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Abstract 
 

This is a report about the simulation and control of an autonomous sailboat via 

the Robot Operating System (ROS).  

 

Initially, it was planned that I would come to Plymouth to work directly with the 

real sailboat and its sensors, in order to develop control algorithms in real life, 

the simulation part having already been done in previous years; but the health 

crisis and the impossibility to come to Plymouth forced a change of the 

internship's subject.  

 

The simulation carried out therefore uses the C++ programming language, and 

is based on mathematical models developed by the teachers both at the ENSTA 

Bretagne and in the University of Plymouth. This internship's goal are to 

simulate the sailboat in order to test its control algorithm, and to use this 

algorithm in three different missions (line following, station keeping and triangle 

racing). 

 

Résumé 
 

Il s'agit d'un rapport sur la simulation et le contrôle d'un voilier autonome via le 

système d'exploitation du robot (ROS).  

 

Au départ, il était prévu que je vienne à Plymouth pour travailler directement 

avec le voilier réel et ses capteurs, afin de développer des algorithmes de contrôle 

en situation réelle, la partie simulation ayant déjà été faite les années 

précédentes ; mais la crise sanitaire et l'impossibilité de venir à Plymouth ont 

obligé à changer le sujet du stage.  

 

La simulation réalisée utilise donc le langage de programmation C++, et s'appuie 

sur des modèles mathématiques développés par les enseignants de l'ENSTA 

Bretagne ainsi que de l'Université de Plymouth. L'objectif de ce stage est de 

simuler le voilier afin de tester son algorithme de contrôle, et d'utiliser cet 

algorithme dans trois missions différentes (suivi de ligne, maintien de position 

et course en triangle).  
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Introduction 
 

Unmanned surface vehicles are ships operating at the surface of a water body with 

no crew. The ship studied in this internship was an autonomous sailboat: its main 

characteristic is that it possess no engine and therefore will require to be controlled 

exclusively by acting on its sail and its rudder. 

 

The advantages of USVs are multiple: it allows for much smaller vessels, which 

consume fewer resources and are much more agile. These ships require either to 

be remote controlled or to possess their own control algorithms to be operated given 

the lack of a crew. 

 

It is the latter part that is the most interesting and offers the most perspectives 

and potential applications, since it allows for the automation of tasks that would 

require direct human supervision otherwise. Among these tasks, seafloor mapping 

or routine inspection of maritime equipment following a predefined route comes to 

mind, and the benefit of automation is very clear in these cases. 
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Part 1: Modeling 
 

 

1.1 Description of the system 
 

 

The system is an autonomous sailboat, with no means of propulsion or locomotion 

at all. It is composed of three distinct parts, each of which will be represented 

differently in the simulation: a hull, a sail and a rudder. 

 

 -The hull's purpose is to bring buoyancy to the whole system to make it 

float. It contains the electronical equipment, the captors, and both the sail and 

the rudder are fixed on it. 

The boat position, position, orientation, speed and rotation are all based on this 

part of the boat and set in its center of mass. 

 

 -The sail's purpose is to use the wind's force in order to control and move 

the boat. It is controlled by command, and can rotate around the z-axis. Its 

rotation is defined by the value delta_s, and its maximum rotation by 

delta_s_max. 

 

 -Finally, the rudder acts on the flow of water under the ship, and its angle 

generates a force on the ship strong enough to influence its trajectory. Like the 

sail, it can rotate around the z-axis and its rotation values are defined by delta_r 

and delta_r_max. 

 

In order for the sailboat to move and control its trajectory, it must use both its 

sail and its rudder to take advantage of the wind, since it has no mean of self-

propulsion. 

 

To establish a law of control, the sailboat also has at its disposal several 

sensors: 

-a heading sensor, providing the sailboat's cap x[2] 

-a speed sensor providing the speed x[3] 

-a sensor measuring the force alpha_tw and angle psi_tw of the wind. 

-an accelerometer which provides the rotation speed x[4] 

-a GPS giving us the boat's location through NMEA frames.  
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Figure 1: 3D model of the sailboat in RVIZ [1] 

 

1.2 Initial assumptions for the simulation 
 

 

The purpose of this simulation is to allow us to develop and test algorithms to 

control the sailboat. For this reason, it is necessary to make several hypotheses 

in order to simplify the system, given the complexity of all the forces involved. 

Given the scope and the aim of this simulation, it will assumed that: 

 - This sailboat will move on a two-dimensional plane on the x and y axes, 

and will only rotate around the z-axis. The roll or pitch caused by the action of 

the wind or the wave are deliberately neglected in this scenario.  

 - With the exception of GPS, all sensors will be assumed to provide us with 

their value in real time, without delay and without error. 

 - The water plane is considered as perfectly stable and devoid of any wave 

or water current. 

 -The wind's direction and strength will be considered as constant for the 

duration of the simulation. 

 -The velocity is small enough to ignore the Coriolis forces 
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1.3 State equations 
 

There are in total five states 𝑋 = [𝑥 𝑦 𝜃 𝑣 𝜔], with x and y being the sailboat's 

position on the x and y axes, θ being the cap, v is the ship's velocity and ω its 

rotation speed. This state equation is defined below: 

 

𝑥̇ = 𝑣 cos(𝜃) +  𝑝1𝑎𝑡𝑤 cos(𝜓𝑡𝑤) 

𝑦̇ = 𝑣 𝑠𝑖𝑛(𝜃)  +  𝑝1𝑎𝑡𝑤𝑠𝑖𝑛(𝜓𝑡𝑤) 

𝜃̇ = 𝜔 
𝑣̇ = g𝑠  sin(δ𝑠)  −  g𝑟p11sin(δ𝑟)  −  p2v2 )/p9 

ω̇ = (g𝑠(p6 − p7cos(δ𝑠))  −  g𝑟p8cos(δ𝑟) − p3ωv)/p10 

 

With p1 the drift coefficient, p11 the rudder break coefficient [-00], p2 the 

tangential friction [kgs-1], p9 the mass of the sailboat [kg], p6 the distance to the 

sail's center of effort [m], p7 the distance to the mast [m], p8 the distance to the 

rudder [m], p3 the angular friction [kgm] and p10 the moment of inertia [kgm2]. 

 

 

 
Figure 2: Table of the model parameters and their values [2] 

 

 

gs is the sail force: its value is based on the difference between the sail and the 

apparent wind's angles and on the wind's force. The coefficient p4 is the sail's lift 

[kgs-1] 

𝑔𝑠 = −𝑝4𝑎𝑎𝑤𝑠𝑖𝑛(𝛿𝑠 − 𝜓𝑎𝑤) 

 

On the other hand, gr is the rudder force, and is solely based on a resistance 

against the sailboat's movement (given that there is no water current as per the 

assumptions). 

g𝑟 = −p5v2sin(δ𝑟) 

 

With p5 the rudder's lift [kgs-1] 
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aaw and ψaw are here the velocity and the cap of the apparent wind, which is the 

wind measured from the sailboat in movement. 

 

 

 
Figure 3: Difference between the true wind and the apparent wind [2] 

 

W𝑐,𝑎𝑤 = [  
𝑎𝑡𝑤𝑐𝑜𝑠(𝜓𝑡𝑤 − 𝜃𝑖) − 𝑣  

𝑎𝑡𝑤𝑠𝑖𝑛(𝜓𝑡𝑤 − 𝜃𝑖)  
] 

 

From these cartesian coordinates, the polar coordinates can be obtained and then 

used to compute both gs and gr. 

W𝑐,𝑎𝑤 = [
     𝑎𝑎𝑤  
     𝜓𝑎𝑤  ] = [

     |W𝑐,𝑎𝑤|  

     𝑎𝑡𝑎𝑛2(W𝑐,𝑎𝑤)  
] 

 

All these equations are enough to simulate the boat on the main node, by simply 

using the Euler method with a small step to compute the boat's new position and 

orientation. 
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Part 2: ROS simulation 
 

2.1 ROS architecture 
 

In order to simulate the sailboat in a ROS environment, I organised the 

simulation around a main central node boat_simu_node. This node will include 

the five states, which will be updated by the main ROS loop using the state 

equations and the Euler method. 

 

In order to display the sailboat in RVIZ, the main node will have several 

publishers who will send to RVIZ the different marker: one marker for each part 

of the boat (hull, sail, rudder), and some mission specific markers (line marker, 

wind marker, etc…). Furthermore, to keep track of the previous positions of the 

sailboat, a set of sphere markers will keep in memory the position of the boat 

every 0.1 seconds (this time is adjusted according to the loop_rate). 

 

 

 
Figure 4: A simplified graph of the ROS nodes 
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Because of the assumption that all sensors provide us with their value in real 

time with no delay or error, these values can be directly used in the main_node, 

and creating a "echo" node that would merely subscribe to their value and then 

republish them would have little to no interest. For the same reason, the different 

controllers will be also part of the main node, rather than in a separated node. 

 

These sensors could have been easily part of their own node, and would have in 

all cases simply required a double subscriber/publisher: one publisher on the 

main node sending the data, one receiver in the sensor receiving it, then one 

publisher to send the data after modifications / interferences, and finally one 

receiver on the main node. This was not done both because of the above 

assumption, and for memory saving purposes. 

 

In the reality, even with the sensors in their own node they would have been 

connected to the main node in a one way direction: the main node would have 

several subscriber nodes, to get all the sensors data, some functions to compute 

a command following the instructions sent to it and a single publisher node 

transmitting these commands to the sail and the rudder.  

 

 

2.2 The GPS node 
 

In the simulation, the GPS node serves three different purposes: 

 

 -Simulating the delay between the movement of the sailboat and the data 

acquisition from the GPS 

 

 -Simulating the errors linked to the GPS accuracy, which are in a range of 

one meter around the real location for a cheap working GPS. This is done by 

generating two random numbers each time the GPS is called and adding them to 

the x and y values before conversion into latitude/longitude. 

 

 -Finally, representing the errors due to the transmission of the 

information through NMEA frames. In these frames, only the GPGGA sentences 

are relevant for this simulation. 
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Figure 5: an example with explanations of a GPGGA sentence [3] 

 

This sentence give is transmitted through a string message in ROS, and convey 

the latitude and longitude of the boat, which is calculated from both the boat real 

location (transmitted through a Point message from the main node) and a 

reference GPS coordinate.  

 

𝑥 = 𝑝 ∗ 𝑐𝑜𝑠(𝑙𝑦) ∗ (𝑙𝑥 − 𝑙𝑥𝑚); 

𝑦 = 𝑝 ∗ (𝑙𝑦 − 𝑙𝑦𝑚); 

 

With x and y the sailboat positions, 𝑙𝑥 and 𝑙𝑥𝑚 the measured and reference 

latitudes, 𝑙𝑦 and 𝑙𝑦𝑚 the measured and reference longitudes, and 𝑝 the Earth 

radius. These equations are done in the other way to compute the latitude and 

longitude of the boat to transmit in the NMEA frame. 

 

𝑙𝑦 =  (
𝑦

𝑝
+  𝑙𝑦𝑚) ; 

 

𝑙𝑥 =  (
𝑥

𝑝 ∗ cos(𝑙𝑦)
+ 𝑙𝑥𝑚) ; 
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Figure 6: NMEA frames being transmitted as string messages from the GPS 

node to the main node in ROS 

 

 

In the simulation, the sentence NMEA is stopped in its middle and transmitted 

directly after reaching the longitude, given that the information following it is 

both unobtainable by the simulation and of little interests for the locating 

purposes. 

 

Here, as a reference the GPS coordinates of the Plymouth University were used. 

Given that this is a simulation with no real use of any GPS, any reference 

coordinates can be taken. However, in the case of a real use, using real GPS 

coordinates as a reference for the x and y coordinates will be necessary for proper 

computations. 
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Part 3: Control algorithms 
 

Part 3.1 Line following 
 

The goal of the line following method is to get the sailboat to move along a line 

defined by two points A and B, using the available data: the estimated position 

given by the GPS, the cap given by the heading sensor, the rotation speed given 

by the accelerometer and finally the force and direction of the wind. 

 

 

 
Figure 7: the line following algorithm [4] 

 

The first step of the algorithm is to compute the distance 𝑒 between the sailboat 

and the line. This is an algebraic distance, so its sign is depending on the position 

of the boat compared to the line.  

 

The tacking variable 𝑞 is defined according to the absolute distance between the 

boat and the line, this value will set the trajectory that the sailboat will follow 

(step2). 

 

At the same time, the algorithm computes 𝜑𝑡𝑎𝑟𝑔𝑒𝑡 (𝜑), the angle of the line 

between the sailboat and its target; and 𝜑𝑛𝑜𝑚𝑖𝑛𝑎𝑙 (𝜃
∗), the nominal angle from a 

line attraction vector field (step 3&4). 
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Then, it compares the nominal angle to the direction of the wind 𝜑𝑡𝑤(𝜓) to obtain 

𝜑𝑎𝑐𝑡𝑢𝑎𝑙(θ̅), the actual angle to follow, in order to avoid going directly against the 

wind (step 5). If the sailboat is going against the wind, it adopt the close hauled 

mode (step 6). 

 

In this mode, the sailboat keeps going forward in a diagonal, using the tack 

variable to maintain its cap even after crossing the line. It leaves the close hauled 

mode only after reaching the cut-off distance from the line. This close hauled 

mode is what cause the sailboat to "zigzag" to press forward despite a wind in an 

opposite direction (step 7). 

 

In the case the boat is not going against the wind, the nominal angle is 

satisfactory and is kept (step 8). 

 

Finally, the rudder angle (step 10&11) and the maximum sail angle (step 12) are 

both set up so that the sailboat align itself with 𝜑𝑎𝑐𝑡𝑢𝑎𝑙. 

 

 

Part 3.2: Line following results 
 

 

 
Figure 8: Results of line_follow( ) with case_n = 1 

 

When the line's direction is not opposed to the wind's, there is no need for the 

boat to use the close hauled mode. As a result, the trajectory is curved, and there 

is no zigzag. The results obtained with and without the GPS (in the latter case, 

directly using the theorical values with no computations) were very close, and 

the difference between the two trajectories did not exceeded 1 meter. 
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However, since this case do not involve the close hauled mode, it is of little 

interests, apart from showing that the algorithm works in the absence of an 

opposing wind. 

 

 

 
Figure 9: Results of line_follow( ) with case_n = 2 

 

 

In the case_n = 2, the line following algorithm can be seen in action, and most 

importantly, it enters the close hauled mode. When the boat reaches the cut-off 

distance (here shown by the dark blue lines), it tries to keep going in the direction 

of the line and to follow the nominal cap 𝜑𝑛𝑜𝑚𝑖𝑛𝑎𝑙.  

 

However, because of the opposing wind, such a movement is impossible, it 

therefore enters the close hauled mode, using instead 𝜑𝑎𝑐𝑡𝑢𝑎𝑙 as a cap to follow 

instead. It takes some time for the sailboat to change its cap when it reaches the 

cut-off distance, and during this time it is stuck on the spot, moving back slightly 

due to the action of the wind on the sail. 

 

In this special case, because the wind is directly opposed to the line's direction, 

once the sailboat enters the close hauled mode, it never leaves it. As a result, the 

sailboat is always moving in a zigzag pattern, avoiding facing the wind. 
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Figure 10: Results of line_follow( ) with case_n = 3, without GPS (left) using 

theorical data, and with GPS (right) 

 

 

Finally, the case_n = 3 was tested in order to check if the algorithm behaves in 

the same way in the ROS environment as it did in Matlab in Mr. Wan's screen 

recording. The trajectory of the sailboat is identical in both cases; however the 

ROS simulation is much slower by default and the loop rate needs to be adjusted. 

 

Additionally, since the algorithm behaves in the same way as it is supposed to, 

it can be used to test the impact of using the data received from the GPS on the 

trajectory.  

 

While the trajectory remained very similar, when using the GPS the sailboat 

took a bit more time to detect it reached the distance r to the line, resulting in a 

slightly longer zigzag pattern. Although these errors were hardly noticeable in 

the beginning of the simulation, the distance between the two pattern started to 

slowly builds on, and after 30 repetitions of the zigzag pattern there was more 

than 20 meters of difference between the theorical and the GPS control.  

 

Despite these differences, the main line following pattern remained 

fundamentally the same and the algorithm behaved in the same way whether it 

used the theorical or the GPS data. 
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Part 3.3: Triangle racing 
 

The triangle racing algorithm is quite easy to understand. The sailboat goes 

from point to point, directly using the previous line following algorithm, and 

storing a global variable to keep track of the movement phase.  

 

When one point is reached (when the distance between the sailboat and the 

point goes under a target value, here the waypoint size), the global variable is 

increased, signifying the boat must now go towards the next point, still using 

the line algorithm between the old and the new point. This global variable is 

cyclic, so that the sailboat is always going from one point to another in order.

  

 

 
Figure 11: Results of triangleracing ( ) 

 

As seen above, the boat reaches its targets without problems, the fidelity of the 

trajectory when compared to the triangle depends here on two values:  

-The waypoint size, which determines how near the sailboat needs to be 

for the target to be considered as reached 

-The cut-off distance, which determines how far the sailboat can move 

away from the line. 

 

Reducing these two values will result in a trajectory closer to the triangle, at 

the expense of its speed.   
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Part 3.4: Station keeping 1: modified line following 

algorithm 
 

The main goal of the station keeping is to maintain the boat at a given position. 

Given that the sailboat is above water and has no anchor, the only way to achieve 

this goal is to keep controlling the boat so that even if its inertia or external 

action keeps pushing it away it goes back to its position. 

 

The first algorithm tested is a modified version of the line algorithm, and depends 

on two values, diaouter and diainner.  

 

-As long as the boat distance to the targeted point is greater than diaouter, 

then it will simply use the line following algorithm to go toward this point. 

 

-Once the diaouter distance has been reached, the algorithm compares the 

targeted angle 𝜑𝑡𝑎𝑟𝑔𝑒𝑡 between the sailboat and the target to the wind's direction. 

If these two angles are too close, then it will use a perpendicular angle to 𝜑𝑡𝑎𝑟𝑔𝑒𝑡 

instead. 

 

 

Figure 12: Results of stationkeeping ( ) 
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Regardless of the targeted angle, the algorithm now enter the close hauled mode, 

and do the same computations as the line following algorithm to obtain φ_actual, 

the only difference is that the nominal angle here is completely bypassed. From 

this actual angle, it then computes the rudder and the maximum sail angles. 

 -Finally, if the sailboat is within the distance diainner, the algorithm 

computes 𝜑𝑎𝑐𝑡𝑢𝑎𝑙 based on the wind's speed, and from it the maximum sail angle. 

The rudder's angle is then computed from the comparison between the sailboat's 

cap and 𝜑𝑎𝑐𝑡𝑢𝑎𝑙. 

 

As seen in the Figure 3.6, the algorithm seems to works most of the time, apart 

when in some cases the boat gets "stuck" in front of the wind. The tack value 

calculated while the boat is inside the circle leads to the sailboat trying to rotate 

against the wind, and it needs some time to be able to rotate properly and then go 

back to the station. 
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Part 3.5: Station keeping 2: repurposed triangle racing 
 

Rather than making a brand-new algorithm from scratch, one possible way to 

try to implement a station keeping algorithm is to repurpose the triangle racing 

algorithm around the targeted point.  

 

Four different configurations were tested: 

 

1st configuration: triangle between diainner and diaouter 

 

 
Figure 13: Results of stationkeeping ( ) with case_n = 3 

 

With a large waypoint, the sailboat triangleracing gives a smooth trajectory, and 

stay mostly between the two circles. However, because it needs to go against the 

wind, the close hauled mode leads it to get outside the diaouter circle.  

 

Nevertheless, by adjusting the cut-off distance and the waypoint size it is 

possible to get the sailboat to stay within the circle. This can be said for all the 

algorithms completely reliant on the triangleracing algorithm. 
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2nd configuration: inverted triangle 

 

 
Figure 14: Results of stationkeeping ( ) with case_n = 2 

In this configuration the sailboat behaves like in the previous configuration, 

however the triangle is set in such a way that the close hauled mode do not requires 

the sailboat to turn before reaching the next waypoint, leading to the ship always 

staying within the circle. 

 

3rd configuration: line parallel to the wind (with a point in the center) 

 

 
Figure 15: Results of stationkeeping ( ) with case_n = 1  
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This configuration leads the sailboat to be constantly in close hauled mode. It stays 

mostly within the outer circle, and in this configuration the sailboat goes  the most 

often above the central point. However, unlike the two previous methods, it 

requires the target to be in a position accessible to the sailboat, since it do not circle 

around the target but instead adopt a sort of 88-figure-like trajectory. 

 

4th configuration: line perpendicular to the wind (with a point in the center) 

 

 

Figure 16: Results of stationkeeping ( ) with case_n = 0 

 

With this configuration, the sailboat has a very tight 8-shaped trajectory which 

remains very close to the line: this is due to the latter being perpendicular to the 

wind, allowing the boat to avoid facing the wind most of the time. This method 

guarantee the sailboat to stay within the outer circle, however the whole line need 

once again to be accessible by the boat. 

  



24  Conclusion 

24 

 

Conclusion 
 

The line following algorithm is able to handle different situations without 

encountering any problem.  

The close hauled mode handles the cases where the wind goes against the sailboat 

well, and so far, no fail states were found in any of the simulations using directly 

the algorithm with no modification. The precision is flexible, and we can adjust it 

as needed depending on the simulation's requirements.  

This algorithm is a strong base for all the other algorithms such as the station 

keeping and the triangle racing, and these fared the best when they called directly 

the line following with no modifications. 

The end goal of simulating the three missions in the ROS environment was a 

success, and while experimenting with the real sensors and the real algorithms 

would have been more interesting from both a personal and a educational point of 

view, this internship nevertheless remained instructive and made the best of a 

difficult situation. 
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