Deployment and commissioning of
a group of robots on a dedicated

local network

Second year internship report
FISE 2023
09/05/2022 - 29/08/2022

Damien ESNAULT
ENSTA Bretagne — Autonomous Robotics

damien.esnault@ensta-bretagne.org

Supervised by:

Prof. Dr.-Ing. habil. Andreas RAUH
Carl-von-Ossietzky Universitat Oldenburg — Department of Computing Science

andreas.rauh@uni-oldenburg.de

M.Sc. Friederike BRUNS
Carl-von-Ossietzky Universitat Oldenburg — Department of Embedded
Hardware/Software Systems

friederike.bruns@uni-oldenburg.de

€3 ENSTA Crnosean

N Universitat
‘J BRETAGNE Oldenburg

mailto:damien.esnault@ensta-bretagne.org
mailto:andreas.rauh@uni-oldenburg.de
mailto:friederike.bruns@uni-oldenburg.de

Second year internship report

ENSTA

BRETAGNE

Table of contents

ADSETACT .ttt ettt b e h e h et st eat e e te e be e sheesaeesateea 3
RESUIMIE ...ttt b ettt st st e b e bt e b e s be e s ae e eat e et e et e e nbeesaeesane e 3
IKEY WOTAS ..ttt ettt h e s ht e s at e s bt s bt e bt e beesbeesbeesatesateeabeebeesbeesaeesatenas 3
ACKNOWIEAZEIMIEIITS ..ottt ettt sbe e b e bt s e e neeanes 4
L. TNEPOAUCTION .ttt ettt st st s b e e b b ns 5
1.1 ODbjectives and CONTEXD ..eeviririiririrere ettt st sre e bt s esnesreenesreeneens 5
112 SBAKES ettt ettt bttt h et bt eh e bt bt et e bt e at e besbeebesaeeaten 7
2. Description of the activitiesccccoiiiiiiiiii e 8
2.1 OTGANIZATION teuvirueeiirtiriieie ettt ettt et b et e b et e s b e sbe et e s bt ese e bt s st esbesneebesbeemeebesaeenes 8
2.2 Technical Foundations........cciieeererieieeree ettt sttt sttt et sbe s 8
2.2.1 TUTtIEDOt3 BUIZET ..euteiiiitieieiieeieeeieet ettt sttt s s 8
2.2.2 Robot Operating System (R.O.S.) ..o e 9
2.2.3 MATLAB SIMUINK ...cctiieiisieieieeieste et se et se e ae s essesse e essestesssensesseensesseenees 10
2.2.4 ECHPSE AAIAC cevvveiiiiieeiieieesee st st ste e se e st esaeste e et e e e e s e e sat e et e e te e teesraesraeenteenreereennes 10

2.3 Deploying a single-agent configurationc..ccoeeveririereneeneneeieeseeee e 11
2.3.1 Building the TODOES ..iecviireiriiiiiiiiniesie ettt sttt e e e e saaesesesbeenbeenes 11
2.3.2 Deploying the network in a basic configurationc.cceevevireenineiinecseeeeee, 12
2.3.3 Setting UP & N'TP SEIVET ..cciiviiiiiiiiiieeriesee sttt st sae e sbeenbeennes 13

2.4 Upgrading the hardware StIUCHUIEcccvveeviiiiiiiire e 14
2.4.1 Adding a Raspberry Pi Camera.......ccvviiieeerireeseseeiese e ete e et ese e sse e sneennes 14
2.4.2 Designing a modular hardware StTUCEUTLEcceccevivveeniniciinieeecee e 16
2.4.3 Creating a dedicated HAT Brick R.O.S. packagec.ccocevevvrininininincnccceccecneee 17

2.5 Evolving to a multi-agent configuration.......cccocvvcieciieriienieeninnieniesieeeesee e 18
2.5.1 Choosing a multi-agent hardware configuration.......cc.cceceverireeninesineereneeeee, 18
2.5.2 Upgrading the network configurationc.ccecvecierierieineinenneseeeesee e 19
2.5.3 Running multiple robots with R.O.S. .o 20
2.5.4 Adapting the built-in programs for multi-agent configurationccoceevervrveereseennn. 21

2.6 Working on the communication between software and R.O.S.ccccooviiiiiniiniiiiiiieee 23
2.6.1 MATLAB Simulink and R.O.S. ..ottt 23
2.6.2 Eclipse 4diac and R.O.S. ...ttt et tre e s b et eeaae e b e 24

Page 1

Second year internship report

E At
3. Results and 1lessons 1earned ...t 26
TR 01 S 26
3.2 Long Night of DigitiZation ...ccciveiveiiieiieiieeiie et sseesee e sree e esteeste e seesreessnesseeseesseesens 26
3.3 WOTK DIOME...utiiiiiieiiecee ettt ettt e e e et e et e e st e e e s st e e sateessteeenseeesaseesateeenseeesnseenn 27
B4 FUBUTE WOTK 1ottt ettt s h e ettt et s ae et e sbe et e besaeeneesbeeaeas 27
4. CONCIUSION ettt sttt ettt e s bt e s a b e s bt s bt et e e bt e s atesateeateebeesbeesaeesatenas 28
GlOSSATY ittt ettt sttt et b e bt e bt a ettt e bt e bt e e bt e e bt e eateeabe e bt e be e bt e shaesateeateentean 29
L= 310 07 = 2= 0 1 ORI 29
Table Of fIGUTES ..oc.eiiiiiee ettt s sr e 30
APPENAICES ..ttt sttt b e bttt et e e sbe e sha e satesatesbe e beenaeenaes 31
Appendix 1: ASSESSINEINE TEPOI . .uuiieeireriteeiieereeseesresteesteesteeseesseesseesesesseessessessssesssesssesssesssesssns 31
Appendix 2: Example of a weekly schedule.......c.cccovieieiiiiriinicieeseeeesee e 33
Appendix 3: Example of a visual support (initial hardware structure)ccoeeeeerveecnninnne 34
Appendix 4: Turtlebot3 Burger specifiCations........cuiveverireerenieiiereseeeseseesieseeeese s eseeseenees 35
Appendix 5: Router datasheetciveiiiiiiiiciecie s 36
Appendix 6: Raspberry Pi NolR camera datasheet.........ccccevveeveeiiinciinieenessee e 37
Appendix 7: Tinker Forge HAT Brick datasheetccocvvveeveriecieninieeceeies e 38
Appendix 8: New Turtlebot3 Burger hardware structure........coceecereeeeenenceseneeeneeeeeseee, 39
Appendix 9: OpenCR 1.0 datasheetuicieiieieeciccecceceeeeee ettt s ebe e be e ae e 40
Appendix 10: Turtlebot3 Burger fleet configurationcceeveveiiiiininininincccccenencene 41
Appendix 11: Representation of the NEetWOrKcccciiiieiieniieiiie et ereesreesreeeaneens 42
Appendix 12: Modified Turtlebot3 Burger teleop programecceeeeeeereneeseneeceeneseeseeseenens 43
Appendix 13: Modified Turtlebot3 Burger SLAM Programccccceeceeeeerereeseseeseeneseeneeseenens 44
Appendix 14: Long night of digitalization POSEETcceeeerereerisieeiereeeere et 45

Page 2

Second year internship report

ENSTA

BRETAGNE

Abstract

As part of my engineering training, I did a 16-week engineering assistant internship (from
09/05 to 29/08) at the Computer Science Department of the University of Oldenburg. Supervised
by Prof. Andreas RAUH, I deployed and commissioned a group of Turtlebot3 Burger on a
dedicated local network. The objective of this project was twofold:

e To offer robotics students a new way to implement control algorithms and to introduce

them to multi-agent environments.

o To offer PhD students in robotics a concrete solution to implement and develop regulation

of multi-agent robotic systems.
During the first 3 months, I deployed the local network and prepared the Turtlebot3 Burger.
Afterwards, I thought about a new hardware configuration that would be more modular to allow
users to easily adapt the robots to their needs. I finally adapted my previous work for a multi-
agent’s configuration. The last month was devoted to writing documentation and studying the
communication between the robots and programming environments such as MATLAB Simulink
and Eclipse 4diac.

Résumé

Dans le cadre de ma formation d’ingénieur, j’ai effectué un stage d’assistant ingénieur de 16
semaines (du 09/05 au 29/08) au profit du département d’Informatique de l'université
d’Oldenburg. Supervisé par le professeur Andreas RAUH, j’ai déployé et mis en service un groupe
de Turtlebot3 Burger sur un réseau local dédié. L’objectif de ce projet était double :

e Proposer aux étudiant(e)s en robotique un nouveau support leur permettant d’appliquer

leurs connaissances tout en les introduisant aux environnements multi-agents.

e Proposer aux doctorant(e)s en robotique, une solution concréte pour mettre en place et

développer des algorithmes de contrdle pour les groupes de robots.
Durant les 3 premiers mois, j'ai tout d’abord déployé le réseau local et préparé les Turtlebot3
Burger. A Tlissue, j’ai pensé a une nouvelle configuration matérielle plus modulable pour
permettre aux utilisateurs d’adapter facilement les robots a leurs besoins. J’ai finalement adapté
mes précédents travaux pour une configuration avec plusieurs agents. Le dernier mois fut consacré
a l'écriture d’'une documentation et a 1’étude de la communication entre les robots et des
environnements de programmation comme MATLAB Simulink et Eclipse 4diac.

Keywords

Multi-agent environment, Turtlebot3 Burger, Local Area Network, MATLAB Simulink,
Eclipse 4daic, Education, Internship

Page 3

Second year internship report

ENSTA

BRETAGNE

Acknowledgements

First, I would like to thank Prof. Luc JAULIN (referent professor) and Prof. Andreas
RAUH (main tutor of this internship) for giving me the opportunity to work on this project.
This internship was very enriching from a personal point of view. I was able to get interested in
the theme of robot groups, a theme that is close to my heart, while living my first professional

experience in an international context.

I thank Friederike BRUNS (doctoral student at the University of Oldenburg and co-
supervisor of this internship) for welcoming me and helping me to get my bearings when I arrived
at OFFIS (research centre linked to the University of Oldenburg). As the centre is geographically
far from the university (around 7 minutes by bike), it was reassuring to know that I had a point
of contact directly at my workplace.

I would also like to thank the doctoral students at the University of Oldenburg with whom
I was able to exchange and work during this internship. To name but a few: Mahsa
MOAZEZ, Marit LAHME, Oussama BENZINANE and Sven MEHLHOP.

Page 4

Second year internship report

ENSTA

BRETAGNE
1. Introduction

1.1 Objectives and context

The multidisciplinary engineering training at ENSTA Bretagne, and more particularly the
Autonomous Robotics course, allows students to develop an attraction for innovation and
research. Through projects, courses, and practical work, they are pushed to perfect their
knowledge and apply it into various systems and projects.

FIGURE 1 - Examples of the robots used at ENSTA Bretagne
(From left to right: DDBoat, DART and NAQO)

The importance of practice in areas such as autonomous robotics justifies the need for a
diverse range of robots designed for education. A university or school has several options for
acquiring one: buying a dedicated robot from the market, adapting an existing system for
educational use, or designing its own solution from scratch. The first solution is often expensive
and restrictive, as it is limited in terms of use and therefore not versatile enough. The third
solution, on the other hand, is the most versatile and least expensive, but requires too much time
and resources to be deployed. The second solution is therefore the most advantageous one and
this is also what Prof. Andreas RAUH of the Computer Science department at the University
of Oldenburg concluded.

Its objective was to give university robotics students a new way to apply their knowledge.
The main idea of this project was to deploy a group of small and modulable robots on a dedicated
and easily deployable network, using R.O.S. to communicate and interact with the robots. This
notion of modularity allows the project to be used in different ways. A first configuration can
allow groups of students to work on one robot each, either in single-agent environment or in
collaboration with robots from other groups. A second configuration can allow PhD students
from the university to study and implement control strategies for multi-agent robotics systems.
These two configurations are illustrated in Figure 2 below.

Bachelor/Master Students | PhD Students

Master/Leader

7N

FIGURE 2 — Tllustration of the use cases of the project

Page 5

https://www.ensta-bretagne.fr/en
https://www.ensta-bretagne.fr/en/autonomous-robotics
https://uol.de/en/course-of-study/computing-science-master-209
https://uol.de/en
https://uol.de/en

Second year internship report

ENSTA

BRETAGNE

My job was to make this project a reality to offer a new educational support to the
university's teachers. The project was initially divided into 4 main steps:

o Deploying a single-agent configuration: The first step was to build the robots and
configure them, deploy the local network and check that the robots could work in their
nominal configuration, i.e. with only one robot connected to the network

o Upgrading the hardware structure: The second step was to add new sensors to the robots
and to think about a hardware configuration that would allow a high modularity of the
sensors on the robot

e Evolving to a multi-agent configuration: The next step was to adapt my previous work
so that the robots could operate while all being connected to the network at the same
time

e Redacting a documentation: The last and probably most important step was to write
documentation and user guides to allow teachers to use my work in the next semester.

Having completed these steps in 3 months, I then worked on a complementary step during
the last month of the internship:

e Working on the communication between software and R.O.S: I checked the compatibility
of the programming environments used by the university with R.O.S. In case of
incompatibility, I thought of a solution allowing the communication between the software
and ROS.

To carry out this project, funds were unlocked by the university to purchase four Turtlebot3
Burger, a mobile robotics platform designed for education and learning. After the purchase of
the equipment, Prof. RAUH contacted Prof. Luc JAULIN to propose to a student from
ENSTA Bretagne to carry out this project as part of a second-year internship. As an IETA, my
career will progressively evolve from technical to project management. Therefore, the
opportunities to work on such a project are very interesting for me. After accepting the
internship, I was gradually able to discover the context of this internship.

First, the internship took place in Oldenburg, Germany, a country where I do not speak the
language and know even less about the culture. This experience made me realise how difficult
everyday life is for someone who does not speak the language of the country. Finding
accommodation, shopping, or ordering in a restaurant were all challenges for me. It is precisely
to simplify my daily life that I decided to learn German during the first weeks of my internship.

During these 4 months, [worked at OFFIS, the research centre linked to the University of
Oldenburg. OFFIS is a private research centre with 6 research areas ranging from Fnergy to
Health and with more than 250 employees who can be engineers, PhD students or professors
coming from all possible backgrounds. Each branch is divided on average into 5 divisions or sub-
divisions. In my case, I was in the Manufacturing branch in the Distributed Compuling and
Communication division. This experience allowed me to work in an international team with many
people, using various tools to communicate and exchange. As Germany is still applying health
measures to combat Covid-19, teleworking was widely used at OFFIS, which made it difficult for
me to integrate during the first weeks. Indeed, many people did not know whether I was a
newcomer or just a team member returning after a long period of teleworking.

Working at OFFIS was also interesting in terms of personal discipline. Indeed, OFFIS is
located 7min by bike from the university. This meant that for most of my internship I was
physically not on the same site as my tutor and therefore without direct supervision. To maintain
a trusting relationship with my tutor, I had to show him my seriousness and my ability to work
independently.

Page 6

https://emanual.robotis.com/docs/en/platform/turtlebot3/overview/
https://emanual.robotis.com/docs/en/platform/turtlebot3/overview/

Second year internship report

ENSTA

BRETAGNE

1.2 Stakes

This internship had different stakes, both for me and for the university and the research
centre. For me this internship presented three main stakes:

1.

A cultural and human stake: The opportunity to live in a foreign country for such a long
time was a first time for me. This experience allowed me to discover and live the German
culture but also to face the language barrier. Even though Germany is close to France,
I could notice differences between my daily life in France and my daily life in Germany.
To better integrate and adapt, I decided to learn German. This internship allowed me
to enrich my cultural horizon and to understand the importance of an open mind for an
engineer.

A professional stake: Knowing how to work with a multicultural and international team
is, in my opinion, a necessity for an engineer. This thought led me to choose the English
course on integration and team management in an international context in English
during semester 4. By applying the acquired notions, I succeeded in integrating and
working efficiently with this new team.

A technical stake: During this internship, I was able to familiarise myself with the
concepts of multi-agent environments and discover the technical constraints induced by
this type of system.

This project also presented stakes for the university, of which I have identified three in
particular:

1.

A pedagogical stake: A university can differentiate itself from another by its courses of
study and its level, but above all by its pedagogy and its tools. This project has the
potential to provide the University of Oldenburg with a new versatile and relevant
pedagogical tool that will enable it to stand out from other universities. If the project
offers many advantages, it could even be implemented in other schools, which would
contribute to the university's influence in the country.

An economic stake: A major cost in this type of project is staff, even with students.
Because of my military status, the university did not need to pay me financially, which
meant that any work produced was produced at low cost.

A political stake: This project also allowed the university to evaluate the level of robotics
students at FNSTA Bretagne. If my performance was satisfactory, the university can, in
the short term, offer more internships to students and, in the long term, organise joint
challenges in robotics and propose substitutions between our two schools.

Page 7

Second year internship report

ENSTA

BRETAGNE
2. Description of the activities

2.1 Organization

This internship is my second experience in development and project management. Before
joining ENSTA Bretagne, I had the opportunity to develop an application during my military
year. During this project, I underestimated the importance of a good organisation, and this
impacted my performance at the end of the development and delayed the deployment of the
application. In order not to repeat such a situation, I took the time to think about how to
organise my work.

This reflection was even more necessary given the context of my internship. Indeed, as
previously mentioned, my tutor was working in a building geographically distant from mine. To
ensure supervision of the placement, Prof. RAUH wanted to organise two meetings a week to
monitor my progress. I was afraid that this configuration would be too time-consuming for both
him and me. I therefore decided to show him that I was organised, rigorous, autonomous and
that I would inform him weekly of the progress of the project to develop a relationship of trust.

To enable him to follow my work, I was sending him a detailed weekly report of my activities.
These reports also contained schedules (see Appendix 2) and diagrams explaining the concept
developed during the week (see Appendix 3). These diagrams are, in my opinion, very useful
as they can be used by the teachers to present the Turtlebot3 Burger to the students and more
generally to present the project. By sending weekly reports and talking with my tutor during
lunchtime, we quickly developed a relationship of trust, and the two weekly meetings were
replaced by a monthly meeting.

To facilitate further development and information sharing, I created a dedicated GitLab
project for my work. There I was able to save all the information and write documentation as a
report for the university. During the development, I read and asked questions on various forums.
So, I also created a dedicated profile on each forum for this project with the nickname:
'learn2learn". The next developers will know that all the questions asked by this profile are about
this project

The implementation of this organisation allowed me to maintain a fast and efficient work

rhythm, while maintaining a relationship of trust with my tutor. A more detailed analysis of the
results of my organisation will be made in a later section.

2.2 Technical Foundations
2.2.1 Turtlebot3 Burger

According to the main documentation of the Turtlebots Burger:

“TurtleBot3 is a small, affordable, programmable, ROS-based mobile robot for use in education,
research, hobby, and product prototyping. The goal of TurtleBot3 is to dramatically reduce the
size of the platform and lower the price without having to sacrifice its functionality and quality,
while at the same time offering expandability. The TurtleBot8 can be customized into various
ways depending on how you reconstruct the mechanical parts and use optional parts such as the
computer and sensor.”

Page 8

https://gitlab.uni-oldenburg.de/users/sign_in
https://emanual.robotis.com/docs/en/platform/turtlebot3/overview/

Second year internship report

ENSTA

BRETAGNE
TurtleBots . TurfleBots
Burger & Waffle

T Structure et chassis volutife

A
= 2 (Raspbeny Pi)

{ 4
- 'm
.

B Battorio Li-Po 11.1V 1.800mAh

LIDAR 360° pour SLAM ot Navigation

Structure et chéssis évolutifs
% Carte Raspberry Pi 3

T Qrdinatsur mona-carte
{Intel® Joule™}
2 servos Dynamixel
pour los roues
il Roues dentéss.
& (pnous et chenilles)

[l Battorio Li-Po 11.1v 1.800mAh

FIGURE 3 — Turtlebot3 Burger and Turtlebot3 Waffle features

As shown in the Turtlebot3 Burger datasheet in Appendix 4, the robot is initially equipped
with various sensors and actuators. The available sensors are a LIDAR, two odometers, an IMU
and a compass. The robot is powered by two speeds controlled DYNAMIXFEL servomotors. The
embedded intelligence includes a Raspberry Pi 4B and an OpenCR 1.0 board. The strong point
of this robot is its modularity, and it is an aspect that I will use in this project

2.2.2 Robot Operating System (R.O.S.)

According to the R.0.S. official web site:

“The Robot Operating System (ROS) is a set of software libraries and tools that help you build
robot applications. From drivers to state-of-the-art algorithms, and with powerful developer tools,
ROS has what you need for your next robotics project. And it's all open source.”

R.O.S. is therefore a key tool for roboticists and benefits from a large and active community.
This software offers an autonomous and efficient management of execution threads and
communication threads between the different instances. To do so, R.O.S. uses the concept of
Node and Topic, a node is a program or an executable and a topic is a discussion channel on
which nodes can publish or read information. A basic application in robotics is to create one node
per sensor and publish sensors information in dedicated topics. The main program (which makes
the decisions) then only must read the topics to estimate the state of the robot and thus
determine the new action.

registeration ROS registeration
- MASTER I
k3
W
N S 4
¥ [

ROS . . ROS
Node(s) publish m subscribe Node(s)

FIGURE 4 — Concept of Node and Topic in R.O.S.

Page 9

http://www.dynamixel.com/
https://www.raspberrypi.com/
https://emanual.robotis.com/docs/en/parts/controller/opencr10/
https://www.ros.org/

Second year internship report

ENSTA

BRETAGNE

2.2.3 MATLAB Simulink

MATLAB Simulink is, according to the dedicated MathWorks web site, “a block diagram
environment used to design systems with multidomain models, simulate before moving to
hardware, and deploy without writing code”. Simulink is a part of the MATLAB environment
which is, according to the dedicated MathWorks web site, “a programming and numeric
computing platform used by millions of engineers and scientists to analyse data, develop
algorithms, and create models”.

We decided to use MATLAB Simulink for this project because, by using blocks, any user can
create a control algorithm. Indeed, MATLAB Simulink integrates different toolboxes and libraries
that can, for example, handle communications with R.O.S. topics. The user can then read the
information from a sensor without worrying about the means to send the information to
MATLAB Simulink.

— Linear speed

—————P Angular speed

D)
R / tb3_1/cmd_vel
geometry_msgs/Twist
8us
- A
sk s TN
= Angular.Z Ab3_Vemd_vel

Angular speed

FIGURE 5 - Example of application for the R.O.S. toolbox: publish speed commands on a topic

2.2.4 Eclipse 4diac

Eclipse 4diac is, according to the Fclipse web site, “an open-source infrastructure for
distributed industrial process measurement and control systems based on the IEC 61499 standard.
[..] IEC 61499 defines a domain specific modelling language for developing distributed industrial
control solutions”.

Like MATLAB Simulink, Eclipse 4diac is a graphical programming environment that uses
block sequences to create programs. Compared to MATLAB Simulink, Eclipse 4diac is dedicated
to industrial applications and its blocks are therefore adapted to this need. The blocks are usually
simple functions such as loops, inverters, or comparators. They use two types of signals to
communicate: event signals and data signals. An event signal allows one block to trigger another,
and a data signal allows information to be shared between blocks. It is also possible to create
your own blocks, which increases the capabilities of this software.

=l N B START Event Interface,
— T f Ol Nk
4[15 BlinkTe " N
- Blinl = 2
a7 Syst Ge Into £ CVOLE E SWITCH ESR
4+ E START ED 1af ali] S EO: 1= Event Execution 1=}
apm % Delete BT 5TOP £C1L R ol Control To
== 2 ecrae[| £.swaTeH ESR
a7 Tyl Refresh Te15hDT | (D-G [q}‘ "] FB Type Name [_
Pl c
& d Close Project xE :] E :E:
428 Deploy T Encapsulated |~ T
5 ia Functionality I
i Create FORTE boot files.. T 1Tz
g Monitor System = =
g Watch \ /
. Remove Watches
o Value Data Interface

BEDFF =

FIGURE 6 — Illustration of the IEC 61499 standard

Page 10

https://ch.mathworks.com/products/simulink.html
https://ch.mathworks.com/products/matlab.html
https://www.eclipse.org/4diac/

Second year internship report

ENSTA

BRETAGNE
2.3 Deploying a single-agent configuration

2.3.1 Building the robots

The first step of the project was to deploy the two Turtlebot3 Burger that 1 had at
my disposal. Indeed, the robots are delivered in kit and therefore need to be built,

configured, and tested. To do this I relied on the official documentation provided by
ROBOTIS [1]. The procedure

to follow is not complex but quite long. It took me about two and a half days to be able
to fully deploy a single robot.

The complete deployment takes place in 5 steps: building the robot, setting up my
computer, commissioning the Raspberry Pi, commissioning the OpenCR board and
testing the built-in functions such as SLAM or the Autonomous Navigation program. I
will not detail the commands used in the deployment, but they are available in the
documentation [1].

The construction of the robot is quite simple, just follow the instructions in the
assembly manual. Nevertheless, you must be careful on some steps. You must be careful
when installing the servo motors because it is easy to invert the two motors. The error
will only be noticed during the test phase, when the robot will do the opposite of what
it is asked to do. As the motors are on the first layer, the whole robot will have to be
dismantled to correct the error. It is also necessary to take care to leave the different
connectors of the boards (Raspberry Pi and OpenCR) accessible to connect a keyboard
and a screen during the commissioning.

Setting up the computer mainly consists of installing ROS1 and the Turtlebot3 Burger
ROS packages, so I won't go into detail about this part. My hardware configuration was
a Ubuntu 20.04 LTS computer with ROS1 Noetic. I also had to modify my bashrc file to
allow my ROS master to communicate over the network.

To get the Raspberry Pi 4B up and running, I had to burn the OS image provided
by ROBOTIS to the SD card. The image provided was an Ubuntu 20.04 Server with a
compiled version of ROS1 Noetic. I then did the network setup to allow the robot to
connect to the OFFIS WIFI network (while waiting to deploy a dedicated network).

Setting up the OpenCR card was quite simple as I just had to connect it to the
Raspberry Pi and install the dedicated firmware prepared by ROBOTIS.

The final step was to test the robot by running built-in functions. Indeed, among the
packages of the Turtlebot3 Burger are three interesting packages: teleoperate, SLAM and
Autonomous Navigation. These packages use all the elements on the robot and thus
allow us to check the integrity of the robot. To perform the test, I first teleoperated the
robot to take it into an empty OFFIS room, then I used the SLAM program to map the
room and used the Autonomous Navigation program to allow the robot to navigate in
the room while avoiding obstacles. The test was successful, and I concluded that both
Turtlebot3 Burger were now ready to be used.

Page 11

Second year internship report

ENSTA

BRETAGNE

FIGURE 7 - Building the robot (left) and using the autonomous navigation program (right)

2.3.2 Deploying the network in a basic configuration

The Turtlebot3 Burger will be used in various contexts (courses, tutorials, projects,
demonstrations, etc.) and in various locations (universities, OFFIS, conference room, outdoors,
etc.). Access to a secure, stable WIFI network with an Internet connection will therefore not
always be certain. Even if we assume that this is possible, it will mean changing the network
configuration of each Turtlebot? Burger each time the WIFI network is changed. This
configuration is not complex, it is enough to modify the file “50-cloud-init.yaml” by adding the
SSID and the password of the new network before restarting the Raspberry Pi, but it is especially
time consuming because it is necessary to repeat the operation for each agent. Moreover, a
connection to a new network can lead to various problems (frequency problems, various
incompatibilities, poorly configured network firewall, etc.). This led us to deploy a dedicated
WIFT network using a router. A router is easily transportable, secure and retains its configuration
over time, so no incompatibility problems could appear.

For this project, I proposed to use the NETGEAR AC1200 router (see data sheet in
Appendix 5). This router is compact, offers a good throughput and allows to deploy a 2.4Ghz
network and a 5Ghz network thanks to its two antennas. I've already had the opportunity to
work on NETGFEAR routers and I am therefore used to their firmware. For this project, I will
only use the 2.4Ghz network for a question of range. The 5Ghz network can be used for another
project or used for the Turtlebot3 Burger project if a higher throughput than the 2.4Ghz network
one is required. The need for high throughput was the main parameter for the design. Indeed,
we are going to use ROS1 and integrate many sensors on each robot, such as cameras that require
a high throughput to broadcast the images acquired in real time.

Deploying the router was straightforward, all I had to do was change the SSID to
"TURTLEBOT" and change the base password by accessing the router configuration page
(http://192.168.1.1). However, problems occurred when I tried to connect the TurtleBot3 Burger
to the new network. The robots refused to connect to the router, but all my other devices could
connect to it. By doing some research [2], I realised that the image provided by ROBOTIS
configures the Raspberry Pi to American standards, especially the network standards. As the
American WIFI channels are different from the European WIFI channels used by the router, it
was impossible for the Raspberry Pito connect to the router. I then simply modified the network
parameters of the boards by changing the REGDOMAIN variable to “GE” (Germany) in
"/etc/default/crda’. Following this modification, the robots could now connect to the router
without any problem.

Page 12

Second year internship report

ENSTA

BRETAGNE

However, it should be kept in mind that the router is not connected to the Internet. It is
therefore sufficient to operate the Turtlebot3 Burger but not to update it or to do any
development. The loss of Internet access did, however, lead to a problem: clock synchronisation
via NTP was now impossible. Indeed, the Turtlebots3 Burger are not equipped with RTC. To
set, their clock, they need to synchronise with an NTP server at each start-up. When they lost
access to the Internet, they no longer had a server to refer to, so I had to deploy my own NTP
server.

2.3.3 Setting up a NTP server

When using ROS1 in a multi-agent environment, it is essential that each agent is in the
same time frame, especially with a remote and centralized ROS master. Indeed, most of the
messages that will pass through the network will contain timestamps to timestamp the
information. In the event of a time synchronisation problem, messages may be read at
incorrect dates or even never be read if the message is dated in the future. In such a context,
regulations or collaborations are therefore impossible. To allow the Turtlebot3 Burger to
place themselves in the same time frame, they need a common time reference, i.e., an NTP
server.

To deploy an NTP server, you must first define which system will host the server. There
are several options: deploying the NTP server on one of the Turtlebot3 Burger, deploying
the NTP server on the Master PC or deploying a physical NTP server. The first solution is
not possible because the robots’ time reference is unreliable and random. Moreover, in case
of a breakdown or maintenance of the robot, the server will be inoperative. The third solution
would be the most optimal, but it would be very expensive and would create extra bulk.
Deploying the NTP server on the Master PC is therefore the most suitable solution for this
project. This is especially true since it is the PC Master, more precisely the Master ROS,
that will centralise the data of all the Turtlebot3 Burger. Synchronising to its clock is
therefore the most practical and efficient choice to avoid any problems.

The deployment of the NTP server was done in two phases: the configuration of the
server on the Master PC and the setup of the clients on the Turtlebot3 Burger. To create
and configure a local NTP server, I used one of the many tutorials available online [3] and a
technical report produced by students at the University of Toledo, Toledo, USA [4]. T then
verified the correct operation of my server by connecting to it with an NTP client that I
coded in Python. The client was able to communicate perfectly with the server with a latency
of about 1ms, which was more than acceptable. Indeed, my goal was to obtain a time offset
between my agents lower than 500ms. This value corresponds to the maximum offset
tolerated by the Turtlebot3 Burger ROS packages. My NTP server was therefore operational.

The most complex step was to set up the NTP client used by the Turtlebot3 Burger.
Indeed, I never managed to make it communicate with my NTP server despite many
attempts and the opening of a thread on the Ubuntu forum. To overcome this problem, I
decided to use the NTP client [had previously coded in Python, optimize it and run it in
the background using Ubuntu CRON. With this method, I managed to get an offset of about
50ms between the different agents. However, this should only be a temporary solution, as it
is sometimes necessary to manually run the program to force the synchronisation. The final
solution will be to make the real NTP client of the Turtebot3 Burger communicate with the
server and thus achieve an offset of about 1ms.

Page 13

Second year internship report

ENSTA

BRETAGNE

ssh ubuntu@192.168.0.2 sudo date —s $(date -Ins)

Offset = 2s

4

NTP server with Python NTP client

Offset = 50ms

4

NTP server with regular NTP client

Offset = 3ms

FIGURE 8 — The different steps of my work to deploy the NTP server

2.4 Upgrading the hardware structure
2.4.1 Adding a Raspberry Pi camera

The second step of the project was to improve the hardware structure of the robots, or at
least to make it more modular. Indeed, the Twurtlebot3 Burger is only a mobile base that must be
modified to fit our goals. In the case of the university, the aim was to obtain a versatile and
modular hardware architecture so that professors and students could adapt it to their project
needs. However, before working on how to achieve such a hardware architecture, I first had to
install sensors to demonstrate the project.

Indeed, during this period, OFFIS organised a major event called “Long Night of Digitization”
in partnership with BTC Business Technology Consulting AG, an IT consulting company based
in Oldenburg, Germany. The aim of the event was to reconnect the Public and the Industry with
the Research after the COVID19 crisis by demonstrating the importance of digital technologies
in our lives and in the future. On this occasion, all the departments had a stand to explain their
work and I was no exception. My objective was to capture the attention of young students and
of the public with the Turtlebot3 Burger, allowing them to control the robots with a game
controller and camera feedback. I had therefore to add a camera on the robot and create a
program to teleoperate the robots with a game controller. I will concentrate here on the addition
of the camera, but I will detail the results of this event in a dedicated part (see 3.3 Long Night

of Digitization).

My tutor, Prof. RAUH, had already planned to participate in this event and had therefore
previously purchased Raspberry Pi cameras. This camera offers several advantages: it is compact,
cheap, and easily integrable on a Raspberry Pi. However, due to an error at the time of the
purchase, we received Raspberry Pi NoIR cameras (see data sheet in Appendix 6). These
cameras are like the normal cameras except that they do not have an infrared filter (NoIR). This
difference causes a colour distortion in the camera images, as if a pink filter was applied (see
Figure 9), but it allows night vision to be performed with an infrared lamp. The problem is that
the LIDAR also uses infrared light to estimate the distance around the robot, so incorporating
an infrared lamp would interfere with the LIDAR and even render it inoperative. However, we
decided to continue with these cameras because even if the colour is altered, it is still possible to
distinguish the shapes and therefore to teleoperate the robot by camera feedback.

Page 14

Second year internship report

ENSTA

BRETAGNE

FIGURE 9 — Difference between Raspberry Pi NoIR camera (left) and regular
Raspberry Pi camera (right)

Getting the camera up and running was a straightforward step, firstly I just plugged the
camera into the dedicated connector on the Raspberry Pi. The next step was to find the
necessary drivers to retrieve the video stream and publish it in a ROS topic. The advantage
of using a Raspberry Pi camera is that it is a very common model and therefore finding
working drivers and programs is easy. Searching in the main ROS package of the Turtlebot3
Burger called "turtlebot3 _bringup’, 1 found the launch file "turtlebot3 rpicamera.launch’
which allows to get the video stream and publish it in a ROS topic. While reading the
documentation I noticed that the image was published in uncompressed format which could
consume a lot of bandwidth, especially with 4 Turtlebot3 Burger. To avoid this, I installed
the ROS package called 'compressed_image transport" which allows the
turtlebot3__rpicamera.launch file to publish the image in a compressed format, thus saving
bandwidth. I then simply modified the main launch file of the Turtlebot3 burger by adding
code to launch the turtlebot3__rpicamera.launch file and publish the compressed video stream
of the camera in a dedicated topic.

The last step was to integrate the camera on the robot. To do this, I simply modelled a
support using Autodesk Inventor, a CAD software. I then printed it using the 3D printers
available at OFFIS and assembled it on the robot. I designed the support in such a way that
it is easy to change its orientation to make it as versatile as possible. Indeed, future users
will be able to choose: to orientate the support downwards to do line tracking, to orientate
the support vertically to do remote controlling and obstacle detection or to orientate it
upwards to do face detection and person tracking. After these manipulations, the Raspberry
Pi cameras were fully operational and integrated on the robots.

Rotation axis
~

FIGURE 10 — 3D model of the Raspberry Pi camera support (left) and one
integrated on the robot (right)

Page 15

Second year internship report

ENSTA

BRETAGNE
2.4.2 Designing a modular hardware structure

Let's go back to the initial objective which was to modify the hardware structure of the
Turtlebot3 Burger to make it more modular. The notion of modularity I am talking about
corresponds to the ease with which it will be possible to add, modify or remove a sensor on the
robot. So, we should not only limit ourselves to physical modularity but also to software
modularity, because if connecting a new sensor is simple but configuring it is complex then the
solution is not modular. So ideally, we need to find a versatile and ergonomic physical solution
that integrates drivers that are easy to use and adapt. It is this motivation that led Prof. RAUH
to turn to the HAT Brick from Tinkerforge (see datasheet in Appendix 7).

Raspberry Pi HATs are add-on boards that can be plugged into a Raspberry Pito extend its
capabilities. The HAT Brick from Tinkerforge, for example, offers a stabilised power supply, an
RTC, a sleep mode and, above all, 8 standardised connectors allowing a wide range of sensors to
be connected. With this solution, it is therefore possible to buy different sensors that all use the
same connector and that can be connected on the Raspberry Pi by simply plugging them in. Like
many Raspberry Pi HATs, the HAT brick offers a set of drivers to read sensor data in different
programming languages such as Python or C++. All these reasons made us believe that the HAT
brick was the best solution for this project

8 Bricklet ports (7p connector for 7p-7p cable)
@ Real-time clock with battery backup
@ Input voltage measurement / sleep mode / watchdog
= @ Status LED
Optional 5V USB-C input
—1 @5v-28V DC input
5.3V/4A power supply for Raspberry Pi and Bricklets

FIGURE 11 — Tinkerforge HAT brick

To obtain the new hardware structure of the robot, it is therefore sufficient to add a HAT
Brick on the Raspberry Pi 4B as shown in Appendix 8. However, this new configuration
required a modification of the robot's electrical structure. Indeed, the Raspberry Pi 4B was
supplied with 5V stabilised on pins 3 and 4 by the OpenCR (see Appendix 3) but by adding
the HAT Brick, pins 3 and 4 were no longer available. It is now necessary to supply the HAT
Brick directly, which will then manage the power supply of the sensors and of the Raspberry Pi
in stabilised 5V.

According to the documentation, the best way to power this device is to use the 5V-28V
supply described in Figure 11. As the battery is connected to the OpenCR for powering the
motors, I had to find a way to power the HAT Brick with the battery voltage from the OpenCR.
Reading the documentation of the board (see Appendix 9), I noticed that 3 power outputs are
available: one in 3.3V, one in 5V stabilized (used previously to power the Raspberry Pi) and one
in 12V 4A. I chose to use the 12V 4A output to power the HAT Brick because it offers a similar
voltage to the battery. For that I tried to find the corresponding power cable, but without
success. So, | started with a raw wire and ordered the necessary connectors to make my own
power cable. Once this step was done, the new hardware structure was functional, and I just had
to install the HAT Brick drivers and daemons on the Raspberry Pito make it operational.

Page 16

https://www.tinkerforge.com/en/shop/hat-brick.html

Second year internship report

ENSTA

BRETAGNE

During this project I had access to 3 sensors: the 10-80cm IR distance Bricklet 2.0, the
4-30cm IR distance Bricklet 2.0 and the OLED 128x64 Bricklet 2.0. In short, two infrared
distance sensors with different ranges and a touch screen. To be able to integrate them on
the robot and demonstrate the modularity of the structure I had to create two dedicated
supports as shown in Figure 12.

FIGURE 12 — 1. IR distance sensor support 2. Turtlebot3 Burger with IR distance sensors
3. Touch screen support 4. Screen integrated on the robot

2.4.3 Creating a dedicated HAT Brick R.O.S. package

Before looking for the most modulable software architecture for this project, we need to
understand how to acquire data from the sensors connected to the HAT Brick. The main
element of the acquisition system is the Brick Daemon, a daemon that acts as a bridge
between the HAT Brick and the drivers of the different programming languages. The drivers
allow communication with the daemon and the access to sensors information in two different
ways: by specifying the connector to be monitored (designated by a letter between A and H,
see Figure 11) or by specifying the identifier of the sensor to be monitored (called UID in
the drivers). It is therefore sufficient to install the drivers corresponding to our programming
environment and to choose a method for reading the information coming from the HAT
Brick. For modularity reasons, we prefer to read the information by specifying the UID of
the sensor and not by specifying the connector. This method avoids many problems such as
data type management and connection errors. Now that we know how to read the
information from a sensor, we need to think about the software structure to adopt to easily
add, modify or remove a sensor from the robot.

As a reminder, the Turtlebot3 Burger are powered by ROS1 and launched by a main
launch file called “turtlebot3__robot.launch” in the ROS package called “turtlebot3__bringup”.
The aim would be to apply a similar method to the one used to read and publish information
from a Raspberry Pi camera. Indeed, using the “turtlebotS_rpicamera.launch” file, it is
possible to read the video stream of a camera and to publish it in a topic specified by the
user. To integrate a new camera on the robot, it is thus enough to modify the file
“turtlebot3_robot.launch” to call the launch file “turtlebot3 rpicamera.launch” and to
specify the id of the monitored camera and the topic in which to publish the information.
That's why I decided to create a dedicated ROS package that would contain a python
program for each type of sensor. This package is called “hat_brick pkg”. To add a sensor,
it would be enough to modify the file “turtlebot3 robot.launch” to call the program
corresponding to the type of sensor and to specify the UID of the sensor and the topic in
which to publish the information

Page 17

https://www.tinkerforge.com/en/shop/bricklets/distance-ir-10-80cm-v2-bricklet.html
https://www.tinkerforge.com/en/shop/bricklets/distance-ir-4-30cm-v2-bricklet.html
tinkerforge.com/en/shop/bricklets/lcd-led-sound/oled-128x64-v2-bricklet.html

Second year internship report

ENSTA

BRETAGNE

To have a better understanding, let's take a simple example: I want to add an IR distance
sensor to the front of the robot and publish the data in the topic named “front distance_ir”. In
this example, the UID of the sensor will be “TEw”. You just have to connect the sensor and
integrate it on the robot using the support mentioned in the previous section. Then you have to
modify the file “turtlebot3_robot.launch” by creating a new node which calls the program named
“distance.py”, program which corresponds to the distance sensors. It only remains to specify in
parameter the UID and the name of the topic to have a functional sensor. This example can be
summarized by Figure 13, which corresponds to the lines added in the main launch file.

<node pkg="hat brick pkg" type="distance.py" name="front distance pub" output="screen"=>
<param name="topic_name" value="front distance ir"/>
<param name="UID" value="TEw"/>

</node=>

FIGURE 13 — Modifying the launch file to add a new distance sensor

I also created a program for the screen called “screen.py”. The program takes only one
parameter which is the UID of the screen. The user can choose to display an image, by publishing
the corresponding binary matrix in the topic “display/image”, or to publish text on the screen
lines, by publishing the strings in the topics “display/lineX”, where X is the number of the line.
In the case that the user does not display any information, the screen will show the status of the
different Turtlebots Burger. If a robot is not connected, the screen will display “Not Connected”
and if the robot is connected, the screen will display “Connected” as well as various information
from the robot such as battery voltage and sensor measurements. In the case of Figure 14, we
can see for example that the Turtlebot3 Burger 1 and 2 are connected and therefore we can read
their status but Turtlebot3 Burger 3 and 4 are disconnected and therefore the screen shows “Not
Connected”.

FIGURE 14 — OLED display showing the state of the different agents of the fleet

2.5 Evolving to a multi-agent configuration
2.5.1 Choosing a multi-agent hardware configuration

After having deployed the Turtlebot3 Burger in a single agent configuration and after having
improved the hardware and software structure of the robots to make them more scalable, it was
time to evolve this previous work towards a multi-agent configuration. Evolving towards such a
configuration implies many changes, both from a network and a software point of view. Before
starting this work, Prof. RAUH and I thought about the hardware structure that we would
give to each Twurtlebot3 Burger. Indeed, the objective is also that the robots can collaborate to
carry out a mission, which implies that they are complementary and not redundant.

Page 18

Second year internship report

ENSTA

BRETAGNE

In its nominal configuration, the group will consist of 4 Turtlebot3 Burger. Each robot
has 1 LIDAR, 2 odometers, 1 IMU and 1 Raspberry Pi NolR camera but the question is
which sensors to add on each robot to make them complementary. We have divided the
robots into 3 classes: supervisor, operator, and support agents. The supervisor will be the
leader of the group and should be able to perform all the missions, understand its
environment and eventually interact with the user through a screen. The operator is a more
basic robot that will be specialised in a specific task and will receive its instructions from the
supervisor. The support agent is a robot that will behave most of the time like an operator
but will be able to support or replace temporarily the supervisor if required. In the case of
the project, theTurtlebot3 Burger number 1 will be the supervisor, the Turtlebot3 Burger
number 2 and 3 will be operators and the Turtlebot3 Burger number 4 will act as a support
agent.

To carry out its missions, robot number 1 will be equipped with two distance IR sensors.
The sensor with the longer range will be placed on one lateral side of the robot for wall
tracking and the sensor with the shorter range will be placed in front of the robot for frontal
obstacle detection. It will also be equipped with a screen to be able to interact with a user
or simply display information about the robots and the status of the mission. Robot number
2 will be equipped with a short-range distance IR sensor that will be placed in front of the
robot. Robot number 3, to be complementary to robot number 2, will be equipped with a
long-range distance IR sensor that will be placed in front of the robot. Robot number 4 will
not be equipped with distance IR sensors but with a webcam. Indeed, as mentioned in the
previous sections, due to an error, the camera on each robot does not have an infrared filter,
which gives the impression of having a pink filter on the images. It is still possible to
distinguish shapes but not colours. For this reason, we have equipped robot number 4 with
a high-resolution webcam that will allow it to recognise colours in the short term and that
can be used for stereovision in the long term. Robot number 4 is also equipped with a screen
to allow it to interact with users if robot 1 is not available. The Appendix 10 is an
illustration of this material structure.

2.5.2 Upgrading the network configuration

In the case of a multi-agent configuration, the management and the allocation of IP
addresses are very important steps. Indeed, in a nominal operation, the network will host
several Turtlebot3 Burger, the computer hosting the ROS master (called master computer
or just Master) and the computers of the different students. To operate the robots will need
to know the TP address of the master computer and to launch the robots, the teacher will
need to know location of each robot. The students will also need to know the TP address of
the master to retrieve information from the robots. Therefore, if no network structure is
defined, the allocation of IP addresses will be random, and this will prevent a simple and
intuitive use of the project. Therefore, I had to think and propose a network structure
adapted to this project, which would allow to easily associate an IP address to a type of
agent and thus to propose a simple and intuitive use.

First, I identified the needs and functioning of each type of system. The Turtlebot3 Burger
and the Master must be easily located on the network. Therefore, it is necessary to assign
them a fixed IP address which will be reserved for them at each network deployment. On
the contrary, students and other users do not need to be easily locatable on the network.
They only need to be able to locate the Master to send requests to it, not the contrary.
Therefore, assigning a range of IP addresses to which users can connect is sufficient. This
configuration leads us to Figure 15, which is a representation of the desired network
organisation for this project.

Page 19

Second year internship report

ENSTA

BRETAGNE

[192.168.0.1 j——> Router

| 192.168.0.2] 7
8 Reserved IP addresses
> for Turtlebots
[102.168.0.9]
[192.168.0.10 — Reserved IP address
- for Master
(192.168.0.11 |
s ., Dynamic IP address
= range
(192.168.0.254 |)

FIGURE 15 — Structure of the network

In this configuration, 192.168.0.1 is the default address to access the router. I then reserved
8 IP addresses (192.168.0.2 to 192.168.0.9) for the Turtlebot3 Burger. When I was writing this
report, the university only had 4 Turtlebot3 Burger. The 4 unused IP addresses will allow the
university to add new robots if the project shows interesting results. To assign and reserve a
unique IP address for each robot, I decided to apply an "'n+1" relationship between the robot
number and its IP address. For example, Turtlebots Burger number 1 will receive the IP address
192.168.0.2 and conversely, the robot connected to the IP address 192.168.0.5 will be the
Turtlebot3 Burger number 4. By applying this rule, it is therefore very easy to locate a particular
robot on the network. The address 192.168.0.10 will host the Master. The remaining IP addresses
will be the IP addresses available for the users. To apply this configuration, I just had to modify
the router parameters, notably by modifying the dynamic range of IP addresses. An illustration
of this network structure (excluding users) can be found in Appendix 11.

2.5.3 Running multiple robots with R.O.S.

To deploy a multi-agent configuration, it is necessary to know how to make several identical
robots run in parallel under ROS without creating conflicts. Indeed, in its initial configuration,
the Twurtlebot3 Burger does not allow several robots to run at the same time without creating
conflicts. The Turtlebot3 Burger are in fact instances of the same robot, so they have the same
software structure. In the case of ROS, this means that the bots will try to publish their
information in the same topics, thus creating conflicts because when reading a piece of
information at a given time, it will be impossible to identify which Turtlebot3 Burger published
the information. This principle is illustrated in Figure 16, using the example of the topic /scan

in which the LIDAR data is published.

Iscan (sensor_msgs/LaserScan)

— o

TurtleBot TurtleBot

FIGURE 16 — 2 Turtlebot3 Burger trying to publish data on the same topic

Page 20

Second year internship report

ENSTA

BRETAGNE

The most obvious and simple solution to avoid this problem is to use the concept of
namespace in ROS. A namespace allows you to differentiate one instance of an object from
another by giving it a name that will be used as a prefix in front of its topics. In the case of this
project, each Turtlebot3 Burger will receive a name depending on its number in the form “t63 X~
with X the number of the robot. The different robots will add their prefixes to the name of their
topic and allow to distinguish, for example, the topic /scan of Turtlebot3 Burger number 1 from
the one of the Turtlebot3 Burger number 2 and thus avoid conflicts. In the case of the /scan
topic, the new configuration is illustrated in Figure 17.

| e | e |
I . | I . |
| /tb3_1iscan 1| /tb3_2iscan |
I 1 I 1 !
I) I
I) '
| 1) I
I I '
I I I

TurtleBot 1 I TurtleBot 2 I

FIGURE 17 — Using ROS namespace to avoid conflicts between
instances of the same robots

To use namespaces under ROS, it only required to specify the name you want to give to the
robot in the ROS NAMESPACE system variable and to specify the suffix used I, the
multi_robot parameter of the “turtlebots_robot.launch” file. However, after launching the robot,
all topics had a suffix except for the /scan topic. Indeed, all robots tried to publish the
information from their LIDARs in the same topic, which led to errors. Since the problem was
only in the LIDAR topic, I immediately looked in the LIDAR drivers, and more precisely in the
source codes, to find the origin. The problem came from the driver, the main program was not
using the multi_robot argument to define the topic name. After searching online and on forums,
I learned that the problem could be caused by the LIDAR because it was changed at the
beginning of 2022 and that the drivers would not have been fully updated yet. The fault was
reported to the developers, and I only had to modify the source code slightly to correct the error.
After this correction, the multi-agent configuration was functional, and several Turtlebot3 Burger
could run at the same time on the network without creating conflicts. So, I was done with this
part, or so I thought.

2.5.4 Adapting the built-in programs for multi-agent configuration

The last step to validate the deployment of the multi-agent configuration was to verify the
correct functioning of the main programs of the ROS Turtlebot3 Burger package (teleop, SLAM
and Autonomous Navigation). To do this I wanted to apply a protocol similar to the one in the
part 2.3.1 Building the robots: realize an autonomous navigation in an OFFIS room. This involves
using the teleop program to navigate to the room, the SLAM program to map the environment
and the Autonomous Navigation program to navigate autonomously in the room. However, the
test did not go as planned because the programs in the ROS package did not seem to support
multi-agent configuration and more specifically the use of namespace under ROS. To correct this,
I tried to modify the source code of each program to make them work in a multi-agent’s
configuration.

Page 21

Second year internship report

ENSTA

BRETAGNE

The first program I wanted to fix was the teleoperation program. The source code of this program
is the file turtlebots teleop_key.py which is in the ROS package named turtlebot3 teleop, more
precisely in the folder nodes. To understand, modify and test the different source codes, without
impacting my installation, I preferred to create a dedicated ROS package in which I could copy the
unworking programs to modify them. So, I copied the turtlebot3_teleop_ key.py file into my ROS
package named turtlebot3_modified__package. A quick read of the program allowed me to identify
line 138 as the problematic line. This line corresponds to the creation of the ROS publisher and does
not consider any parameter to add a suffix to the topic. So, I had to modify this part to ask the user
about the suffix to use. The old and new versions of this program can be found in Appendix 12.
After this simple modification the teleoperation program was now compatible with a multi-agent
configuration.

The second program I modified was the SLAM program. Fixing this program was much more
complex and time consuming than the first one. Indeed, the SLAM program uses 3 subprograms to
run: turtlebot3_remote.launch (used to create the different coordinate systems of the problem, see
Figure 18.), turtlebot3_$(arg slam__methods).launch (used to read the LIDAR data and apply a user-
defined mapping algorithm. The argument slam__methods is the name of the algorithm chosen by the
user) and turtlebot3_$(arg slam_methods).rviz (used to display the map in real time in a RVIZ
window). So, I had to analyse these programs and understand how they are used by the SLAM
algorithm to find the part(s) to correct. For a matter of time and page limit, I will not detail my
research but immediately talk about the results. I was able to conclude that it was sufficient to add
parameters to the SLAM program to allow the user to specify the suffix used and the names of the
different coordinate systems used for the projections. Indeed, the problem seemed to be that the sub-
programs could not find the various coordinate systems of the problem because they had a suffix. The
old and new versions of the launch file can be found in Appendix 13. After this modification the
SLAM program was now compatible with a multi-agent configuration.

base_stabilized

base_link

\\ laser_link

O
L. 1,

map odom base_footprint

FIGURE 18 — Coordinate systems used by the SLAM algorithm

The last program I wanted to fix was the Autonomous Navigation program. This program
corresponds to the file turtlebot3 navigation.launch in the ROS package turtlebot3 navigation. It
uses 5 subprograms: turtlebotd_remote.launch (used to create the different coordinate systems of the
problem, see Figure 18.), map_server (used to read the map produced by the SLAM program),
amcl.launch (used to compute the best path to follow), move_base.launch (used to follow the
computed path) and rviz (used to display the map, the robot and the path to follow). As with the
SLAM program, I had to read and understand the dependencies of each of these sub-programs to fix
the package. I tried to apply similar fixes that the SLAM program by adding parameters to specify
the suffixes and the different coordinate systems used. I also modified the different parameter files
(.yaml), but I finally couldn't get the package to work in a multi-agent configuration. I think the
problem comes from the move_base package which is compiled and so I can't make any changes.
Therefore, we must wait for a correction from the developers before the autonomous navigation
program can work in a multi-agent configuration.

Page 22

Second year internship report

ENSTA

BRETAGNE

2.6 Working on the communication between software and R.O.S.

The last step of my internship was to work on the communication between ROS and
programming software commonly used at the university. Indeed, the goal is that a maximum of
students, of all levels, can use the Turtlebotd Burger. As ROS is usually learned in the last years
of the training cycle, it is necessary to provide a way for students to interact with the Turtlebot3
Burger without having to manipulate ROS directly. The aim is to integrate ROS communication
modules into software used by students during the early years of their training cycle, allowing
them to easily read and send information to the Turtlebot3 Burger. These modules will have to
be intuitive enough for any student to use them without knowing all the mechanics of ROS but
only its main foundations. For this internship, I will focus on two graphical programming
environments: MATLAB Simulink and FEclipse 4diac.

2.6.1 MATLAB Simulink and R.O.S.

To begin with I decided to work on the communication between ROS and MATLAB
Simulink. Indeed, knowing that MATLAB is a paying solution that is widely used in education
and industry, it seemed obvious to me that a ROS communication module should already exist.
After some research, I quickly found the existence of a MATLAR library called ROS Toolbox
which allowed interaction with ROS topics in a rather intuitive way [5]. For example, to publish
information on a ROS topic, you simply create an empty ROS message of the desired type (e.g.
geometry_msgs/Point) and assign values to it using the assignment block. The modified message
can then be published in the desired ROS topic using a Publish block. This example is illustrated
in the Figure 19.

AN A
ﬂﬁ
- geometry_msgs/Boint ‘

Bus

»:=X Busf @

o=y & Nocation

FIGURE 19 — Publishing data in ROS topic using MATLAB Simulink

Reading information from ROS topics is also possible but requires a slight subtlety. A notion
of exchange frequency is introduced here. When MATLAB Simulink publishes information on a
ROS topic, the information is sent at the frequency at which the simulation is running. However,
in the case of reading information, the data may be published at a different frequency than the
simulation one. Therefore, to avoid over-reading errors or a delay phenomenon of the information,
it is necessary to use a particular block which is the Fnabled Subsystem block. This block will
allow the information to be read at the publication frequency and thus avoid possible errors. To
continue with the previous example, to read the information published in the topic /location, we
need to create a Subscribe block to read the information in the topic and couple it with the
Enabled Subsystem block to synchronise the reading frequency with the publication frequency.
This example is illustrated in Figure 20.

Page 23

Second year internship report

ENSTA

BRETAGNE

Y

59
In1 -

FIGURE 20 - Reading data from a ROS topic using MATLAB Simulink

The advantage of MATLAB Simulink is also the ability to create sub-blocks. Indeed, the
aim is still to hide all the blocks related to ROS to make the process intuitive for students.
By using sub-blocks, it is possible to transform Figure 19 into a block with two inputs, called
for example X and Y, and to transform Figure 20 into a block with two outputs, which can
also be called X and Y. Thus, by using the sub-blocks, the students do not know that the
ROS Toolbox library is used because they only see blocks with inputs (which will be the
commands sent to the robot) and outputs (which will be the information from the robot's
sensors). To return to the Turtlebot3 Burger case, there is only one command to send: the
desired linear and angular speed in the /emd_vel topic. So, to control a Turtlebot3 Burger,
I just need to create a ROS publisher like the one in Figure 19 and hide it in a sub-block
with two entries: Linear speed and Angular speed.

——— P Linear speed

——— | Angular speed

tb3_1/emd_vel

FIGURE 21 — Sending speed command to the Turtlebot3 Burger number 1
using MATLAB Simulink

2.6.2 Eclipse 4diac and R.O.S.

The second programming environment I worked on was Eclipse 4diac. Eclipse jdiac is
not a charged solution but an open-source software, so it was not certain that a ROS
communication module would be integrated in the software. However, as Eclipse 4diac is
quite popular in Germany and used more and more in robotics, there was a chance that a
contributor, or an official developer, had developed such a module. In fact, one of the
developers did it but there was a trouble. The problem is that the module has not been
updated since 2014 and is therefore only compatible with ROS Indigo and Ubuntu 14.04 (as
a reminder, the nominal configuration for students would be Ubuntu 20.04 and ROS Noetic).
As a result, several solutions were available to me: the first was to update the existing ROS
module and the second was to think of another way to set up a communication with ROS.
The first solution would be the most efficient but might be difficult and long to deploy. In
the worst case, I might not be able to implement it before the end of my internship. The
second solution offers more certainty. Indeed, several other protocols are supported by Eclipse
4diac and updated communication modules are available. It would therefore be possible to
use one of these modules and couple it with a bridge to indirectly create a communication
with ROS. This solution would be the easiest to implement in the remaining time but not
the most optimal as setting up a bridge could create a slight delay of information which will
have to be quantified.

Page 24

Second year internship report

ENSTA
BRETAGNE
In order to know which solution I should choose, I decided to talk to Prof. RAUH to find
out the short-term needs of the university. Indeed, if the short-term goal is to use the project
intensively, then a powerful ROS communication module is required, but if the goal is to have a
demonstrator to show the capabilities of the project, then the second option is the most adapted.
Following our discussion, we decided to develop the second option. Among the available
protocols, I have isolated one in particular: the MQTT protocol.

The MQTT protocol is a TCP/IP communication protocol based on the publisher /subscriber
model. Like ROS, it is possible to create topics in which publishers can share information and
subscribers can read information. Unlike ROS, MQTT topics only carry information in the form
of strings, so sending matrices or images is more complex. The fact that MQTT is built on the
publisher /subscriber model means that MQTT clients incorporate the concept of call-back. When
an MQTT client subscribes to a topic, it is possible to call a function each time new information
is available, this principle is called call-back and it is also available with ROS. My idea is to use
the call-back concept to realize the bridge I mentioned before. Indeed, if we wish to transmit
information between FEclipse 4diac and ROS, we will have to set up a bridge which will allow the
transfer of information between the MQTT topics and the ROS topics. For that, the bridge will
have to use an MQTT client to exchange with the MQTT topics and a ROS client to exchange
with the ROS topics. My idea is to use the call-back concept so that when a new information is
available on an MQTT topic (or an ROS topic), the MQTT subscriber (respectively the ROS
subscriber) calls the ROS publisher (respectively the MQTT publisher) thanks to the call-back
concept to transmit the information to it so that it can publish it.

Let's take a simple example, a user wants to process information from one of the Turtlebot3
Burger sensors with FEelipse Jdiac. Let's assume that the information is published in the ROS
/sensor topic, so the goal is for the bridge to transfer the information to the MQTT /sensor
topic. By doing so, the user will only have to use the MQTT module of Eclipse 4diac to read the
information, which creates a communication between ROS and Eclipse 4diac. The bridge will
therefore instantiate an ROS client that will subscribe to the ROS /sensor topic and an MQTT
client that will publish to the MQTT /sensor topic. By using the call-back function of the ROS
subscriber, it is possible, at each acquisition of the sensor, to read the new published value and
to call a function which will take as argument this new value, and which will use the MQTT
publisher to publish the information in the MQTT /sensor topic. This principle can also be
applied in the other direction (MQTT to ROS) and allows to create an indirect communication
between ROS and FEclipse 4diac and thus offers users to control the Turtlebot3 Burger through
Eclipse 4diac.

SMQTT 2:ROS
e
/cmd_vel /cmd_vel
Sub Pub
Pub Sub
/sensor /sensor
4diac MQTT ROS
Client Client
-
Bridge
MQTT topics ROS topics

FIGURE 22 — Concept of the bridge between MQTT and ROS to create a communication
between Eclipse 4diac and the Turtlebot3 Burger

Page 25

Second year internship report

ENSTA

BRETAGNE

3. Results and lessons learned

3.1 Culture

These 16 weeks spent in Germany were very formative and enriching for me from a cultural
point of view. The fact that I had a job and fixed hours allowed me to really immerse myself in
the German culture by living the daily life of the population. Indeed, visiting a country and living
in a country are two very different things. In order to succeed in living in Germany, I quickly
decided to learn German using alternative methods. Standard language courses are usually very
restrictive for me as they involve fixed durations, at sometimes restrictive times, and with a
continuous workload. For this reason, I decided to learn German using Duolingo in order to fit
my lessons to my schedule. By working on pronunciation with my German colleagues, I was able
to master the basics of everyday life quite quickly which changed my daily life.

Working in an international research centre allowed me to meet people from all walks of life
during coffee breaks, even French people. I was also lucky enough to have very open and friendly
colleagues who helped me to get to know the German way of life. So, this experience was really
enriching and rich in experiences and could encourage me to work in Germany in the future of
my career.

3.2 Long Night of Digitization

As told before in this report, during my internship, OFFIS organised a major event called
“Long Night of Digitization” in partnership with BT'C Business Technology Consulting AG, an
IT consulting company based in Oldenburg, Germany. The aim of the event was to reconnect
the Public and the Industry with the Research after the COVID19 crisis by demonstrating the
importance of digital technologies in our lives and in the future. On this occasion, all the
departments had a stand to explain their work and I was no exception. My objective was to
capture the attention of young students and of the public with the Turtlebot3 Burger, allowing
them to control the robots with a game controller and camera feedback. I had therefore to add
a camera on the robot and create a program to teleoperate the robots with a game controller.

During this event, I had to present my work to a very diverse audience and make them
understand the interest of such a project for education. The language barrier was a difficulty
that I tried to overcome to transmit my passion. A large audience was interested in what I had
to say and some of them even asked me for advice on how they could discover robotics themselves.
The director of the university also came to the stand and showed a strong interest in the project,
which for him will be an excellent pedagogical support for the students. This evening was a
success and will be engraved in my memory for many years to come.

FIGURE 23 — Presenting the project to a father and his son

Page 26

Second year internship report

ENSTA

BRETAGNE
3.3 Work Done

By the end of August 2022, all the objectives of my internship had been met. Indeed, the
Turtlebot3 Burger were deployed and operational in a multi-agent configuration. Equipped with
a modular and versatile hardware structure, they could now adapt to the needs of different users
with very little deployment time. The network was also fully operational and, as promised, easily
transportable and deployable. The documentation and user guides made it easy for someone
unfamiliar with the project to pick it up and deploy it. Students can already work with the
Turtlebot3 Burger using different software such as MATLAB Simulink or Eclipse 4diac. After
presentation and validation of the results to Prof. RAUH and the different members of the
Computer Science department of the Oldenburg university, I concluded that the project had been
successfully completed.

3.4 Future work

Despite the results produced during these 4 months, there are still elements to improve or
even develop:
e First, it will be necessary to understand why the NTP client on the Turtlebot3
Burger refuses to connect to the NTP server. Ideally, the problem should be identified
and solved to allow a more accurate time synchronisation between the different agents.

e It will also be necessary to monitor possible updates to the ROS package for
autonomous navigation so that it can support a multi-agent configuration and more
precisely the use of namespace under ROS

e During the different uses of the project, it will be necessary to enrich the ROS
package hat_brick pkg with programs allowing to easily integrate new types of sensors
such as temperature sensors, pressure sensors, ... etc.

e To facilitate the interaction between ROS and Eclipse 4diac, it would be necessary
to improve the bridge and to adapt it especially to the project. Indeed, it is currently
necessary to manually specify the name of each topic that we wish to monitor, whereas
we already know the name of the topics used by the Turtlebot3 Burger. The best solution
is still to update the ROS communication module to ROS Noetic.

e As ROSI is nearing the end of its development in favour of ROS2, it would be

interesting to adapt my work by upgrading the Turtlebot3 Burger to ROS2. ROBOTIS
already offers a ROS2 version of the Turtlebot3 Burger drivers on its website.

Page 27

Second year internship report

ENSTA

BRETAGNE

4. Conclusion

During this 16-week internship in Germany, I was able to experience working in an
international and professional context. It is hard, even with hindsight, to know if this change has
impacted negatively or positively my ability to work and to focus. However, I must admit that
the change in my habits and daily life was quite complicated during the first weeks, thus probably
impacting my productivity. However, I have pleasant memories of this internship, which I
associate with a strong cultural opening, a discovery of the German language and a new life
experience. This internship gave me a lot on a technical level, as well as on a human level, and
this will have an impact on the engineer I will become.

This internship also allowed me to discover the problems and issues related to multi-agent
environments, while applying the technical and human knowledge that I acquired during my
training at FNSTA Bretagne. 1 was able to learn how to deploy a network, to build a robot, to
use different ROS packages, to design 3D supports and to work on communications between
different software. This internship was therefore very complete and allowed me to develop all the
technical skills that one can expect from a robotics engineer and that will probably be useful in
the future.

Page 28

Second year internship report

ENSTA

BRETAGNE

Glossary

ENSTA Ecole Nationale Supérieure de Techniques Avancées

R.O.S. Robot Operating System (see 2.2.2 Robot Operating System (R.0.S.) for more info)

IETA Ingénieur des Etudes et Techniques de I’Armement

LIDAR Light Detection and Ranging or Laser Imaging, Detection, and Ranging
IMU Inertial Measurement Unit

SLAM Simultaneously Localisation and Mapping

SSID Service Set Identifier

NTP Network Time Protocol

RTC Real Time Clock

CAD Computer Aided Design

Bibliography

[1] ROBOTIS, “Turtlebot3 Burger E-manual,” 2022.

[2] C. Reusch, “Basic facts about WLAN standards in North America and Europe,” in
crnetpackets.com, 2015.

[3] K. Buzdar, “How to Install NTP Server and Client(s) on Ubuntu 20.04 LTS,” in VITUX - Linux
Compendium, 2021.

[4] C. WILLIAMS and A. SCHROEDER, “Utilizing ROS 1 and the Turtlebot3 in a Multi-Robot System,”
The University of Toledo, Toledo, OH USA, 2020.

[5] MathWorks, “Get Started with ROS in Simulink,” in MathWorks documentation.

Page 29

Second year internship report

ENSTA

BRETAGNE

Table of figures

FIGURE 1 - Examples of the robots used at ENSTA Bretagne......ccocvevvineninecnincnieeneeeeeneenes 5
FIGURE 2 — Illustration of the use cases of the Project.......ciiiiiiiiiiis 5
FIGURE 3 — Turtlebot3 Burger and Turtlebot3 Waffle features.......ccoceveenieniniinieiiineeeceeeeene 9
FIGURE 4 — Concept of Node and Topic in R.O.S. oo 9
FIGURE 5 - Example of application for the R.O.S. toolbox: publish speed commands on a topic........... 10
FIGURE 6 — Illustration of the IEC 61499 standard........cccoviniiiniiiiiiiiiniinici s 10
FIGURE 7 - Building the robot and using the autonomous navigation program ..., 12
FIGURE 8 — The different steps of my work to deploy the NTP Server......cccevvvieeiveencncnineneneeeeeenns 14
FIGURE 9 — Difference between Raspberry Pi NolR camera and regular Raspberry Pi camera 15
FIGURE 10 — 3D model of the Raspberry Pi camera support and one integrated on the robot 15
FIGURE 11 — Tinkerforge HAT DIICKoiiioi ittt sttt ettt ettt testesee st e saeesaeesesnteens 16

FIGURE 12 — 1. IR distance sensor support 2. Turtlebot3 Burger with IR distance sensors 3. Touch screen

support 4. Screen integrated 0N the TODOT ittt st eae 17
FIGURE 13 — Modifying the launch file to add a new distance SENSOTccoveereereereriieriie e 18
FIGURE 14 — OLED display showing the state of the different agents of the fleetcccovvrviriiniininnns 18
FIGURE 15 — Structure of the netWork ..ot 20
FIGURE 16 — 2 Turtlebot3 Burger trying to publish data on the same tOPIC.....ccevververienieiienierieieee 20
FIGURE 17 — Using ROS namespace to avoid conflicts between instances of the same robots................ 21
FIGURE 18 — Coordinate systems used by the SLAM algorithmccceverevinirerininencnceenceseneeenene 22
FIGURE 19 — Publishing data in ROS topic using MATLAB SimulinKk........ccccveeeierevnienecnrencnineneneenene 23
FIGURE 20 - Reading data from a ROS topic using MATLAB Simulink......c.ccecveeeinieneninineneneeeeene 24

FIGURE 21 - Sending speed command to the Turtlebot3 Burger number 1 using MATLAB Simulink. 24
FIGURE 22 — Concept of the bridge between MQTT and ROS to create a communication between Eclipse
4diac and the TUItIEDOt3 BUIGETciiiiiirieie ettt ettt st st st et e b e e besntesaeesaeesaeesseenseenseens 25

FIGURE 23 — Presenting the project to a father and his SON.....ccccvvvieiiiiiniini e 26

Page 30

file:///C:/Users/damie/Desktop/oldenburg/rapport/rapport.docx%23_Toc115727051
file:///C:/Users/damie/Desktop/oldenburg/rapport/rapport.docx%23_Toc115727052
file:///C:/Users/damie/Desktop/oldenburg/rapport/rapport.docx%23_Toc115727053
file:///C:/Users/damie/Desktop/oldenburg/rapport/rapport.docx%23_Toc115727054
file:///C:/Users/damie/Desktop/oldenburg/rapport/rapport.docx%23_Toc115727055
file:///C:/Users/damie/Desktop/oldenburg/rapport/rapport.docx%23_Toc115727056
file:///C:/Users/damie/Desktop/oldenburg/rapport/rapport.docx%23_Toc115727057
file:///C:/Users/damie/Desktop/oldenburg/rapport/rapport.docx%23_Toc115727058
file:///C:/Users/damie/Desktop/oldenburg/rapport/rapport.docx%23_Toc115727059
file:///C:/Users/damie/Desktop/oldenburg/rapport/rapport.docx%23_Toc115727060
file:///C:/Users/damie/Desktop/oldenburg/rapport/rapport.docx%23_Toc115727061
file:///C:/Users/damie/Desktop/oldenburg/rapport/rapport.docx%23_Toc115727062
file:///C:/Users/damie/Desktop/oldenburg/rapport/rapport.docx%23_Toc115727062
file:///C:/Users/damie/Desktop/oldenburg/rapport/rapport.docx%23_Toc115727063
file:///C:/Users/damie/Desktop/oldenburg/rapport/rapport.docx%23_Toc115727064
file:///C:/Users/damie/Desktop/oldenburg/rapport/rapport.docx%23_Toc115727065
file:///C:/Users/damie/Desktop/oldenburg/rapport/rapport.docx%23_Toc115727066
file:///C:/Users/damie/Desktop/oldenburg/rapport/rapport.docx%23_Toc115727067
file:///C:/Users/damie/Desktop/oldenburg/rapport/rapport.docx%23_Toc115727068
file:///C:/Users/damie/Desktop/oldenburg/rapport/rapport.docx%23_Toc115727069
file:///C:/Users/damie/Desktop/oldenburg/rapport/rapport.docx%23_Toc115727070
file:///C:/Users/damie/Desktop/oldenburg/rapport/rapport.docx%23_Toc115727071
file:///C:/Users/damie/Desktop/oldenburg/rapport/rapport.docx%23_Toc115727072
file:///C:/Users/damie/Desktop/oldenburg/rapport/rapport.docx%23_Toc115727072
file:///C:/Users/damie/Desktop/oldenburg/rapport/rapport.docx%23_Toc115727073

Second year internship report

ENSTA

BRETAGNE

Appendices

Appendix 1: Assessment report

: RAPPORT D'EVALUATION
é@ ASSESSMENT REPORT
ENSTA

Merci de retourner ce rapport par courrier ou par voie €lectronique en fin du stage & :
At the end of the internship, please return this report via mail or email io:

ENSTA Bretagne — Bureau des siages - 2 rue Frangois Verny - 29806 BREST cedex 9 ~ FRANCE
B 00.33 (0) 2.98.34.87.70/ stuges@enstu-bretagne b1

I- ORGANISME [/ HOST ORGANISATION
NOM ¢ Name ©37 von Ossielzky Universitit Oldenburg

Adresse / Address Ammeriander Heerstralde 114-118, D-26111 Okdenburg, Allemagne

Tél ! Phone (including country and area code) +49 441 788-4195

Nom du superviseur / Narme of internship supervisor
Prof. Dr. Andreas Rauh (professaur des universités): M.Sc. Friedearike Bruns (cherchause)

Foncuon { Function

Adresse e-miail / E-mail address andreas rash@uni-olgenburg de; friederke bruns@uni-oldenburg.de

Damien Esnault

Nom du stagiaire accueilli f Name of intern

I1 - EVALUATION /ASSESSMENT

Veuillez attribuer une note, en encerclunt la letre appropriée, pour chacune des caraciéristiques
suivuntes. Celte note devra se situer entre A (tres bien) et F (trés faible)
Please atrribute a mark from A (excellent) 1o F (very weak).

MISSION / TASK

% La mission de départ a-t=clle été remplic ? @BCDEF
Was the initial contract carvied out 10 your satisfaction?

% Manquait-il au stagiaire des connaissances 7 C] ouifyes E] nonfne
Was the intern lacking skills?

Si oui, lesquelles 77 If so, which skills?

ESPRIT D’EQUIPE / TEAM SPIRIT

% Le stagiaire s"est-1] bien intégré dans 1"organisme d'accueil (disponible, sérieux, s est adapté au
travail en groupe) ! Did ihe intern easily integrate the host organisation? (flexible, conscientious,
udapred to teans work)

@ABCDEF

Souhaitez-vous nous faire part d’observations ou suggestions ? / If you wish to conment or meke a
suggestion, please do so here M. Esnault & effectué ses travaux d'une maniére extrémement sérieuse
el s'est irés bien intégré dans T'&quipe universitaire el dans & centre de

S

Version du 05/042019

Page 31

Second year internship report

ENSTA

BRETAGNE

COMPORTEMENT AU TRAVAIL / BEHAVIOUR TOWARDS WORK

Le comportement du stagiaire était-il conforme & vos atlentes (Ponctuel, ordonné, respectucux,
soucieux de participer et d’acquérir de nouvelles connaissances) ?

Did the intern live up 1o expectations? (Punciual, methodical, responsive o management
instructions, attentive 1o guality, concerned with acquiring new skills)?

@BCDEF

Soubattez-vous nous faire part d'observations ou sugf,:suum P If you wish 1o conument or make a
suggesiton, please do so here TS ponciuel, engage;lm Q;.:‘se 4 apprendre des nouvelles connaissances,
SO ENOUUES, oI

INITIATIVE — AUTONOMIE / INITIATIVE - AUTONOMY
Le stugiaire s'est =il rapidement adapté & de nouvelles situations ? @B CDEF
(Proposition de solutions aux problémes rencontrés, autonomie dans le travail, etc.)

Did the fnrern adapt well 1 new sitwations? @B CDEF
(eg. suggesied solutions 1o problems encouniered. demonsirared awonomy in histher job, erc.)

Sauhanez-vous noeus faire part d'observanons ou suggestions 7/ If vou wish 1o comnent or make a
suggestion, please do so here M. Esnault giprésenté ies résultats de son stage dans une fagon pédagogique d
ans |g cadre du séminai ue de | equwe de recherche umversatatra et ul a réponou claurement a Ioutes las questlons
‘posses aveEc UnaVision dis VE WEs trés

heureux gua M. Esnault a egaiement presente s8s travaux pendant Ia socée de dngltal!sahon orgamsée par OFF1
GULTUREL — COMMUNICATION / CULTURAL —~ COMMUNICATION

Le stagiaire était-il ouvent, d'une maniére générale, i la communication 7 @B CDEF
Ways the intern open 1o listening and expressing himself fherself’?

Souhastez-vous nous faire part d'observations ou suggestions ? / If vou wish 1o comment or make o
suggestion, please do so here Catait towours un trés grand plaisir de travadler avec M. Esnault

OPINION GLOBALE / OVERALL ASSESSMENT
< Lavaleur technique du stagiaire éiait ; @B CDEF
Please evaluate the rechnical skills of the imern:

11 - PARTENARIAT FUTUR / FUTURE PARTNERSHIP

% Etes-vous prét a accueillir un autre stagiaire 1"an prochain ?

Wortdd you be willing to host another intern next year? (Z] oui/ves D non/no
Faita Oldenburg |o 18/08/2022
In ,on
/- 2 4
4 S

A S oz
Signature Entreprise Signature stagiaire ~ <
Compuny starnp Intern’s signature

Faealtatll
/—| Informatik, Wirtschafts- und Rechiswisserachatien
Comn Liteietny Cepariment tr informatik

Universitdt Abt, Verseitie Regelung in verratztan Systemen

Oldenburg Prot. Dr. Andreas Raun
0-26111 Oldanburg X .
Merci pour votre coopération

We thunk you very much for your cooperation

Verston du 05/0422019

Page 32

Second year

internship report

ENSTA

BRETAGNE

Appendix 2: Example of a weekly schedule

16/05/2020 - 20/05/2022 : Work Schedule

Monday Tuesday Wednesday Thursday Friday
16 May 17 May 18 May 19 May 20 May
08
AM
00:00 AM 09:00 AM 00:00 AM: 00:00 AM: 09:00 AM:
HAT Brick Preparation | Preparing a required CAQ: Designing Meeting with Connecting TurtleBot
09 | Check the HAT material list camera support Friederike + Andreas + to Network
AM| documentation to Searching the missing Designing a camera Mahsa Setting the TurtleBot to
understand how to add the | power cable (not found so | support/protection connect to the Network +
— HAT on the system asked on forum + to 10:00 AM test
Fabian) CAO: Designing
10 1030 AMA camera support
AM Searching a new Designing a camera
P o_wer structure 11:00 AM support/protection
;l)’ adding tlhe HAT, we i Installing the camera
11 ave now 1o power 1t an on T‘I.l].'tleBotZ
not the Raspberry
AM Prepare the Raspberry to
received the raspi camera
12 1215 PV 12:15 PM 12:15 PM- 12:15 PME 12:15 PM
PM
] FOL00 PV
Interval Conference
l:?l:.ﬂ r0L:30 PV 01:30 PM 01:30 PM 01:30 PM:
Searching a new Installing the camera Implementing basic Network Deployment
power structure on TurtleBot2 visual reguation Setting up the TurtleBot
By adding the HAT, we Mount the raspi camera on | Use the OpenCV librairies Network
02 | have now to power it and the board and add a to detect and read ArUco
PM not the Raspberry camera topic to get the and deduce order 02:30 PM|
image Connecting TurtleBot
to Network
Setting the TurtleBot to
03 connect to the Network +
PM 03:30 PM;{ test
Preparing a required
material list
Preparing a list to order all
04 | the required material in
PM one time 04:30 PM
CAO: Designing
camera support
Designing a camera
05 support/protection
PM 05:30 PM 05:30 PM 05:30 PM 05:30 PM] 05:30 PM|

Page 33

Second year internship report

ENSTA

BRETAGNE

Appendix 3: Example of a visual support (initial hardware

structure)

Lidar LDS-02

Fourth Layer

LDS-02 cable

Power Input 5V 3A

RaspBerry Pi 4
Model B

Third Layer

USB cables

USB2LDS

Raspberry Pi
power cable
Power Output max 5V 4A

"""""

") OpenCR 1.0

Second Layer

Dynamixel to
OpenCR cable

Left Servo
(Dynamixel XL430)

Battery Li-Po
(11.1V 1800mAh)

First Layer

Dynamixel to
OpenCR cable

Right Servo
(Dynamixel XL430)

Page 34

Second year internship report

ENSTA

BRETAGNE

Appendix 4: Turtlebot3 Burger specifications

Items Burger

Maximurn franslational velocity 022 mis

Maxdimurn rotational velocity 2.84 radis (162.72 deg/z)
Maimurn paylead 15kg

Size (Lx Wx H) 13&mm x 178mm x 192mm

Weight (+ SBC + Battery + Sensors) 1kg

Threshold of climbing 10 mm or lower

Expected operating time 2h 30m

Expected charging fime 2h 30m

SBC (Single Board Computers) Raspbemy Pi

MCL 32-bit ARM Corlex®-MT7 with FPU {216 MHz, 4562 DMIPS)

Remote Condroller -

Actuator AL430-W250
LDS(Laser Distance Sensor) 360 Laser Distance Sensor LOS-01 or LDE-02
Camera -
MU Gyroscope 3 Axis _
Accelerometer 3 Axis
3.3V 800ma
Power connectors SV 4A
12V 114
i . GPIO 18 pins
Expansion pins Arduino 32 pin
Peripheral UART x3, CAM x1, SPI x1, 12C x1, ADC x5, Spin OLLO x4
DYMAMIXEL ports RS485x 3 TTLx 3
Audio Several programmable beep sequences
Programmakble LEDs User LED x 4
Board status LED x 1
Siafus LED= Arduino LED x 1

Power LED x 1

EButfons and Swilches

Push buttons x 2, Reset bution x 1, Dip switch x 2

Battery Lithium polymer 11.1% 1800mah / 19.958Wh 5C
PC conneclion UsB
Firmware upgrade via USE / via JTAG
Imput : 100-2400. AC S0/60Hz, 1.54
Power adapter (SMES) neu z, 1.5 @max

Output - 12V DC, 5A

Page 35

Second year internship report

ENSTA

BRETAGNE

Appendix 5: Router datasheet

Technical data

Product type

Type

Wi-Fi standard

Dual Band compatibility

Wi-Fi frequency band

Wi-Fi transmission rate (max.)

Wi-Fi speed 2.4 GHz
Wi-Fi speed 5 GHz

WPS compatible

No. of antennas

10/100 Mbps ports
10/100 Mbps WAN ports
No. of USB 2.0 ports
Width

Height

Depth

Weight

Wi-Fi router

AC1200 Dual-Band WLAN Router

IEEEB02.11ac, IEEE802.11n, IEEEB02.11g, IEEEB02.11b

2.4 GHz and 5 GHz

2.4 GHz, 5 GHz
1200 MBit/s
300 MBit/s
900 MBit/s

Wi-Fi

185 mm
136.5 mm
46 mm

250 g

Page 36

Second year internship report

ENSTA

BRETAGNE

Appendix 6: Raspberry Pi NoIR camera datasheet

Still resolution
Video modes

Linux integration

C programming API
Sensor

Sensor resolution
Sensor image area
Pixel size

Optical size

Focal length
Horizontal field of view
Vertical field of view
Focal ratio (F-Stop)
Weight

Size

Spécifications

Référence
EAN

Constructeur

8 Megapixels

1080p30, 720p60 and 640 x 480p60/90
V4L 2 driver available

OpenMAX IL and others available
Sony IMX219

3280 x 2464 pixels

3.68 x 276 mm (4.6 mm diagonal)
112 %112 ym

/4"

3.04 mm

62.2 degrees

48.8 degrees

2.0

39

25x24 x9 mm

18077
BOIERZSMHY

Raspberry Pi Foundation

Page 37

Second year internship report

ENSTA

BRETAGNE

Appendix 7: Tinker Forge HAT Brick datasheet

Technical Specifications

Property

Current Consumption

Bricklet Ports

DC Input Voltage

DC Qutput

Sleep Current (s1.4)*

Dimensions (W x D x H)

Weight

Value

100mW (20mA at 5V)

8

6V-28V

5.3V, max. 4A

70mW (14mA at 5V) + 1.5mW if sleep indicator LED enabled

65 x 56 x 25mm (2.56 x 2.20 x 0.98")
30g

*: This value is for HAT Brick with hardware version smaller or equal to 1.4.

Page 38

Second year internship report

ENSTA

BRETAGNE

Appendix 8: New Turtlebot3 Burger hardware structure

Raspberry Pi
NoIR Camera
Module

Distance IR Distance IR
10-80cm Bricklet 4-30cm Bricklet

|l

Bricklet Cables

(7p-7p) Lidar LDS-02

Third Layer Raspberry Pi CSI

Camera connector
15 pins

USB cables
USB2LDS

Power Input 6-28V DC

RaspBerry Pi 4 Model B

Power Output max 12V 4.5A

af 3=

OpenCR 1.0

Second Layer

+

Battery Li-Po Left Servo Right Servo
(11.1V 1800mAh) (Dynamixel XL430) (Dynamixel XL430)

Page 39

Second year internship report

ENSTA

BRETAGNE

Appendix 9: OpenCR 1.0 datasheet

2. Specifications

ltems Specifications

STM32F746ZGTE [32-bit ARM Cortex@-MT with FFU (216MHz, 462DMIPS)

Microcontroller
Reference Manual, Datashest

(Discontinued) Gyroscope 3Axis, Accelerometer 3Axis, Magnetometer 3Axis (MPLS250)

Sensors
(New) 3-axis Gyroscope, 3-Axis Accelerometer, A Digital Metion Processor™ (ICM-206435)

ARM Cortex 10pin JTAG/SWD connector
Frogrammer USE Device Firmware Upgrade (DFL)}
Serial

32 ping (L 14, R 18) *Arduine connectivity
SPin OLLO x 4

GPIO x 15 pins

PWMx 6

12Gx1

SPlx1

Digital O

Analeg INPUT ADC Channgls (Max 12bit) x 6

USE x 1 {Micro-B USB connectorUSE 2 0/Hoest/Peripheral/lOTG)
TTLx 3 (B3B-EH-A f DYMNAMIXEL)
Communication Ports RS5485 x 3 (B4B-EH-A 7 DYNAMIXEL)
UART x 2 (20010WS-04)
CAM x 1 (20010W5-04)

LD2 (redigreen) : USE communication

User LED x 4 : LD3 (red), LD4 (green), LDS (blue)
User button x 2

Power LED : LD1 {red, 3.3 V power on)

Reset button x 1 (for power reset of board)

Power onfoff switch x 1

LED= and buitons

5V (USB VBUS), 5-24 V (Battery or SMPS)

Default battery : LI-PO 11.1V 1,500mah 12.98Wh

Default SMPS - 12V 4.54

External battery Port for RTC (Real Time Clock) (Molex 53047-0210)

Input Power Sources

Input Powveer Fuse 125V 10A LittleFuse 0453010

12V max 4.5A(SMW250-02)
Cutput Power Scurces
SV max 4A(5267-024), 3. 3V@E00mA(20010WS-02)

Dimensions 1050} X 75(0) mm

Weight glg

" BV power source is supplied from regulated 12V output. Total power consumption on 12V and 5V ports should not exceed 55W.

3. Layout/Pin Map

GPIO |2 |33V |6| D53 [11] D58 | 16| D63 1 33v 6 | mwoswo | JITAG
2 |GND | 7| D54 [12] DS9 |17 | D64 2 [svs_swoio| 7 GND
3| D50 | 8| DS5 (13| D60 | 18| D65 3 GND 8 o1
4| D51 |9 DS6 |14| D61 | 19| D66 4 [Tk swoik | 9 GND
S | D52 |10| D57 | 15| D62 | 20| D67 5 GND 10 | MCU_NRESET

G JTAG

PIO
[2]a s Is Jaof12faa]16]15]20] Bnaan
Lle1507] [ofsfoa]2]
B 2) A

Second year internship report

ENSTA

BRETAGNE

Appendix 10: Turtlebot3 Burger fleet configuration

Raspi NoIR
Camera

T
OLED
128x64 <
display
Distance IR =
4-30 cm % =€

Distance IR =3
10-80 cm s o 2
o 1)

Raspi NoIR
Camera

4-30 cm

Raspi NoIR
Camera

Distance IR
10-80 cm

USB
Camera

3

OLED
—» 128x64
display
’ Raspi NoIR
Camera

-

dgh

>
&>

Fos (D

v MU LIDAR J

v MU LIDAR)

dgh

s
&>

v IMU LIDAR)

\K IMU LIDAR J

~

Agh

A
Y

Turtle Bot #1
(Supervisor)

Turtle Bot #2

Turtle Bot #3

Page 41

Turtle Bot #4

Second year internship report

ENSTA

BRETAGNE

Appendix 11: Representation of the network

Internet

&R

Ethernet connexion to Internet (only necessary
to update the raspberry pi or download a
package)

A

Wifi Router
192.168.0.1/24

Communication with
the SSH protocol

TurtleBot #4
192.168.0.5/24

TurtleBot #1
192.168.0.2/24

TurtleBot #2 TurtleBot #3
192.168.0.3/24 192.168.0.4/24

Remote PC (Master)
192.168.0.10/24

Page 42

Second year internship report

ENSTA

BRETAGNE

Appendix 12: Modified Turtlebot3 Burger teleop program

rospy.init _node('turtlebot3 teleop")

pub = rospy.Publisher('cmd vel', Twist, queue size=18)

Old version

L Modified part of the original programm -------------------—--

print("Which TurtleBot3 do you want te control?")

print(“Please enter an interger: ",end="")

th3_number = input()

try:
tb2_number

except:

int(tb3_number)

while True:
print{"TurtleBot3 ID invalid")
print("Please enter an interger: ",end="")
tb3 _number = input()
try:
tb3 number = int(tb3_number)
break
except:
pass

rospy.init_node(' turtlebot3_teleop')
if tb3_number ==0:
topic_name = "/cmd_vel

else:

"jtb3_{}/cmd_wvel" . format(tb3 number)

pub = rospy.Publisher(topic_name, Twist, queue size=18)

topic_name

New version

Page 43

Second year internship report

ENSTA

BRETAGNE

Appendix 13: Modified Turtlebot3 Burger SLAM program

<launch>

default="$%(env TURTLEBOT3 MODEL)" doc="model type [burger, waffle, waffle pi]"/>
slam methods™ default="gmapping” doc="slam type [gmapping, cartographer, hector, karto, frontier_exploration]"/>
"configuration_basename” default="turtlebot3_lds_2d.lua"/>

"open_rviz" default="true"/>

<include file="$(find turtlebot3 bringup)/launch/turtlebot3 remote.launch”>

<arg name="model” value="$(arg model)" />

</include>

<include file="$(find turtlebot3 slam)/launch/turtlebot3 $(arg slam methods).launch”>
<arg name="model" value="$(arg model)"/>
<arg name="configuration_basename” value="$(arg configuration_basename)”/>

</include>

<group if="$(arg open_rviz)">
<node pkg="rviz" type="rviz" name="rviz" required="true"
args="-d $(find turtl 3_slam)/rviz/turtlebot3_$(arg slam _methods).rviz"/>
</group>

</launch>

Old version

<launch>
<l-- Arguments -->
<arg name="model” default="$%(env TURTLEBOT3_MODEL)" doc="model type [burger, waffle, waffle_pi]"/>
<arg name="slam methods" default="gmapping” doc="slam type [gmapping, cartographer, hector, karto, frontier_exploration]”/»
<arg name="configuration_basename" default="turtlebot3_lds_2d.lua"/>

<arg name="open_rviz" default="true"/>

<arg name="multi_reobot_name"” default=
<arg name="get_base frame" default="base_ footprint"/>

<arg nam

‘get_odom_frame” default="odom"/>
<arg name="get_map_frame” default="map"/>

<!-- TurtleBot3 -->

<include file="$(find turtlebot3_bringup)/launch/turtlebot3_remote.launch”>
<arg name="model” value="%$(arg model)" />
<arg name="multi_robot_name" value="$(arg multi_robot_name)"/>

</include>

¢!-- SLAM: Gmapping, Cartographer, Hector, Karto, Frontier_exploration, RTAB-Map -->
<include file="%$(find turtlebot3_slam)/launch/turtlebot3_$(arg slam_methods).launch">
<arg name="model" value="%{arg model)"/>
<arg name="configuration_basename" value="%(arg configuration_basename)"/»

<arg name="set_base frame" value="$(arg get_base_frame)"/>

<arg name="set_odom_frame” value="$(arg get_odom_frame)"/>

<arg name="set_map_frame" value="${arg get_map_frame)"/>

</include>

<l-- rviz -->
<group if="%(arg open_rviz)"
<node pkg="rviz" type="rviz" name="rviz" required="true"

args="-d %(find turtlebot3_slam)/rviz/turtlebot3_%(arg slam_methods).rviz"/>

>

</group>
</launch>»

New version

Page 44

Second year internship report

ENSTA

BRETAGNE

Appendix 14: Long night of digitalization poster

TurtleBot3 Burger

Prof. Dr.-Ing. habil. Andreas Rauh
Carl-von-0ss Universitdt Oldenburg
Abteilung Verteilte Regelung in vernetzten
Systemen

E-Mail: andreas.rauh@uni-oldenburg.de

Introduction to robotics

ROS RSN

ROS PC

>
MATLAB/Simulink

MATLAB

Dr.-Ing Jérg Walter

OFFIS Institut fiir Informatik
Abteilung Distributed Computation
and Communication (DCC)

E-Mail: joerg. walter@offis.de

A typical lidar sensor emits
Pulsed light waves into the
surrounding environment

@ python’

(N
Perception " >~.] © ROS Connection
S~ Prototyping Lv|
MATLAB e
i« Simulator
D eciion =
| =
STk © ROS node ROS/ROS2
[Eh Control Simulin ganeration nedss Real
Standaione ir entation hardware
{C++ node generation)
Windows/Mac/Linux C’Sbag Linux)

Carl von Ossietzky

Universitat
Oldenburg

M.Sc. Friederike Bruns

Carl-von-Ossietzky Universitdt Oldenburg
Abteilung Eingebettete
Hardware/Software-Systeme

E-Mail: friederike.bruns@uni-oldenburg.de

In-door mapping and
navigation

law

These pulses are reflected at
surrounding objects and
return to the sensor

The sensor uses the time it
took for each pulse to return
to the sensor to calculate the

distance it travelled

To perceiveits environment

To localize itself and map the area

To control the robot

E_CYCLE SLAM CONTROL

NN

| 4

4DIAC

1
FORTE

WithROS
libraries

slam.launch

4DIAC

control.py

Page 45

	Abstract
	Résumé
	Keywords
	Acknowledgements
	1. Introduction
	1.1 Objectives and context
	1.2 Stakes

	2. Description of the activities
	2.1 Organization
	2.2 Technical Foundations
	2.2.1 Turtlebot3 Burger
	2.2.2 Robot Operating System (R.O.S.)
	2.2.3 MATLAB Simulink
	2.2.4 Eclipse 4diac

	2.3 Deploying a single-agent configuration
	2.3.1 Building the robots
	2.3.2 Deploying the network in a basic configuration
	2.3.3 Setting up a NTP server

	2.4 Upgrading the hardware structure
	2.4.1 Adding a Raspberry Pi camera
	2.4.2 Designing a modular hardware structure
	2.4.3 Creating a dedicated HAT Brick R.O.S. package

	2.5 Evolving to a multi-agent configuration
	2.5.1 Choosing a multi-agent hardware configuration
	2.5.2 Upgrading the network configuration
	2.5.3 Running multiple robots with R.O.S.
	2.5.4 Adapting the built-in programs for multi-agent configuration

	2.6 Working on the communication between software and R.O.S.
	2.6.1 MATLAB Simulink and R.O.S.
	2.6.2 Eclipse 4diac and R.O.S.

	3. Results and lessons learned
	3.1 Culture
	3.2 Long Night of Digitization
	3.3 Work Done
	3.4 Future work

	4. Conclusion
	Glossary
	Bibliography
	Table of figures
	Appendices
	Appendix 1: Assessment report
	Appendix 2: Example of a weekly schedule
	Appendix 3: Example of a visual support (initial hardware structure)
	Appendix 4: Turtlebot3 Burger specifications
	Appendix 5: Router datasheet
	Appendix 6: Raspberry Pi NoIR camera datasheet
	Appendix 7: Tinker Forge HAT Brick datasheet
	Appendix 8: New Turtlebot3 Burger hardware structure
	Appendix 9: OpenCR 1.0 datasheet
	Appendix 10: Turtlebot3 Burger fleet configuration
	Appendix 11: Representation of the network
	Appendix 12: Modified Turtlebot3 Burger teleop program
	Appendix 13: Modified Turtlebot3 Burger SLAM program
	Appendix 14: Long night of digitalization poster

