
roots of P and γi being the respective multiplicity.

Then the solution to the differential equation P (y) = 0 is exactly y(t) =
∑n

i=1 Pi(t) × eαit, with Pi being
a polynomial such that deg(P ) < γi. The polynomials Pi can be found using the initial conditions.
Moreover, If the roots of P have only strictly negative real parts, then y −→

t→∞
0.

Comment: The coefficients of Pi are unknown, but can be found using the initial conditions. In-
deed, P (y) = 0 is a differential equation of order m. Every Pi has a degree strictly inferior to γi.
The γi verify

∑n
i=1 γi = m. Thus to find all the polynomials, we need m values for the initial con-

ditions. This is measurable in practice by having the knowledge of the different values at t = 0:
y(0) = y0, ẏ(0) = ẏ0, .., y

m−1(0) = ym−1
0 .

Comment: y is a sum of products of polynomial and exponential functions. Therefore, as t −→ ∞, the
limit is imposed by the exponential functions. Since, all of the exponential functions are of the form eαit

with Re(αi) < 0, then Pi(t) × eαit −→
t→∞

0 and thus y(t) −→
t→∞

0.

Example: Let ÿ+2ẏ+y = 0 be a differential equation. We have P = X2 +2X+1 and P (y) = 0. P can
factored such as P = (X + 1)2. Then the solution is then y = P1e

(−1)×t with deg(P1) < 2. Otherwise,
y = (at + b)e−t with a, b being factors imposed by the initial conditions. We can see that y(t) −→

t→∞
0,

independently of a and b.
For a proof of this theorem, please refer to pages 361 and 366 of [5].

5.2 Simulations

Figure 9: Simulation for circular and linear paths

21



References
[1] A. Micaelli and C. Samson, “Trajectory tracking for unicycle-type and two-steering-wheels mobile

robots,” Research Report RR-2097, INRIA, 1993.

[2] L. Lapierre, D. Soetanto, and A. Pascoal, “Nonsingular path following control of a unicycle in the pres-
ence of parametric modelling uncertainties,” International Journal of Robust and Nonlinear Control,
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