
Internship report

SAS Lab, Stevens Ins-
titute of Technology

1er octobre 2022

Florian Jerram
florian.jerram@ensta-bretagne.org

Résumé

En tant qu’étudiant en deuxième année d’école d’ingénieur à l’ENSTA Bretagne (Ecole
Nationale Supérieure de Technique Avancées), j’ai du effectuer un stage de 14 semaines. Spé-
cialisé en robotique autonome, j’ai ainsi fait le choix logique de prendre part à un projet d’un
institut de recherche visant à construire et à programmer un drone de telle sorte qu’il soit
totalement autonome. Ce stage à eu lieu dans un des laboratoires de l’université Stevens Institute
of Technology à Hoboken, SAS LAb (Safe Autonomous Systems), dans le New Jersey aux
Etats-Unis. En tant que premier voyage hors Europe, cette expérience fut aussi enrichissante
d’un point de vue professionel que personnel, et c’est ce dont je traite dans ce rapport.

Abstract

As a second year student in the engineering school ENSTA Bretagne (Ecole Nationale
Supérieure de Technique Avancées), I had to do a 14 weeks internship. Specialized in au-
tonomous robotics, I logically chose to participate to a project in a research institute aiming
at developing a custom-built quadrotor platform for AI and cyber-security research in the Safe
Autonomous Systems Lab (SAS Lab). I must effectively create and program a drone so that
it can fly by its own, which means that it does not need any human help. This one took part
in one of the laboratories of the university Stevens Institute of Technology, in Hoboken, New
Jersey, United-States.

Appreciations

I am very grateful to SAS Lab, which allowed me to have the greatest experience I have ever
had, and also to the team which I worked with. Without them I would not have gotten this far.
Please find below a picture of my appreciated work team.

Figure 1 – SAS Lab’s work team

2

Contents
1 Introduction and context’s presentation 4

2 Problematization of the topic, purpose and stakes 5
2.1 The topic and purpose . 5
2.2 The stakes . 5

2.2.1 The language barrier . 5
2.2.2 Comparison our knowledge . 6
2.2.3 Having someone with a different background on the team 6
2.2.4 Professional and personal abilities . 6
2.2.5 Physical architecture . 8

3 Internship’s activities and results 9
3.1 Description of the drone and its environment . 9

3.1.1 The drone . 9
3.1.2 The environment . 9

3.2 Electrical part . 10
3.3 Mechanical part . 12
3.4 Software part . 14

3.4.1 Image processing . 14
3.4.2 Vicon cameras and MavRos . 15
3.4.3 An important step: a simple take off . 19
3.4.4 A useful tool: Rosbag . 19

3.5 Mission Planner . 19
3.5.1 Configuring the ESC . 19
3.5.2 Arming the motors . 20
3.5.3 Configuring the compass . 20
3.5.4 Some additional parameters . 20

4 Undone activities 22
4.1 Electrical and mechanical parts . 22
4.2 Software part . 22

5 Conclusion 23

3

1 Introduction and context’s presentation
The internship I have made was not in a company, it was in a university’s laboratory. The

university is called Stevens Institute of Technology, and the laboratory’s name is SAS Lab (Safe
Autonomous Systems). It took place in Hoboken in the New Jersey (United-States). This
project was not for the country or the military, but for the laboratory itself, that is why it was a
self-paid project.

The goal we aimed at, was developing a custom-built quadrotor platform for AI and
cyber-security research in the Safe Autonomous Systems Lab. I had effectively to create and
program a drone so that it can fly by its own, which means that it does not need any human
help. This project required teamwork. We were effectively 9 students working on it. That is
why, in order to not do the same tasks twice, we split the group into 3 smaller groups. To fulfill
our mission, we needed effectively to work on the electrical, mechanical, and software field.

During those four months, I had the opportunity to discover, as well as to broaden, my
knowledge about robotics, because SAS Lab is indeed a research laboratory specialized in
robotics, and especially in drones. Not only have I learned some new abilities, such as the
manner to build a drone from nothing, set its parameters in a ground control hardware (such as
Mission Planner) and how to estimate its position and orientation thanks to a dozen of cameras,
called Vicon Motion Capture. But I also found concepts that I had already seen, such as the
manipulation of ROS, the programming in Python and C++, and the image processing thanks
to OpenCv. The laboratory has several drones, and a sort of cage, equipped with the Vicon
cameras, designed to test our programs in the robots. It also has some 3D printer, which were
very useful to mount our drone in the desired way.

4

2 Problematization of the topic, purpose and stakes

2.1 The topic and purpose

The purpose of the internship was to develop a custom-built quadrotor platform for AI and
cyber-security research in the Safe Autonomous Systems Lab (SAS Lab). I had effectively to
create and program a drone so that it can fly by its own, which means that it does not need any
human help. The plan was to make the drone fly indoors at the beginning, because we had a
test cage at our disposal, and outdoors as soon as the drone could perfectly fly indoors.

To fulfill this mission, we were working in a team. This one was composed of 2
coordinators and 8 students. The other students were doing their “summer lessons” in
this laboratory, and they were all American students. SAS Lab was funding this project,
that is why, to complete our duty, we had plenty of equipment at our disposal. I am
particularly thinking of the fact that they have got several NVIDIA cards to build the
drone (a Jetson Nano and a Jetson Xavier). By the way, the drone burned once (before I
arrived), so they had to buy every component again, and it did not seem to be a massive problem.

However, this work was not as easy as it looks like, especially because of our different
backgrounds.

2.2 The stakes

2.2.1 The language barrier

Firstly, this project was representing a particularly important stake, because of the country
barrier. I was effectively coming from another country and even from another continent,
that is why nobody was certain that we were following the same courses or using the same
methods and technics. Thus, I was working with natives and I was the only one being a
foreigner. By the way, it was the first time that SAS Lab was working with a foreign intern.
We were thus all dreading this situation at the beginning, but as soon as the project began,
we all felt very comfortable with it. Although I was not that good in English, everyone was
able to understand me and I was also able to understand everyone. At the beginning, as I
cannot understand every single word that they were using in their sentences, I just had some
difficulties to dissociate the useful content from the useless content. I was however doing my
best to do so, and I learned this ability in a very short period of time, because I really needed
it, in order to stop asking them to repeat what they just said. As we were a team, we were
often communicating about what we did, and how we did it. Moreover, we had a meeting
once a week to share with everyone the progress of our work. It was very rewarding for me,
because I had to prepare and show some slides with the progress I have made and the topics
I wanted to tackle for the next week. This taught me how to organize myself, and how to
talk in front of an audience in a foreign language. Regarding all this communication that we
had, it was thus really annoying if I had not developed any ability like this. For example,
in the same way, another required skill was to understand a sentence or a whole point from
understanding just one word or one group of words. It was as useful as the first skill I men-
tioned, because usually Americans are mincing their words (compared to the British for example).

5

2.2.2 Comparison our knowledge

Regarding the knowledge that we acquired during our respective lessons, I was surprised
that we had quite the same knowledge than the Americans. Indeed, what could be more
commonplace than thinking that we were working with different methods because we were
working with different components? However, as we are using for example a lot of NVIDIA
components in France, and as it is an American brand, at the end of the day, it was not
surprising that I had to work with an NVIDIA as a companion computer.

I was however the only one who was able to manipulate ROS. It was very surprising, because
at the first meeting, in which we had to explain our plans and how we will handle them, they did
not mention ROS. I was thus surprised and asked why they did not want to use ROS, and it is
not that they did not want to use ROS, it was just that they did not know this tool. I however
took the lead and asked to use ROS during the project because I really wanted to strengthen my
ROS skills during this internship, and also because I could not consider a more efficient tool than
ROS to exchange data between the different components of the drone. And it was also a clever
way to be useful to the team by teaching them how to manipulate ROS, which is very useful in
robotics. As I was the only one knowing how to use ROS, I thus had to be the leader in the
software part, in the way that I had to explain to everyone what they have to do to make things
go further, and how their tasks work and how it is going to help us in our project. This was a
very rewarding task, because I never had to lead a part of a project in another language be-
fore. I definitely developed my self-confidence in speaking in English as well as in giving directives.

2.2.3 Having someone with a different background on the team

At the beginning of the internship, and even before, I did not really understand why they
accepted to take me as an intern. It was indeed a lot of paperwork, and they even paid me for
my work. I was also thinking that anybody else could have done the work I performed. However,
after my arrival, I realized that this was quite important to have someone in the team who has
a different background. Indeed, I had more an external opinion on the subject, and I could
propose some other technics or methods that they did not think about it, which could possibly
be more efficient (the use of ROS for example). That is why, neither the university nor me have
some regrets about it, because in one hand, I brought a lot of knowledge for the team, and in
another hand, I really improved my English and robotics skills.

It was really important to me to do my internship in an English-speaking country, because
all my scholarship, my first foreign language was German, that is why I can speak above average
in this language but that is also why I had a certain backwardness in English. It was a little
bit awkward, but as I had a lack of practice in this language, I was a little bit shy to speak in
English in front of some other people. But now, this is not the case anymore, because I am not
behind anymore and I have got a better accent. It is actually the opposite: I only ask some
opportunities to speak English and strengthen my skills to sound like a native !

2.2.4 Professional and personal abilities

Traveling into the United-States is also a very good way to mobilize and enhance my
open mind. People from the other side of the earth have effectively a different living-routine.
First of all, they are speaking in another language, which is a huge gap. Moreover, they

6

are not working with the same methods and software than us. Everything is different. I
did have to adapt myself to these new ways of living and working. It was however with
a real pleasure, because strengthening this ability of adapting myself to a completely new
environment could be mobilized in companies. Each company may work with its own methods
and ‘language’, that is why we can associate a company to a little country. I will be thus able
to transfer this ability to companies in which I will work, so that I could adapt myself much sooner.

Not only is doing an internship in a foreign country a professional support, but it is also
personally rewarding. As it was my first time outside Europe, I was quite intimidated by this
whole new system and people, with different backgrounds and culture. For example, Americans
are in general not shy at all: they are all speaking very loud and they do not hesitate to take the
floor. In a personal way, I am particularly thinking about the sport. One of the most popular
sport in the United-States is the basketball, that is why you can find plenty of public courts on
the streets. And a very common thing in this country, is to challenge some other players you
do not know. In this way, you are playing with and against unknown people. Beside the fact
that it is a very good way to meet new people, it is also a very intimidated step to do. Indeed,
playing with your friend is way more soft and less stressful than playing with unknown people,
because here you do not want to disappoint the people you asked to play with. It was exactly
the same process for the volleyball. During my stay in New York, I wanted to do a lot a sports.
I thus ran and played basketball and beach volleyball. However, the sport I practiced the most
was the beach volleyball. Indeed, there are some courts in Central Park. I went there almost
every day. It was my kind of "afterworks". As I made my very best friends on those courts, we
can understand that it is very necessary to act as a native and to ask random people to play
with and against. It was not that easy at the begining, because it is not common in France to
act like that, but as soon as you meet new people, you feel way more confident. That is why,
the first time you ask is the hardest. At the end of my internship I knew almost everyone, and
I was like a referent because I knew all the specific rules regarding the Central Park’s courts.
Here is a picture of a few players I met.

Figure 2 – Beach volleyball team

To show that we also had some different backgrounds, let’s look at the nationality of those

7

players. From left to right, we were: a French, a Brazilian, a Nigerian, two Americans, a Russian
and a Korean.

In a professional context, it was the same thing for our weekly meeting. For an unknown
reason, we only had 40 minutes of meeting. In order to let everyone speak, we had not to
monopolize the floor and to speak in a concise way. However if someone was not respecting
those rules, we had to interrupt him (politely), and take the floor in order to let everyone
knows the work you did and the work you planned for the next few days. That is why I had to
do the same thing than the native and to overstep my bounds, otherwise I would have out-
shined me. Being introverted by nature, I thus came back in France way less shy than I was before.

2.2.5 Physical architecture

During my scholarship and even during my second-year internship, I had to have a global
and accurate view of the project, so that I can better know what I will do, and in which order. A
useful tool is the physical architecture. This has indeed two main goals: in one hand it allows us
to know the system’s purpose and requirements, and in a second hand it shows that the system is
conceptually realizable. This ability can be utilized everywhere. This method is internationally
widespread. At the other side of the earth, I effectively had to deal with it, as you can see in 3.
This was very useful for the whole team because we were coming from everywhere, with different
backgrounds.

Figure 3 – Physical architecture of the drone

8

3 Internship’s activities and results

3.1 Description of the drone and its environment

As I said before, the mission we had to fulfill was to build and to program a drone in order
to make it fly autonomously. But before entering in the details, it is really important to describe
our drone and its environment, in order to know what we are talking about.

3.1.1 The drone

We had a lot of equipment at our disposal. I am particularly thinking about the components
of the drone. This one was composed of Lipo batteries, motors and ESC, a ZED 2 camera, a
Pixhawk and a Jetsnon Nano at the begining and a Jetson Xavier afterwards.

3.1.2 The environment

As we all know, the GPS signals are not efficient at all inside a building, that is why we
could not rely on the GNSS to tell the drone where it was in the cage. But we could get round
this obstacle thanks to the cameras we installed in the test cage, called Vicon cameras. We
could indeed follow the drone’s position by following it with all the cameras. To do so, we just
had to put some Vicon tracker on it. In order to satisfy this demand, we divided the team in
three smaller teams. We thus created the electrical, mechanical and software teams. As you can
see in the 4, we were in each team respectively two, four and two.

Figure 4 – Team structure of my internship

We chose this configuration considering our backgrounds, but we decided it all together. As
it was an important task, we set our aims with seriousness. Beside we split the tasks, we still
have to communicate with each other to know what everyone had done, and thus to know how
to modify our work in consequences. This is also a way to control the well execution of all the

9

tasks, beside we also have weekly meetings for that.

Another skill I developed during my internship is to delegate the work. As we are two
students working on the drone’s software, we had to be very careful not doing the same code
twice. That is why we were always communicating and delegating the work to prevent from
this waste of time. Although we were in a team, we still had to work with the other teams
to know what they did, because a shift in a team might causes a shift in the other teams.
This was the main goal of our weekly meetings, in which each team was telling the other
what they have done and how. For example, as I was the only one who knew how to use
ROS, I was obviously in the software team, but I still helped a little bit in the two other
teams. I was however feeling well in the software team, because in our school, we are more
specialized in software than in electrical or mechanical, although we have got some lessons about it.

The logical way to show my internship’s results is to split them in three parts, one part
corresponding to one team.

3.2 Electrical part

The first part was the electrical one. An important thing in order to make the motors
spinning, is to associate each motor to an ESC. An Electronic Speed Control (ESC) is an
electronic circuit that controls and regulates the speed of an electric motor. After powered up
those ESC thanks to the LiPo battery, which is wired to the blue board (which was acting as a
power distributor), we had to connect the ESC to the motors, in order to make them work, as
you can see in 5.

Figure 5 – How the ESC and motors are powered

Afterwards, we calibrated the ESC, otherwise the motors would not have worked. At
first, we tried to calibrate them all at once, but it did not work (and we could not figure
out why), so we attempted to do a semi automatic calibration, which is a little bit more
fastidious because you have to calibrate ESC-by-ESC, but it worked. However, the all

10

at once calibration is more accurate than the semi automatic one. To do so, we used a
Pixhawk and Mission Planner. Pixhawk is an independent open-hardware project providing
readily-available, and high-end, autopilot hardware designs to the academic, hobby and
industrial communities. And Mission Planner is a full-featured ground station application for
the ArduPilot open source autopilot project for Plane, Copter and Rover. It is compatible with
Windows only. Mission Planner can be used as a configuration utility or as a dynamic control
supplement for autonomous vehicles. I explain a little bit bellow, in 3.5.1, how we configured them.

Moreover, an important fact that we should not forget, is that the motors must not rotate
all in the same sens. As we can see on the photo 6, the crossed motors are both going clock wise
or both going counter clock wise.

Figure 6 – Motors’ spinning sens

Furthermore, to know how high the drone was, we wanted to use a Lidar. This is a detection
system which works on the principle of radar, but uses light from a laser. That is why we
needed to wire it on the Pixhawk, our flight controller. We wired it thus trough the Serial 4/5
port. We encountered however a problem, because Mission Planner was giving a “bad lidar
health” warning, and we did not know why. After thinking that it was because of the source
that was powering the lidar, we figured out that the solution was to resolder the wires, but
in the correct order, as showed in the figure 7, because they were not. To be sure that we
soldered the wires well, we checked the lidar values in Mission Planner under the statues named
“rangefiner1” (cm) and “sonarrange” (m).

Another problem we encountered was that one motor was stalling at low throttle speeds.
We tried to change which ESC was connected to certain MAIN ports on the Pixhawk, as well
as to change the motor, but it did not solve the issue. The issue was in fact due to Mission
Planner, in its manner to coded the drone.

11

Figure 7 – Rewiring the lidar to the Pixhawk

3.3 Mechanical part

The goal of this team was to 3D print some “mounts” for the drone. We needed indeed one
for the camera, because we wanted it to be stabilized. It looked like on the figure 8: on the left
side we can see the prototype of this holder, and on the right we have an overview of the real
aspect of them, mounted on the drone.

Figure 8 – Camera holder

Furthermore, we also needed one for the Vicon sensors. Vicon stands for Vicon motion
system, which is a Motion Capture (MoCap). This is the process of recording the movement
of objects or people. Here is a picture showing the protection and test cage with the Vicon

12

cameras all around above.

Figure 9 – Vicon cameras in the cage

The cameras are able to detect the drone, under the condition that the drone holds the
Vicon sensors. As previously mentioned, they look like small white spheres, and they have to be
stable on the drone to be as accurate as possible. On this figure 10, we can see on the left the
prototype of those tracker holders, and on the right we have an overview of the real aspect of
them, mounted on the drone.

Figure 10 – Vicon tracker holders

All the prototypes of the holders were built thanks to Solidworks, which is a solid modeling

13

Computer-Aided Design (CAD) and Computer-Aided Engineering (CAE) application. Below is
a screenshot of what the final Solidworks project looked like.

Figure 11 – Solidworks final look of the project

3.4 Software part

3.4.1 Image processing

The goal of this team was probably the most tedious. The first purpose we aimed at, was to
focus on the ZED camera. The ZED is a passive stereovision based camera that reproduces the
way human vision works. Using its two “eyes” and through triangulation, the ZED understand
its surroundings and create a three-dimensional model of the scene it observes. Thanks to
the ZED-SDK, we thought that it would be very easy to do some edge recognition or some
collision avoidance, because the open source was sharing the scripts. Indeed, the ZED-SDK
is well-documented and easy-to-use C++ and Python API for building real-time space-aware
applications on desktop and embedded platforms. It was however harder than expected.

Indeed, The ZED-SDK’s version that we can download on our Jetson Nano is the jetpack 4.6
version, which is compatible with the Jetson Nano running CUDA 10.2. CUDA (or Compute
Unified Device Architecture) is a parallel computing platform and application programming
interface (API) that allows software to use certain types of graphics processing units (GPU)
for general purpose processing. However, our Jetson Nano is unable to run CUDA 10.2. The
only version that our Jetson Nano can run, is CUDA 11.0, which is currently installed on the
Nano. The reason is that the architecture of the Jetson Nano (“arm”) is not compatible with
the architecture that Nvidia proposes for the ZED-SDK (“amd64”). As we were privileging
having CUDA downloaded than having the SDK downloaded, the consequences of that, is that
we cannot use the ZED-SDK. We thus had to write our own programs in order to do some
object recognition or obstacle avoidance.

As we did it, we were able to do some real-time edge recognition thanks to the Canny filter
in OpenCv, which can be used for obstacle avoidance for example. OpenCv (Open Source

14

Computer Vision Library) is an open source computer vision and machine learning software
library.Here is how the python files image_publisher.py and image_subscriber.py work.

Thanks to OpenCv, the drone can record its environment in real-time, which allows it to save
the frames as OpenCv images. We cannot however send some OpenCv images with the open
source ROS (Robot Operating System), that is why we have to convert the OpenCv images into
ROS images. Thanks to the OpenCv module named CvBridge, it is very easy to convert them.
After converted them, we were now able to send them into the "video_frames" ROS topic. After
received those frames in the other node, which is the image processing file, we used the Canny
filter. To use it, we had to set the low and the high treshhold. Usually, the high one is between
2 and 3 times as much as the low one. Here, thanks to the experiments, we have estimated a 2.7
rate as the best results rate, and the low treshhold as 60. Thus, the Canny algorithm is selecting
the color between 60 and 162 (in the image converted into the gray scale). To be more accurate,
all candidate edge pixels below the lower threshold are labeled as non-edges and all pixels above
the low threshold that can be connected to any pixel above the high threshold through a chain
of edge pixels are labeled as edge pixels. As you can see in the picture 12, this is working quite
well.

Figure 12 – OpenCv edge recognition

But before going further in the collision avoidance, we first have to make the drone fly
autonomously, otherwise the algorithm alone would not be very useful.

3.4.2 Vicon cameras and MavRos

Our second interest is thus to locate the drone thanks to the Vicon cameras, in order to
know where the drone is, which will be the steppingstone of the autonomous flight. Here is how
it works:

Thanks to ROS, the Jetson Nano is able to receive the Vicon data, which are the drone’s
position and orientation. The Vicon tracker is effectively sending the Vicon data in the topic
named “vicon/SAS_Drone/SAS_Drone”. After being able to receive those data, an important
thing is to send them from the Jetson to the Pixhawk. Once again, ROS (and more precisely

15

Figure 13 – Communication between the devices

MavRos (and MavRos_extras)) is the perfect tool to use. MavRos is a package that provides
communication driver for various autopilots with MAVLink communication protocol. It also
provides MAVLink bridge for ground control stations. MAVLink is a very lightweight messaging
protocol for communicating with drones (and between onboard drone components). Indeed,
publishing the right data in the right topic permits the data to be sent from the Jetson to the
Pixhawk. Here, in order to make the bridge between our two devices, we can publish the Vicon
data in the “mavros/vision_pose/pose” topic. Here are the results we got. On the picture 14 we
can see what we obtained while launching the vicon_bridge file, and on the right, figure 15, we
can see the results of the computation we made to estimate the position and orientation of the
drone thanks to the Vicon cameras.

Figure 14 – Vicon bridge Figure 15 – Drone’s position and orientation

On the first screenshot, we can see that the Vicon Control app created the object to follow,
which is called here "florian_test/florian_test", because I was the one who did this. After that,
we can see that the following lines show that we tried to calibrate the position of the drone. The
first step, which is calibrating the zero, represents the fact that the Jetson Nano is not right

16

on the ground, but it is here 17cm high. Knowing this data is important for the computation.
Indeed, the controller needs this data in order to better know where the drone is and where it
should go. However, not only does the controller require the zero of the drone, but for the same
reasons it also needs the drone’s position and orientation. That is why we can see the "trying to
calibrate florian_test/florian_test" and the "Calibration completed" lines. The calibration file
leans on calling ROS services, already existing in the "vicon_bridge.cpp" file, which relies on the
"tf::Transform.setOrigin" (resp. "tf::Transform.getOrigin") and "tf::Transform.setRotation" (resp.
"tf::Transform.getRotation") functions.

Moreover, let’s describe the functioning of the ViconToMocap file. This one is creating a
node, named ViconToMavros. This node is subscribing to the "vicon/SAS_Drone/SAS_Drone"
topic. The received message is a GeometryTransformStamped one, which expresses a transform
from the coordinate frame header to the coordinate frame child. After receiving it, this script is
processing it. The main goal of this file is to convert the position and orientation contained is
this GeometryTransformStamped message, into roll, pitch and yaw data. To do so, we used the
quaternions. Indeed spatial rotations in three dimensions can be parametrized using both Euler
angles and unit quaternions. To convert the quaternions into Euler angles, we used this formula: phi

theta
psi

 =

arctan(2(q0q1+q2q3)

1−2(q2
1+q2

2))
arcsin 2(q0q2 − q1q3
arctan(2(q0q3+q1q2)

1−2(q2
2+q2

3))

After translating this formula into a C++ function, we were able to convert the quaternions

into Euler angles. This is very useful because we could now store those data into a Geometry-
PoseStamped message, which contains the drone’s orientation and position, and which will be
sent from the Jetson to the Pixhawk thanks to the mavros topic "mavros/vision_pose/pose", as
I previously said. Here is the results of the roll, pitch and yaw conversion.

Figure 16 – Drone’s roll, pitch and yaw

By the way, the figure 17 below is showing what we can see on the computer running windows.
This is a display of the Vicon Control app, the yellow lines representing the links between the

17

drone’s Vicon tracker.

Figure 17 – Display of the Vicon control app

It is however important to notice that we were publishing the Vicon data in the “mavros/vi-
sion_pose/pose” topic and not in the “mavros/mocap/pose”, because this would send a
MavLink command which is not compatible with Ardupilot. To explain that, let’s compare the
Pixhawk with the Ardupilot.

Px4 has a LPE (Local Position Estimator) and an EKF (Extanded Kalman Filter), while
Ardupilot has only an EKF that fills both roles. The local position estimator allows the drone
to estimate where it is, and understand its position. However, a separate LPE is only available
in Px4. So this MoCap topic, although not labeled as such, is meant to be used with Px4
and not Ardupilot. This is important as data in the ATT_MOCAP_ESTIMATE message
is only used by the LPE. The EKF does not support/expect to see this message, so it will ignore it.

That is why, we must interact with the EKF, which is a complex filter that takes in all sensor
data and “fuses” them together, determining which sensor is the most reliable and accurate, and
will then control the motors speed accordingly. This filter takes all sensor data, and then deter-
mines a “guess” as to its current attitude, position and speed. So if the GPS suddenly has bad
reception, EKF will switch to the IMU temporarily to prevent a crash. This explains some flight
behavior in the lab, as the EKF will prefer GPS data if it has it, and tends to use IMU only when
it is unavailable. When running MavRos, the terminal will show updates from various systems,
including the EKF. Eventually, the EKF will send a message, explaining that it has swapped
between the IMU and GPS. This is the main driver for Ardupilot, and all sensors flow through
it (while Px4 has a separate EKF and LPE, Ardupilot only has an EKF that handles everything).

So as we could not use the MoCap plugin, we targeted a different plugin (one that
was not “designed” for our Vicon data), which is what we have done with the topic called
"mavros/vision_pose/pose".

18

3.4.3 An important step: a simple take off

Furthermore we also wrote a program which permits the drone to do a 2 meters high take
off (entirely vertically), and then to land fully autonomously on the ground. To do so, merging
the bridge which is able to receive the Vicon’s data with the one which can send those data
from the Jetson to the Pixhawk through ROS is really useful. Indeed, thanks to MavRos and
MavRos_extras, it is possible to set a position that the drone will reach automatically. That is
why we published the desired position in the topic named “mavros/setpoint_position/local”, in
order to make the drone goes there, thanks to a simple controller (which also uses the drone’s
current position published in the “mavros/vision_pose/pose” topic). To do so, we entered
in the GeometryPoseStamped message the data "msg.pose.position.z = 2", and we let the
position and orientation in the other direction to 0. We understand thus well that the drone
is moving along the z axis until it reaches 2 meters. Then, we sent a few setpoints before
starting, otherwise it will not work. And finally, we set the drone’s mode to offboard, in order to
make it fly, and the previously mentioned controller will do the work to reach the desired position.

However, the best (and funniest!) thing to do would have been to write our own controller,
because we could have made it more complex, at a higher level.

3.4.4 A useful tool: Rosbag

Thanks to the Rosbag tool from ROS, we could record all the messages that have been sent
from the different topics during an attempt, in order to play them back or visualize them. As
you need neither to launch all the files nor to have your jetson nano plugged with any other
device (which includes the fact that the Vicon cameras can be turned off), it is very convenient
for the tests, because it spared us a lot of time. Indeed, as we could remove the Jetson Nano
from the drone, the mechanical or electrical group could work on it, and meanwhile, the software
team could program on the Jetson Nano.

3.5 Mission Planner

Without the ground control Mission Planner, we could not do anything. All the parameters
need indeed to be set in this ground control. As it is totally new for me, my opinion is that it is
useful to talk about how we set those parameters. We used this tool especially for configuring
the ESC, arming the motors and configuring the compass.

3.5.1 Configuring the ESC

In order to configure the ESC, we had a few steps to realize. The first one was to
connect to the autopilot from a ground station such as the Mission Planner and set the
ESC_CALIBRATION parameter to 3, which is used for the start-up and for automatically
calibrate the ESC. Afterwards, we disconnected and reconnected the battery and USB cable so
that the autopilot powers down and on. Then, we pressed the safety button of the Pixhawk
until it displayed solid red and until we heard a musical tone. The final step was then to
disconnect and reconnect the battery again, and test them. To test them the steps were
first to ensure the transmitter’s flight mode switch was set to “Stabilize Mode”, to arm
the drone, and then to give a small amount of throttle. All motors should spin at about
the same speed and they should start at the same time. If the motors did not all start at
the same time and spin at the same speed, it means that the ESC are still not properly calibrated.

19

However, a steppingstone of this configuration was to arm the drone, and I did not know
how to do this. That is why I will talk about it on the next section.

3.5.2 Arming the motors

Arming the vehicle allows the motors to start spinning, otherwise it will not spin. It is quite
easy though, because all the pre-arm checks will run automatically and if any problems are
found the RGB LED will blink yellow and the failure will be displayed on the ground station.
We however needed a remote control for some steps. And then, we had to set the flight mode to
Stabilize and to press the safety button until it goes solid red again. The next procedure needed
the remote controller, and was to arm the motors by holding the throttle down, and rudder
right for about 5 seconds. Once the LED was solid and the propellers were spinning, we could
raise the throttle to take-off.

To desarm it, it was even more easy and we also needed the remote controller. First, we held
the throttle at minimum and the rudder to the left for 2 seconds, and then pressed the safety
button until the LED were flashing.

3.5.3 Configuring the compass

We realized an “Onboard Calibration”, which is a calibration routine that runs on the
autopilot. To configure the compass we only needed the ground control Mission Planner. Under
the setup in mandatory hardware we selected the compass and clicked on the start button for
the onboard calibration. Nothing surprising until here. The next step was however to hold the
vehicle in the air and rotate it so that each side (front, back, left, right, top and bottom) points
down towards the earth for a few seconds in turn, which means a full 360-degree turn with
each turn pointing a different direction of the vehicle to the ground. To put it in a nutshell, it
resulted in 6 full turns plus possibly some additional time and turns to confirm the calibration.
Upon successful completion, three rising tones has been emitted and a “Please reboot the
autopilot” window appeared and we rebooted the autopilot in order to be able to arm the
vehicle. Otherwise (it could be because of magnetic disturbances from electronics from our
pockets for example), we would have heard an “unhappy” failure tone, the green bars might
reset, and the calibration routine may restart (depending upon the ground station), and Mission
Planner would have automatically retried.

3.5.4 Some additional parameters

Furthermore, we set some other parameters in order to allow the drone to flight indoors, but
without GPS. Here is a picture of those parameters set by default above, and set by us for the
indoor flight under.

20

Figure 18 – Some additional parameters

21

4 Undone activities

4.1 Electrical and mechanical parts

As the electrical and mechanical parts were fully finished, we did not have any other task to
complete.

4.2 Software part

However, in this team there is still a lot of work to achieve. In deed we stopped at a
point where the drone was able to take off and land autonomously. The next step was to test
the pre-installed controller in order to follow a path during an unlimited time. It should not
be tedious, because we just have to enter a variable that depends of time instead of a time
independent variable in the "mavros/setpoint_position/local". For example we could have chosen
a constant altitude, but a various position along the x and y axis (as the Lissajous function). To
make things go even further, we would have written an extended kalman filter combined to a
PID. Thus, we could have followed a path with our own controller. Moreover, we should have
implemented a collision avoidance algorithm thanks to the camera in order to prevent from an
undesired object, which would be on the drone’s path defined in the PID.

22

5 Conclusion
To put it in a nutshell, I would say that I learned numerous of new abilities during my

internship, which are professional as well as personal. In my opinion it is very important to
discover new skills in internship, because during our courses in the school, we do not have the
time to cover every single point about robotics. It is thus very rewarding in order to explore
some other robotics notion, and to know which one we like the most. However, if we already
know which branch of robotics we like the most, it is better to find an internship which requires
skills in this field, in order to deepen our knowledge. We understand thus that the internship
choice is a real stake that anyone should take careful and cleverly. Beyond the professional
choice, the personal choice is not something to be trifled with neither. It was indeed a real
experience for me to travel outside Europe and to meet all those people I am still in touch with.
That is why I would never forget this professional as well as personal rewarding experience, even
though I am still a little frustrated that I did not have the time to finish the project.

23

	1 Introduction and context's presentation
	2 Problematization of the topic, purpose and stakes
	2.1 The topic and purpose
	2.2 The stakes
	2.2.1 The language barrier
	2.2.2 Comparison our knowledge
	2.2.3 Having someone with a different background on the team
	2.2.4 Professional and personal abilities
	2.2.5 Physical architecture

	3 Internship's activities and results
	3.1 Description of the drone and its environment
	3.1.1 The drone
	3.1.2 The environment

	3.2 Electrical part
	3.3 Mechanical part
	3.4 Software part
	3.4.1 Image processing
	3.4.2 Vicon cameras and MavRos
	3.4.3 An important step: a simple take off
	3.4.4 A useful tool: Rosbag

	3.5 Mission Planner
	3.5.1 Configuring the ESC
	3.5.2 Arming the motors
	3.5.3 Configuring the compass
	3.5.4 Some additional parameters

	4 Undone activities
	4.1 Electrical and mechanical parts
	4.2 Software part

	5 Conclusion

