
Autonomous Sailboat

Promotion2023

October 16, 2022

Augustin Morge
augustin.morge@ensta-bretagne.org

I express my deepest thanks to Dr. Jian Wan Lecturer at Aston University for the opportunity
of internship, his availability and for the help all along the internship. I would also like to thank
Mr Jaulin for introducing me to this internship and to the Dr. Wan.

1

Contents

Acknowledgements . 1
Abstract . 3
Keywords . 3

1 Introduction 4
1.1 The University of Aston . 4
1.2 Why autonomous sailboat ? . 4
1.3 Purpose of the internship . 5
1.4 Notations . 5

2 Sensors 7
2.1 IMU . 7
2.2 GNSS receiver . 10
2.3 Weather Sensor . 11

3 Controlling the Servomotors 12
3.1 Collecting the data . 12
3.2 Controller . 12

3.2.1 Line following . 12
3.2.2 Station Keeping . 13

3.3 Servomotors . 14

4 Communication 16
4.1 Real time simulation . 16
4.2 Manual control . 17
4.3 Display the boat on a map . 18

5 Final build and test 19
5.1 Build a support for the Raspberry Pi . 19
5.2 Testing the boat on the water . 21

5.2.1 Test of the line following . 22
5.2.2 Test of the station keeping . 23

6 Conclusion 24

7 Appendices 25

2

Abstract
The main purpose of this internship was to develop a sailboat with a new set of sensors. This
sailboat should be able to follow a line or stay at a point with coordinates. Thanks to Aston Uni-
versity, situated in Birmingham, I was able to configure this system and test it in real conditions.

Several tests were done during the internship and the following document highlights how to
build, program and communicate with an autonomous sailboat. Firstly, I needed to get used to
the different sensors, to get the data and filter them. Once the sensor data has been acquired,
the program collected them into a state vector and a controller computed them in order to give
an angle for the sail and the rudder. All in all, those angle were converted into a PWM signal
for the actuators.

However, it was also important to see what was happening in real time or replay the ex-
periments. This is why I set up a communication system between the Raspberry Pi and the
computer to check what was happening. The 3D printing was also a part of the internship to
put the system inside the hull. Indeed, the system was new for both hardware and software with
a Raspberry Pi using a Navio2 device and a Calypso Ultrasonic Sensor for the wind sensor.

Keywords
Guidance, control, sailing boat, filtering, 3D printing, 2D mapping.

3

Chapter 1

Introduction

1.1 The University of Aston
The internship takes place at Aston University in Birmingham, UK.

Birmingham is a once industrial city and England’s second most populous city. The city is
located in the middle west of England. [Fig.1.1][Wik22a]

Figure 1.1: Birmingham in England

Aston University is a public research university situated in the city centre of Birmingham,
England. In September 2021, it was announced that Aston University was shortlisted for Uni-
versity of the Year in the Times Higher Education Awards 2021. In 2020, the University was
named "University of the Year" by The Guardian.[Wik22b]

1.2 Why autonomous sailboat ?
Marine robotics is one of the less developed field in robotics unlike the ground robotics (au-
tonomous cars, humanoid robots, ...) or the aerial robotics (with autonomous plane, drones, ...).
This is due to the global interest of the population in space exploration or use of robotics in their

4

daily life.
Considering that water covers about 71% of the Earth’s surface and the majority of the ocean
surface is yet to be explored or mapped, marine robotics has attracted more and more inter-
est from both industry and academy. The maritime robotics can be used for hydrographers
and oceanographers in their research, for the military marine defense or global trade. Even
championship are now developed with the World Robotic Sailing Championship (WRSC) or the
International Robotic Sailing Conference (IRSC).

The autonomous sailboat is an ecological system with a low-cost design that could be used
in various context such as studies, researches or transport.

1.3 Purpose of the internship
The purpose of the internship is developed into three axis:

1. To familiarize with various sensors such as IMU, weather vane, camera, GPS receiver,
Li-DAR and others for sensor data collection, filtering and fusion

2. To use Arduino/Raspberry Pi/NVIDIA boards to program control and learning algorithms
through C++, Python and/or ROS1

3. To use some basic mechanical design and 3D print of sensor supporting mechanisms for
the autonomous systems.

I started the project with a previous sailboat with all sensors controlled by an Arduino except
the GPS which was controlled by a Raspberry. This system was based on ROS.
The aim of my internship was to build a new sailboat using only the raspberry pi with a Navio22

on it to see which system was the most efficient.

Thus, I worked on the Raspberry Pi system3 which was useful here because we can connect
the wind sensor in Bluetooth and because it’s also more compact: other devices like the IMU or
GNSS are directly on the Navio2. The Navio2 is a board to plug on the Raspberry Pi. With this
board we can use its set sensors or Ardupilot module to control easily and remotely our system
with application like Mission Planner or QGroundControl.

In my case, I use the GNSS receiver and the IMU from the Navio2 and use this device to give
to the actuators the right PWM signal. The Raspberry Pi is used to get the wind vector and
compute all the data in a main algorithm to control the sailboat. Thus, I had to acquire the data
the sensors, filter them and build a controller in order to control the boat with the actuators to
create a new set [Fig. 7.1].

1.4 Notations
The purpose of the internship is to control the two servomotors. One is for the sail with δs and
the other one for the rudder with δr.

The parameters used by the sensors to control the actuators are :
1Robot Operating System
2Autopilot HAT for Raspberry Pi
3The Raspberry Pi is a Raspberry Pi 4.

5

m position of the sailboat
θ orientation of the sailboat
v velocity of the sailboat
ϕ course angle of the sailboat
δr angle of the rudder, |δr| ≤ δmax

r

δs angle of the sail, |δs| ≤ δmax
s

ψtw, atw direction and speed of the true wind
ψaw, aaw direction and speed of the apparent wind
a,b the starting and the ending points of a specified line
ξ the close haul angle
r the cutting distance to a line
β the angle of the sail in crosswind
q a binary variable q ∈ {−1, 1} for tacking
di the inner cycle for station keeping
do the outer cycle for station keeping

Table 1.1: Notations

Figure 1.2: The coordinate systems and the true wind

The current GPS position of the boat is m, the direction of the true wind ψtw, the speed of
the true wind atw, and also the orientation of the boat θ. The velocity of the sailboat is denoted
as v and the corresponding course angle for this sailboat speed is denoted as Φ. Due to the
sideway forces of the wind, the course angle Φ and the heading angle θ are not necessarily equal.
It is worthy to note that m, ψtw, atw, θ, and Φ are defined in a East-North-Up (ENU) coordinate
system with its origin fixed on an Earth point while δr and δs are given in a body-fixed coordinate
system with its origin fixed on the gravity center of the boat.

6

Chapter 2

Sensors

In order to acquire the data from the Raspberry Pi I first had to configure it, flashing the rasp-
bian OS on it. Henceforth, I configure the Navio2 with the documentation[Mou08] and check
with the library how to acquire the raw data from each sensor.

All the details to configure the Raspberry Pi are on my Gitlab[Aug22].

2.1 IMU
Two IMU sensors are directly integrated on the navio2. [Fig. 2.1]

• MPU9250

• LSM9DS1

Figure 2.1: Dual IMU on the Navio2

Those sensors collect the data from the gyroscope, the magnetometer and the accelerometer.
Those data allow me to know the roll, the pitch and the yaw.

• The accelerometer gives the acceleration vector pointing into the Earth’s center. With this

vector −−→
Acc =

Accx

Accy

Accz

 we will obtain the pitch and the roll.

7

• The magnetometer indicates the position of the magnetic North, by projecting this direction

in the space. With this vector we will obtain the yaw. −−−→
Mag =

Magx

Magy

Magz



• The gyroscope gives information about the angular velocity ω with −−→
Gyr =

Gyrx

Gyry

Gyrz

.

Indeed, by integrating −−→
Gyr we can have the angle.

roll = arctan(Accx√
Acc2

y +Acc2
z

) (2.1a)

pitch = arctan(Accy√
Acc2

x +Acc2
z

) (2.1b)

For the yaw, we need to have the best data while combining the pitch and the roll. We
project them in the plan xOy, this way we have less errors when the Raspberry Pi starts to not
be in this plan.

We use the roll and picth found in 2.1 into the tilted compensation formula with the raw

data from the Magnetometer

Magx

Magy

Magz

.

(
Xh
Y h

)
=

Magx

Magy

Magz

 (
cos(pitch) 0 sin(pitch)

sin(roll)sin(pitch) cos(roll) sin(roll)sin(pitch)

)

The previous formula works because the z axis is not in a direct coordinate system.

Thus,

θ = yaw = arctan(Y h
Xh

) (2.2)

The second step was to calibrate the data from Magnetometer. [Fig. 2.2]

To calibrate the IMU, we have to put the system inside the boat with every components : The
servomotors or even the battery will disturb the electromagnetic field inside the hull and change
the sphere created by the magnetometer vector into an ellipsoid. We suppose that between two
experience, the magnetic field won’t change.

Thus, to calibrate the magnetometer, we have to turn the sailboat in every direction to ob-
tain a set of points. The vector of the magnetometer will correspond to a point in a 3D space:
Magx,Magy and Magz. When I turn the boat in every direction it will create an ellipsoid. This
ellipsoid need to be calibrate into a normalized and centred sphere.

Three parameters are used to transform this ellipsoid into a sphere : a rotation matrix R, a
transformation matrix T and a normalized matrix N.[cal]
Magcalibrated = R.T.N.Magraw

8

Figure 2.2: Calibration of the LSM IMU

Once it was done I had to implement a Kalman Filter to get better value for the heading
data.[Luc15]

Evolution equation :
xk+1 = f(xk, uk); f(xk, uk) = Fkxk + vk

vk = h(v̂k, uk) - Fkx̂k.

Measurement equation :
yk = h(xk); h(xk) = Hkxk

Prediction step :
ˆxk|k−1 = f(ˆxk−1|k−1, uk)

Pk|k−1 = FkPk−1|k−1F
T
k +Qk

Update step:
yk= zk − h(ˆxk|k−1)
Sk = HkPk−1|k−1H

T
k +Rk

Kk= Pk|k−1H
T
k S

−1
k

ˆxk|k = ˆxk|k−1 +Kkyk

Pk|k = (I −KkHk)Pk|k−1

Parameters:
Fk the evolution model; Hk the observation matrix
xk|k−1 the predicted estimation; Pk|k−1 the predicted covariance
xk|k the corrected estimation; Pk|k the corrected covariance
yk the innovation; Sk the covariance of the innovation
Kk the Kalman gain; uk the control vector
Qk, Rk the covariance matrix for the state and for the measures.

Table 2.1: Kalman filter

Because I wanted to filter the yaw, I chose the input uk = (Gyrz)k with the following variables:

9

zk =

cos(yawk)
sin(yawk)

1

; Fk = F (uk) =

 1 −dt.uk 0
dt.uk 1 0

0 0 1

; Hk(x) =

 1 0 0
0 1 0

(x1)k (x2)k 1


I also chose for the initial matrix:

P0 = 10.I3; Q0 = 0.001.I3; R0 = 0.01.I3

With uk the input of the Gyroscope which is the angle speed and x the final value the mag-
netic vector for the yaw We finally have yaw = arctan(x2/x1). Thus, when I applied the filter for
example when the Raspberry Pi is not moving, I could see that the value filtered was closest to
the real one instead of the raw data [Fig. 2.3]. Moreover, when I started to turn the Raspberry Pi
outside the plan xOy, I could see that I needed a Kalman filter for the IMU because it managed
to reduce 20% the error. [Fig. 2.4]

Figure 2.3: Kalman for IMU Figure 2.4: Kalman for IMU with vivration
outside the plan xOy

2.2 GNSS receiver

Figure 2.5: GNSS on the Navio2

We obtain the position and the speed from the GNSS receiver. [Fig. 2.5] Those data are
coming from the navio2 with the ublox sensor. The longitude and latitude are obtain from the
"NAV_POSLLH" message of the ublox and the speed from the "NAV_VELNED" message.

10

The error on the GPS is low (less than 1m) so I decided to not filter it. However, there are
several jump in the speed so I add a low pass filter:

v = αvmeasured + (1 − α)vprevious (2.3)

α = 0.05.

2.3 Weather Sensor

Figure 2.6: Weather Sensor : Calyspo Ultrasonic Sensor

The Weather data comes from the Calypso Portable Anemometer. [Fig. 2.6] This sensor is
used in bluetooth from the Raspberry Pi using bluepy module and the mac address of the sensor.
Thus, we obtain the vector of the wind: its angle and norm. For this sensor, I used a former
program of Mr. Vautier that I adapted without ROS[Vau19].

We also apply a low pass filter for each data because there are also some jumps in the Calypso:

W =

xwind

ywind

θwind


and

W = αWmeasured + (1 − α)Wprevious (2.4)

α = 0.5.

11

Chapter 3

Controlling the Servomotors

3.1 Collecting the data
Each sensors has its owm program. The algorithm collect all of the information in a state vector
that filter those data. Then, the main program will control the actuator with a controller to the
servomotors.

Figure 3.1: Graph of the use of programs.

3.2 Controller
3.2.1 Line following
We want to follow a line y = ax+b.

This line is created with the waypoints we want to follow.

• pwp : previous waypoint

• nwp : next waypoint

12

However, we only know the apparent wind and not the true wind which is needed for the
rudder.

If we add the true wind and the wind that the movement of the boat create (with a velocity
v) we get the apparent wind. Thus, we can deduce the true wind from the two others vectors.
However we have to be careful in our data from the wind that we receive and the direction that
has the wind.

Thus, we use this formula to get the true wind W :

TW =
(
aaw. cos(ϕaw + θ) + v. cos(γ)
aaw. sin(ϕaw + θ) + v. sin(γ)

)
(3.1a)

ψtw = angle(TW) (3.1b)

Then, we can use the line following algorithm of Mr. Jaulin[LJ12].

inputs : m, θ, ψtw, a, b, q

e = det(b−a
||b−a||)

ϕ = arctan(b− a)
θ̂ = ϕ− arctan(e/r)
if(cos(ψtw − θ̂) + cos(ξ) < 0) or ((|e| − r) and (cos(ψtw − ϕ) + cos(ξ) < 0)) :

θ̂ = π + ψtw − q ∗ ξ
δr = δrmax

π ∗ sawtooth(θ − θ̂)

δsmax = π
4 ∗ (cos(ψtw − θ̂) + 1)

log(π
2β

)

log(2)

outputs : δr, δsmax, q

Table 3.1: Controller for a line following

We also have to know which waypoint we have to follow. We reach one waypoint if (nwp −
pwm).(m− nwp) > 0.

3.2.2 Station Keeping
Basic station keeping

The basic station keeping is to use the line following program and to stop the motors if the boat
is around the point with a chosen radius r.
Once the boat is outside the circle, the motors turns on and the boat will try to go again to this
point.

Avanced station keeping

To use an advanced station keeping we can use the code of Christophe Viel[Luc12]. The aims is
also to reach the target point. When the sailboat is far from its target, the sailboat follows the
controller of Mr. Jaulin[3.1] (Step 1). However, the angle of the wind can change the path of the
sailboat. Thus, the sailboat needs to slow down when it became close from the target. That’s
why it first needs to turn in the bigger circle (Step 2) and goes against the wind (Step 3). Once
it is against the wind, the sailboat move to the inner circle and wait, always against the wind
(Step 4). [Fig. 3.2]

13

Figure 3.2: Sensor Connection

With this algorithm we create two circles from the new waypoint to reach. The closest from
the waypoint has a radius of di, the second one has a radius of do. Finally, dST is the distance
between the boat and the target waypoint.

The algorithm for the station keeping is described by the Table 3.2.2.

3.3 Servomotors
Two servomotors are needed for this project. Both can have a bigger angle for the rotation than
necessary, so these actuators are calibrated by choosing a range of PWM signals corresponding
to the desired angles.

1. The rudder : maximum angle of rotation of 180°. We need to control it to give an angle
from -45° to +45°.

2. The sail : maximum angle of rotation of 2160°. We need to control it to give an angle from
0° to 90°.

Thus, we can suppose that this is a linear fonction and we can control the rudder with the
formula (3.2) (f(δ) in ms).

f(δ) = PWMmin + PWMmax − PWMmin

ANGLEmax −ANGLEmin
(δ −ANGLEmin) (3.2)

14

Station keeping algorithm
inputs: m, θ, ψtw,b, q
1. If dt > do, compute δr and δs via lne following
2. if di < dt > do, compute δr and δs as follows:

if cos(τ − (ψtw − π
2)) > 0

if cos(α− (ψtw + π
2)) > cos(α− (ψtw − π

2))
θ∗ = θ∗ + π

2
else

θ∗ = θ∗ + π
2

if cos(ψtw − θ∗ + cos(ξ)) > 0
if sin(ψtw − θ∗) > 0

q=-1
else

q=1
θ̂ = ψtw + pi+ qξ

else
θ̂ = θ∗

3. if dt > di, compute δr and δs as follows:
if cos(ψtw − θ∗ + cos(ξ)) > 0

if cos(θ∗ − (ψtw − ξ)) > cos(θ∗ − (ψtw + ξ))
q=-1

else
q=1

θ̂ = ψtw + pi+ qξ
else

θ̂ = θ∗

4. if cos(θ − θ̂) > 0
δr = δmax

r sin(θ − θ̂)
else
δr = δmax

r sign(sin(θ − θ̂))
|δs| = π

4 ∗ (cos(ψtw − θ̂) + 1)
outputs : δr, δs and q

Table 3.2: The controller for station keeping

15

Chapter 4

Communication

4.1 Real time simulation
Why communicate between the computer and the sailboat ?

The first thing needed was a real time simulation of the boat. Thus, I can easily control what
happen with our sensors.

I used the XBEE device in order to have the data in real time. The XBEE are long-range
radio devices. I used the library serial to encode the data in string to bytes on the Raspberry
Pi and decoded them on our computer in the other way. Thus, I plugged one in USB on the
Raspberry Pi and the other one on our computer[XBE22] which allowed us to configure them:

Parameters XBEE 1 XBEE 2
PAN ID 4820 4820

DH (Destination High) 0 0
DL (Destination Low) 0 1
MY (Source Address) 1 0

I needed to configure all the XBEE on the same channel, then with the same ID. When this
was done, one XBEE is used as the coordinator1 and the others as end points. This way the
XBEE could discuss with the coordinator and not between them. With this configuration, I sent
on one way the data that the sailboat measured with its sensors to the computer. It allowed to
display the boat in an approximated real time with a delay of 0.2s2. [Fig.4.1]

In this case I used the library matplotlib to see the sailboat, modifying the code "draw_sailboat"
of Mr. Luc Jaulin.[Luc15][Luc15]

However the angle δsmax given by the controller is not the true δs of the sail : it should
depends on the wind. Thus, I had to add a formula for the visualization which also changed the
angle from 0° to 90° to -90° to 90°.3

Added part in the algorithm for the visualization of the sail.
σ = cos(ψap) + cos(δsmax)

if σ < 0 : δs = π + ψap

else: δs = −sign(sin(ψap)) ∗ δsmax

1The coordinator will broadcast data to all connected end points
2which is also the frequency of the main program
3This added part should not be in the controller, just for the visualization in matplotlib.

16

Figure 4.1: Real time simulation

Eventually and because of the trigonometry I had to convert the 0° from east to north. Thus
I added π

2 on θ and γ.

You can see a demonstration of the program here4.

4.2 Manual control
The second idea was to control the boat using the computer and the XBEE if the mission failed.

• A program could be used to control the boat with the XBEE.
The Raspberry Pi checks continuously if it receives a message. Thus, if I wanted to control
the servomotors, I will send a message with 3 values : a byte 1 for True, the angle of the
sail, the angle of the rudder.
The value of those angles were given with the keyboard. If the XBEE control was on, the
autonomous mission will stop.
To turn off the XBEE control to see the sailboat go back again on its autonomous mission
press "r".

• The RC had to be calibrated : the maximum and minimum of the PPM signal created by
the joystick match with the maximum and minimum angle of the sail and rudder.
If I start using the RC, then it will stop the main program or the control of the XBEE.

You can see a demonstration of the program here5.

4I set the speed at 1m/s and blow in the Calypso’s direction. Thus, I could see the true wind and the apparant
wind created.

5When the program is launch it start to send data to the raspberry using XBEE. However the first byte will
be false until I set an angle using the directional arrow on our keyboard.

17

https://www.youtube.com/watch?v=MKt0aj4Uysc
https://youtu.be/tk7JTROOOZ8

4.3 Display the boat on a map
However, one of the main issue with matplotlib is the fact that I couldn’t see the sailboat in real
time on a map. Thus, thanks to Mr. Pelle, a student working with me that made a server with
open map[Pel22], I was able to create a program to display the boat. [Fig. 4.2]

Figure 4.2: Map on the server

Two different way of using this server were useful:

• When I tested the sailboat in real time, to see where the boat was on the lake.

• Once I replayed the tests with logs.

In any cases, the way the algorithm works is the same. Firstly, a python script runs with the
catching data from the log file or the receiving data from the XBEE. It sent them to a mysql
database. The mysql database is named "sailboat" with several tables (wind, direction, position,
waypoints,..). A PHP file gets the sql data and send them in a JavaScript function that a HTML
file use to display everything on the internet. To create this map, I used the library leaflet. [Fig.
4.3]

Figure 4.3: Monitoring scheme to display the sailboat

I was now able to see where is the boat, the waypoints on the map and the angle he follows
θ̂, the true wind, its yaw and angle of the sail/rudder on my computer.

18

Chapter 5

Final build and test

5.1 Build a support for the Raspberry Pi
The sailboat I used is called "Regazza proboat". [Fig. 5.1].

Figure 5.1: Sailboat ragazza proboat and the system inside

Two supports are on the hull: one on the front for a camera1 and another one at the bottom
for the calypso weather vane.
Furthermore, this sailboat has two sails which are moving at the same time using a servomotor
inside the hull. The first servomotor is a winch (the black cylinder) that stretch the sail with

1the sailboat was used for championships and it had to recognize figure when it was on the water.

19

the rope. The second one is used to control the rudder below the servomotor for the sail.

However and because it is the first year that the boat is fully controlled with a Raspberry Pi
there was no support for this one. Thus, I had to build one using the open source application
Free Cad. [Fig. 5.2]

Figure 5.2: Support for the Raspberry Pi

I assembled all of the sensors and servomotors to the Navio2 and the Raspberry Pi [Fig. 5.3].

Figure 5.3: Sensor Connection

We can see the two servomotors on the left (the black one for the sail and the blue for the
rudder).
On the top left the Calypso which is connected in bluetooth.
The GNSS antenna on the top.
The two batteries are on the right:

• The USB battery is on the top right

• The LiPo battery is on the bottom right

20

The LiPo doesn’t bring enough battery for the raspberry, the Navio and the servomotors so
I plug another one in USB. At the end of my internship, I replaced the three cell battery with a
5 cells so everything can be powered by this one.

To control the servomotors I also had to add an ESC2 (on the bottom of 5.3) that converts
the PWM signal to the appropriate level of electrical power for the servomotor and a BEC3 (on
the bottom left of 5.3) which regulates the voltage from the battery to 5V.

Then, I added the communication part with the XBEE and the RC. [Fig. 7.1]
Finally, I was able move on the components inside the hull [Fig. 5.4]:

Figure 5.4: Inside of the hull

5.2 Testing the boat on the water
Before sending the boat on the water I had to make a program called "checking" to see if every
component is working inside the boat. [Fig. 5.5]

When I checked that everything worked correctly, I finally launched the boat on a canal of
Birmingham. [Fig. 5.6] Its mission was to follow a line and come back near the border to catch it.

However, the canal was surrounded by buildings, which led to GPS imprecision of 5m4. Thus,
I had to go somewhere else : the Bournville Radio Sailing and Model Boat Club. It’s a Lake
near Birmingham where people used to go there to radio-control sailboats.

2Electronic Speed Controller
3Battery Elimination Circuit
4half the size of the canal

21

Figure 5.5: Program to test the Sensors and actuators - video

Here I tested the following mission :

1. A line following of two points

2. A line following of three points (triangle)

3. A station keeping

4. A line following with station keeping

On the lake, I used my computer [Fig. 5.7] to see where the sailboat aimed at and where it
was in its mission (on the right of my computer) and all the data that I received from the XBEE
(on the left).

Figure 5.6: Canal near Aston University Figure 5.7: Test of the boat on the lake

5.2.1 Test of the line following
The first example of a simple line following mission was to cross the entire lake with two GPS
points [Fig. 7.2], doing a loop between them without stopping. This way, I could easily see where

22

https://youtu.be/t8NawBS9Uao

the sailboat was on its mission and if the algorithm was working. [Fig. 7.3]. I quickly saw that
the sailboat didn’t go completely to the waypoints. It was due to a lost the GNSS signal two
times which made the sailboat going beyond the next waypoint. Thus, the algorithm believed
that the sailboat reached the next waypoint.

To overcome this issue and because I were running out of time, I had temporarily modify the
algorithm to confine the boat inside a rectangle where the lake was : if the position was outside
the rectangle the algorithm didn’t take the value. I tred this on a line following triangle mission.
[Fig. 7.4, 7.5]

However, I also saw that I lost the GPS signal very often. Thus, for the next test, I decided
to change the hardware by putting the GPS antenna outside the boat, creating a waterproof
pathway.

Thus, the GPS signal was much better and I never lost the GPS signal again [Fig. 7.6, 7.7]5
[Fig. 7.8, 7.9].

Nonetheless, There was not much wind so the boat believed (surely because of the sail) that
the wind came in from it. It explained why the sailboat applied the upwind "zig-zag" technique
during all along its way.

Thus, I decided to wait until the wind raised a bit more and I applied both station keeping
and line following mission for the next experiences.

5.2.2 Test of the station keeping
Firstly, I tested the station keeping [Fig. 7.10, 7.11]. The sailboat had to go to one point and
stay for one minute. On the experience he stayed for 84s.

Then, I decided to combine both station keeping and line following. The sailboat had to
follow a line to a point and then apply a station keeping mission. Once he reach it for 60s for
example, he had to go to the next one. The path was composed of three points [Fig. 7.12, 7.13].

The boat goes starts to follow a line from the border of the lake to a point in the middle
upwind: it did the "zig-zag" technique. Then, the sailboat reach the waiting area into with
first circle and apply the station keeping strategy for the total time of its mission. After 60s,
he went the final point, and started to do another station keeping before I stopped it with the RC.

5I had to stop the mission here with the RC because of the lack of wind, the mission was taking too long

23

Chapter 6

Conclusion

With a new set of sensors, the main purpose of the internship was to build a working sailboat,
able to do autonomous missions. Thus, the idea was to rethink a previous system for this sailboat
using Arduino and ROS into another one using only Python.

Thanks to Mr. Wan and Aston University, I was able to set up this sailboat and test it in real
condition. Concerning the sensors, the IMU and GNSS were both into directly on the Navio2
while the wind sensor was outside the boat, connected in Bluetooth. The two actuators were
one for the sail and the other for the rudder.

The first purpose was to collect the data from the sensors into separate programs. Then I
had to filter the data, calibrate the IMU in order to have the most accurate values. Once it
was done, I had to gather them into a main program to give a value of angle to the actuators.
However, some sensors blocked the program while waiting for a value. So, the algorithm for each
sensors had to work in parallel, storing each value (position, speed,..) into a state vector. This
way, the main program only read this vector and then had a good frequency (quickly calculate
the angle to give to the servomotors). Finally, I had to calibrate the servomotors to match a
pwm value with a desired angle.

However, even if the software and hardware were working, it is useless if I couldn’t communi-
cate between the computer and the sailboat, to see what the boat is doing in real time. Thus, to
get rid of the wifi, I used a radio device able to exchange data between the two devices. This way I
could control if the values given to the servomotors were correct and if the algorithm was working.

All in all, I tested the sailboat in real condition with line following and station keeping algo-
rithms, building a support for the Raspberry Pi . The first experiment were not good enough
because of the error on the GNSS so I had to put it outside. Then the sailboat was able to do
its mission properly using both a station keeping and line following mission.

24

Chapter 7

Appendices

Annex A: Sensors connection

Figure 7.1: Scheme of the sensors connection

25

Annex B : Results of the experiments

Figure 7.2: First test of simple line following
- on the map, demonstration here.

Figure 7.3: First test of simple line following
- result

Figure 7.4: First test of triangle line follow-
ing - on the map, demonstration here.

Figure 7.5: First test of triangle line follow-
ing - result

Figure 7.6: Second test of triangle line fol-
lowing - on the map, demonstration here.

Figure 7.7: Second test of triangle line fol-
lowing - result

26

https://youtu.be/_MpkI5SKx_g
https://youtu.be/3MgGU90remQ
https://youtu.be/ECxD_G0-8rI

Figure 7.8: Third test of triangle line follow-
ing - on the map, demonstration here.

Figure 7.9: Third test of triangle line follow-
ing - result

Figure 7.10: First test of station keeping -
on the map, demonstration here.

Figure 7.11: First test of station keeping -
result

Figure 7.12: Second test of station keeping -
on the map, demonstration here.

Figure 7.13: Second test of station keeping -
result

27

https://youtu.be/3bvXP3jknLc
https://youtu.be/lxb_lQooznk
https://youtu.be/U3lB9ccG7I4

Bibliography

[Aug22] Morge Augustin. Gitlab Repository, 2022.

[cal] Python Program to transform a ellipsoid into a sphere.

[LJ12] Fabrice Le Bars Luc Jaulin. A simple controller for line following of sail-boats. 2012.

[Luc12] C. Viel; U. Vautier; J. Wan; J. Luc. Experimental results of position keeping for
autonomous sailboat. 2012.

[Luc15] Jaulin Luc. Mobile Robotics. iSTE, 2015.

[Mou08] M.C. Mouchot. Navio2 Documentation, 2008.

[Pel22] V. Pelle. Github repository, 2022.

[Vau19] U. Vautier. Github repository, 2019.

[Wik22a] Wikipedia. Birmingham, 2022.

[Wik22b] Wikipedia. Aston Univerity, 2022.

[XBE22] Zigbee RF Modules. 2022.

28

https://gitlab.ensta-bretagne.fr/morgeau/aston-project-2022
https://github.com/vivipal/Birmingham-Sailboat-monitoring
https://www.ensta-bretagne.fr/jaulin/paper_jaulin_irsc12.pdf
https://www.researchgate.net/publication/328240647_Position_keeping_control_of_an_autonomous_sailboat
https://www.researchgate.net/publication/328240647_Position_keeping_control_of_an_autonomous_sailboat
https://www.ensta-bretagne.fr/jaulin/robmooc.pdf
https://docs.emlid.com/navio2
https://github.com/vivipal/Birmingham-Sailboat-monitoring
https://github.com/vivipal/Birmingham-Sailboat-monitoring
https://commons.wikimedia.org/wiki/File:Birmingham_in_England.svg
https://en.wikipedia.org/wiki/Aston_University
https://docs.emlid.com/navio2

7
Version du 05/04/2019

RAPPORT D’EVALUATION

ASSESSMENT REPORT

Merci de retourner ce rapport par courrier ou par voie électronique en fin du stage à :
At the end of the internship, please return this report via mail or email to:

 ENSTA Bretagne – Bureau des stages - 2 rue François Verny - 29806 BREST cedex 9 – FRANCE

 00.33 (0) 2.98.34.87.70 / stages@ensta-bretagne.fr

I - ORGANISME / HOST ORGANISATION

NOM / Name ___

Adresse / Address ___

 __

Tél / Phone (including country and area code) _______________________________________

Nom du superviseur / Name of internship supervisor

 __

Fonction / Function __

Adresse e-mail / E-mail address __

Nom du stagiaire accueilli / Name of intern

II - EVALUATION / ASSESSMENT

Veuillez attribuer une note, en encerclant la lettre appropriée, pour chacune des caractéristiques

suivantes. Cette note devra se situer entre A (très bien) et F (très faible)
Please attribute a mark from A (excellent) to F (very weak).

MISSION / TASK

 La mission de départ a-t-elle été remplie ? A B C D E F

 Was the initial contract carried out to your satisfaction?

 Manquait-il au stagiaire des connaissances ? oui/yes non/no

Was the intern lacking skills?

Si oui, lesquelles ? / If so, which skills? ___

ESPRIT D’EQUIPE / TEAM SPIRIT

 Le stagiaire s’est-il bien intégré dans l’organisme d’accueil (disponible, sérieux, s’est adapté au

travail en groupe) / Did the intern easily integrate the host organisation? (flexible, conscientious,

adapted to team work)

 A B C D E F

Souhaitez-vous nous faire part d’observations ou suggestions ? / If you wish to comment or make a

suggestion, please do so here

8
Version du 05/04/2019

COMPORTEMENT AU TRAVAIL / BEHAVIOUR TOWARDS WORK

Le comportement du stagiaire était-il conforme à vos attentes (Ponctuel, ordonné, respectueux,

soucieux de participer et d’acquérir de nouvelles connaissances) ?

Did the intern live up to expectations? (Punctual, methodical, responsive to management

instructions, attentive to quality, concerned with acquiring new skills)?

 A B C D E F

Souhaitez-vous nous faire part d’observations ou suggestions ? / If you wish to comment or make a

suggestion, please do so here

INITIATIVE – AUTONOMIE / INITIATIVE – AUTONOMY

Le stagiaire s’est –il rapidement adapté à de nouvelles situations ? A B C D E F

(Proposition de solutions aux problèmes rencontrés, autonomie dans le travail, etc.)

Did the intern adapt well to new situations? A B C D E F

(eg. suggested solutions to problems encountered, demonstrated autonomy in his/her job, etc.)

Souhaitez-vous nous faire part d’observations ou suggestions ? / If you wish to comment or make a

suggestion, please do so here

CULTUREL – COMMUNICATION / CULTURAL – COMMUNICATION

Le stagiaire était-il ouvert, d’une manière générale, à la communication ? A B C D E F

Was the intern open to listening and expressing himself /herself?

Souhaitez-vous nous faire part d’observations ou suggestions ? / If you wish to comment or make a

suggestion, please do so here

OPINION GLOBALE / OVERALL ASSESSMENT

 La valeur technique du stagiaire était : A B C D E F

Please evaluate the technical skills of the intern:

III - PARTENARIAT FUTUR / FUTURE PARTNERSHIP

 Etes-vous prêt à accueillir un autre stagiaire l’an prochain ?

Would you be willing to host another intern next year? oui/yes non/no

Fait à _______________________________________ , le ______________________

In __ , on _____________________

Signature Entreprise ____________________________ Signature stagiaire

Company stamp _______________________________ Intern’s signature

Merci pour votre coopération

We thank you very much for your cooperation

	Acknowledgements
	Abstract
	Keywords
	Introduction
	The University of Aston
	Why autonomous sailboat ?
	Purpose of the internship
	Notations

	Sensors
	IMU
	GNSS receiver
	Weather Sensor

	Controlling the Servomotors
	Collecting the data
	Controller
	Line following
	Station Keeping

	Servomotors

	Communication
	Real time simulation
	Manual control
	Display the boat on a map

	Final build and test
	Build a support for the Raspberry Pi
	Testing the boat on the water
	Test of the line following
	Test of the station keeping

	Conclusion
	Appendices

