

Simulation of an Autonomous

Sailboat with ROS

Alexandre EVAIN – FISE ROB 2021

alexandre.evain@entsa-bretagne.org

alexandre.evain76@gmail.com

mailto:alexandre.evain@entsa-bretagne.org
mailto:alexandre.evain76@gmail.com
http://www.ensta-bretagne.fr/

2 Acknowledgement

2

Acknowledgement

I would like to thank Jian Wan from the University of Plymouth who made this

internship possible and maintained it through weekly videoconferences despite

the special circumstances of Covid-19 and the impossibility of coming to the

United Kingdom to do the internship on site.

In addition, I would like to thank my senior professor Luc Jaulin who put me in

touch with the University of Plymouth and Mr. Wan, and whose algorithms and

lessons were extremely useful during this internship.

Résumé 3

3

Abstract

This is a report about the simulation and control of an autonomous sailboat via

the Robot Operating System (ROS).

Initially, it was planned that I would come to Plymouth to work directly with the

real sailboat and its sensors, in order to develop control algorithms in real life,

the simulation part having already been done in previous years; but the health

crisis and the impossibility to come to Plymouth forced a change of the

internship's subject.

The simulation carried out therefore uses the C++ programming language, and

is based on mathematical models developed by the teachers both at the ENSTA

Bretagne and in the University of Plymouth. This internship's goal are to

simulate the sailboat in order to test its control algorithm, and to use this

algorithm in three different missions (line following, station keeping and triangle

racing).

Résumé

Il s'agit d'un rapport sur la simulation et le contrôle d'un voilier autonome via le

système d'exploitation du robot (ROS).

Au départ, il était prévu que je vienne à Plymouth pour travailler directement

avec le voilier réel et ses capteurs, afin de développer des algorithmes de contrôle

en situation réelle, la partie simulation ayant déjà été faite les années

précédentes ; mais la crise sanitaire et l'impossibilité de venir à Plymouth ont

obligé à changer le sujet du stage.

La simulation réalisée utilise donc le langage de programmation C++, et s'appuie

sur des modèles mathématiques développés par les enseignants de l'ENSTA

Bretagne ainsi que de l'Université de Plymouth. L'objectif de ce stage est de

simuler le voilier afin de tester son algorithme de contrôle, et d'utiliser cet

algorithme dans trois missions différentes (suivi de ligne, maintien de position

et course en triangle).

4 Contents

4

Contents

Acknowledgement ... 2

Abstract ... 3

Résumé .. 3

Contents .. 4

Introduction ... 5

Part 1: Modeling .. 6

1.1 Description of the system .. 6

1.2 Initial assumptions for the simulation ... 7

1.3 State equations .. 8

Part 2: ROS simulation ... 10

2.1 ROS architecture ... 10

2.2 The GPS node .. 11

Part 3: Control algorithms .. 14

Part 3.1 Line following .. 14

Part 3.2: Line following results ... 15

Part 3.3: Triangle racing ... 18

Part 3.4: Station keeping 1: modified line following algorithm 19

Part 3.5: Station keeping 2: repurposed triangle racing 21

1st configuration: triangle between diainner and diaouter 21

2nd configuration: inverted triangle ... 22

3rd configuration: line parallel to the wind (with a point in the center) 22

4th configuration: line perpendicular to the wind (with a point in the

center) ... 23

Conclusion ... 24

List of figures .. 25

References: ... 26

Introduction 5

5

Introduction

Unmanned surface vehicles are ships operating at the surface of a water body with

no crew. The ship studied in this internship was an autonomous sailboat: its main

characteristic is that it possess no engine and therefore will require to be controlled

exclusively by acting on its sail and its rudder.

The advantages of USVs are multiple: it allows for much smaller vessels, which

consume fewer resources and are much more agile. These ships require either to

be remote controlled or to possess their own control algorithms to be operated given

the lack of a crew.

It is the latter part that is the most interesting and offers the most perspectives

and potential applications, since it allows for the automation of tasks that would

require direct human supervision otherwise. Among these tasks, seafloor mapping

or routine inspection of maritime equipment following a predefined route comes to

mind, and the benefit of automation is very clear in these cases.

6 Part 1: Modeling

6

Part 1: Modeling

1.1 Description of the system

The system is an autonomous sailboat, with no means of propulsion or locomotion

at all. It is composed of three distinct parts, each of which will be represented

differently in the simulation: a hull, a sail and a rudder.

 -The hull's purpose is to bring buoyancy to the whole system to make it

float. It contains the electronical equipment, the captors, and both the sail and

the rudder are fixed on it.

The boat position, position, orientation, speed and rotation are all based on this

part of the boat and set in its center of mass.

 -The sail's purpose is to use the wind's force in order to control and move

the boat. It is controlled by command, and can rotate around the z-axis. Its

rotation is defined by the value delta_s, and its maximum rotation by

delta_s_max.

 -Finally, the rudder acts on the flow of water under the ship, and its angle

generates a force on the ship strong enough to influence its trajectory. Like the

sail, it can rotate around the z-axis and its rotation values are defined by delta_r

and delta_r_max.

In order for the sailboat to move and control its trajectory, it must use both its

sail and its rudder to take advantage of the wind, since it has no mean of self-

propulsion.

To establish a law of control, the sailboat also has at its disposal several

sensors:

-a heading sensor, providing the sailboat's cap x[2]

-a speed sensor providing the speed x[3]

-a sensor measuring the force alpha_tw and angle psi_tw of the wind.

-an accelerometer which provides the rotation speed x[4]

-a GPS giving us the boat's location through NMEA frames.

Part 1: Modeling 7

7

Figure 1: 3D model of the sailboat in RVIZ [1]

1.2 Initial assumptions for the simulation

The purpose of this simulation is to allow us to develop and test algorithms to

control the sailboat. For this reason, it is necessary to make several hypotheses

in order to simplify the system, given the complexity of all the forces involved.

Given the scope and the aim of this simulation, it will assumed that:

 - This sailboat will move on a two-dimensional plane on the x and y axes,

and will only rotate around the z-axis. The roll or pitch caused by the action of

the wind or the wave are deliberately neglected in this scenario.

 - With the exception of GPS, all sensors will be assumed to provide us with

their value in real time, without delay and without error.

 - The water plane is considered as perfectly stable and devoid of any wave

or water current.

 -The wind's direction and strength will be considered as constant for the

duration of the simulation.

 -The velocity is small enough to ignore the Coriolis forces

8 Part 1: Modeling

8

1.3 State equations

There are in total five states 𝑋 = [𝑥 𝑦 𝜃 𝑣 𝜔], with x and y being the sailboat's

position on the x and y axes, θ being the cap, v is the ship's velocity and ω its

rotation speed. This state equation is defined below:

𝑥̇ = 𝑣 cos(𝜃) + 𝑝1𝑎𝑡𝑤 cos(𝜓𝑡𝑤)

𝑦̇ = 𝑣 𝑠𝑖𝑛(𝜃) + 𝑝1𝑎𝑡𝑤𝑠𝑖𝑛(𝜓𝑡𝑤)

𝜃̇ = 𝜔
𝑣̇ = g𝑠 sin(δ𝑠) − g𝑟p11sin(δ𝑟) − p2v2)/p9

ω̇ = (g𝑠(p6 − p7cos(δ𝑠)) − g𝑟p8cos(δ𝑟) − p3ωv)/p10

With p1 the drift coefficient, p11 the rudder break coefficient [-00], p2 the

tangential friction [kgs-1], p9 the mass of the sailboat [kg], p6 the distance to the

sail's center of effort [m], p7 the distance to the mast [m], p8 the distance to the

rudder [m], p3 the angular friction [kgm] and p10 the moment of inertia [kgm2].

Figure 2: Table of the model parameters and their values [2]

gs is the sail force: its value is based on the difference between the sail and the

apparent wind's angles and on the wind's force. The coefficient p4 is the sail's lift

[kgs-1]

𝑔𝑠 = −𝑝4𝑎𝑎𝑤𝑠𝑖𝑛(𝛿𝑠 − 𝜓𝑎𝑤)

On the other hand, gr is the rudder force, and is solely based on a resistance

against the sailboat's movement (given that there is no water current as per the

assumptions).

g𝑟 = −p5v2sin(δ𝑟)

With p5 the rudder's lift [kgs-1]

Part 1: Modeling 9

9

aaw and ψaw are here the velocity and the cap of the apparent wind, which is the

wind measured from the sailboat in movement.

Figure 3: Difference between the true wind and the apparent wind [2]

W𝑐,𝑎𝑤 = [
𝑎𝑡𝑤𝑐𝑜𝑠(𝜓𝑡𝑤 − 𝜃𝑖) − 𝑣

𝑎𝑡𝑤𝑠𝑖𝑛(𝜓𝑡𝑤 − 𝜃𝑖)
]

From these cartesian coordinates, the polar coordinates can be obtained and then

used to compute both gs and gr.

W𝑐,𝑎𝑤 = [
 𝑎𝑎𝑤
 𝜓𝑎𝑤] = [

 |W𝑐,𝑎𝑤|

 𝑎𝑡𝑎𝑛2(W𝑐,𝑎𝑤)
]

All these equations are enough to simulate the boat on the main node, by simply

using the Euler method with a small step to compute the boat's new position and

orientation.

10 Part 2: ROS simulation

10

Part 2: ROS simulation

2.1 ROS architecture

In order to simulate the sailboat in a ROS environment, I organised the

simulation around a main central node boat_simu_node. This node will include

the five states, which will be updated by the main ROS loop using the state

equations and the Euler method.

In order to display the sailboat in RVIZ, the main node will have several

publishers who will send to RVIZ the different marker: one marker for each part

of the boat (hull, sail, rudder), and some mission specific markers (line marker,

wind marker, etc…). Furthermore, to keep track of the previous positions of the

sailboat, a set of sphere markers will keep in memory the position of the boat

every 0.1 seconds (this time is adjusted according to the loop_rate).

Figure 4: A simplified graph of the ROS nodes

Part 2: ROS simulation 11

11

Because of the assumption that all sensors provide us with their value in real

time with no delay or error, these values can be directly used in the main_node,

and creating a "echo" node that would merely subscribe to their value and then

republish them would have little to no interest. For the same reason, the different

controllers will be also part of the main node, rather than in a separated node.

These sensors could have been easily part of their own node, and would have in

all cases simply required a double subscriber/publisher: one publisher on the

main node sending the data, one receiver in the sensor receiving it, then one

publisher to send the data after modifications / interferences, and finally one

receiver on the main node. This was not done both because of the above

assumption, and for memory saving purposes.

In the reality, even with the sensors in their own node they would have been

connected to the main node in a one way direction: the main node would have

several subscriber nodes, to get all the sensors data, some functions to compute

a command following the instructions sent to it and a single publisher node

transmitting these commands to the sail and the rudder.

2.2 The GPS node

In the simulation, the GPS node serves three different purposes:

 -Simulating the delay between the movement of the sailboat and the data

acquisition from the GPS

 -Simulating the errors linked to the GPS accuracy, which are in a range of

one meter around the real location for a cheap working GPS. This is done by

generating two random numbers each time the GPS is called and adding them to

the x and y values before conversion into latitude/longitude.

 -Finally, representing the errors due to the transmission of the

information through NMEA frames. In these frames, only the GPGGA sentences

are relevant for this simulation.

12 Part 2: ROS simulation

12

Figure 5: an example with explanations of a GPGGA sentence [3]

This sentence give is transmitted through a string message in ROS, and convey

the latitude and longitude of the boat, which is calculated from both the boat real

location (transmitted through a Point message from the main node) and a

reference GPS coordinate.

𝑥 = 𝑝 ∗ 𝑐𝑜𝑠(𝑙𝑦) ∗ (𝑙𝑥 − 𝑙𝑥𝑚);

𝑦 = 𝑝 ∗ (𝑙𝑦 − 𝑙𝑦𝑚);

With x and y the sailboat positions, 𝑙𝑥 and 𝑙𝑥𝑚 the measured and reference

latitudes, 𝑙𝑦 and 𝑙𝑦𝑚 the measured and reference longitudes, and 𝑝 the Earth

radius. These equations are done in the other way to compute the latitude and

longitude of the boat to transmit in the NMEA frame.

𝑙𝑦 = (
𝑦

𝑝
+ 𝑙𝑦𝑚) ;

𝑙𝑥 = (
𝑥

𝑝 ∗ cos(𝑙𝑦)
+ 𝑙𝑥𝑚) ;

Part 2: ROS simulation 13

13

Figure 6: NMEA frames being transmitted as string messages from the GPS

node to the main node in ROS

In the simulation, the sentence NMEA is stopped in its middle and transmitted

directly after reaching the longitude, given that the information following it is

both unobtainable by the simulation and of little interests for the locating

purposes.

Here, as a reference the GPS coordinates of the Plymouth University were used.

Given that this is a simulation with no real use of any GPS, any reference

coordinates can be taken. However, in the case of a real use, using real GPS

coordinates as a reference for the x and y coordinates will be necessary for proper

computations.

14 Part 3: Control algorithms

14

Part 3: Control algorithms

Part 3.1 Line following

The goal of the line following method is to get the sailboat to move along a line

defined by two points A and B, using the available data: the estimated position

given by the GPS, the cap given by the heading sensor, the rotation speed given

by the accelerometer and finally the force and direction of the wind.

Figure 7: the line following algorithm [4]

The first step of the algorithm is to compute the distance 𝑒 between the sailboat

and the line. This is an algebraic distance, so its sign is depending on the position

of the boat compared to the line.

The tacking variable 𝑞 is defined according to the absolute distance between the

boat and the line, this value will set the trajectory that the sailboat will follow

(step2).

At the same time, the algorithm computes 𝜑𝑡𝑎𝑟𝑔𝑒𝑡 (𝜑), the angle of the line

between the sailboat and its target; and 𝜑𝑛𝑜𝑚𝑖𝑛𝑎𝑙 (𝜃
∗), the nominal angle from a

line attraction vector field (step 3&4).

Part 3: Control algorithms 15

15

Then, it compares the nominal angle to the direction of the wind 𝜑𝑡𝑤(𝜓) to obtain

𝜑𝑎𝑐𝑡𝑢𝑎𝑙(θ̅), the actual angle to follow, in order to avoid going directly against the

wind (step 5). If the sailboat is going against the wind, it adopt the close hauled

mode (step 6).

In this mode, the sailboat keeps going forward in a diagonal, using the tack

variable to maintain its cap even after crossing the line. It leaves the close hauled

mode only after reaching the cut-off distance from the line. This close hauled

mode is what cause the sailboat to "zigzag" to press forward despite a wind in an

opposite direction (step 7).

In the case the boat is not going against the wind, the nominal angle is

satisfactory and is kept (step 8).

Finally, the rudder angle (step 10&11) and the maximum sail angle (step 12) are

both set up so that the sailboat align itself with 𝜑𝑎𝑐𝑡𝑢𝑎𝑙.

Part 3.2: Line following results

Figure 8: Results of line_follow() with case_n = 1

When the line's direction is not opposed to the wind's, there is no need for the

boat to use the close hauled mode. As a result, the trajectory is curved, and there

is no zigzag. The results obtained with and without the GPS (in the latter case,

directly using the theorical values with no computations) were very close, and

the difference between the two trajectories did not exceeded 1 meter.

16 Part 3: Control algorithms

16

However, since this case do not involve the close hauled mode, it is of little

interests, apart from showing that the algorithm works in the absence of an

opposing wind.

Figure 9: Results of line_follow() with case_n = 2

In the case_n = 2, the line following algorithm can be seen in action, and most

importantly, it enters the close hauled mode. When the boat reaches the cut-off

distance (here shown by the dark blue lines), it tries to keep going in the direction

of the line and to follow the nominal cap 𝜑𝑛𝑜𝑚𝑖𝑛𝑎𝑙.

However, because of the opposing wind, such a movement is impossible, it

therefore enters the close hauled mode, using instead 𝜑𝑎𝑐𝑡𝑢𝑎𝑙 as a cap to follow

instead. It takes some time for the sailboat to change its cap when it reaches the

cut-off distance, and during this time it is stuck on the spot, moving back slightly

due to the action of the wind on the sail.

In this special case, because the wind is directly opposed to the line's direction,

once the sailboat enters the close hauled mode, it never leaves it. As a result, the

sailboat is always moving in a zigzag pattern, avoiding facing the wind.

Part 3: Control algorithms 17

17

Figure 10: Results of line_follow() with case_n = 3, without GPS (left) using

theorical data, and with GPS (right)

Finally, the case_n = 3 was tested in order to check if the algorithm behaves in

the same way in the ROS environment as it did in Matlab in Mr. Wan's screen

recording. The trajectory of the sailboat is identical in both cases; however the

ROS simulation is much slower by default and the loop rate needs to be adjusted.

Additionally, since the algorithm behaves in the same way as it is supposed to,

it can be used to test the impact of using the data received from the GPS on the

trajectory.

While the trajectory remained very similar, when using the GPS the sailboat

took a bit more time to detect it reached the distance r to the line, resulting in a

slightly longer zigzag pattern. Although these errors were hardly noticeable in

the beginning of the simulation, the distance between the two pattern started to

slowly builds on, and after 30 repetitions of the zigzag pattern there was more

than 20 meters of difference between the theorical and the GPS control.

Despite these differences, the main line following pattern remained

fundamentally the same and the algorithm behaved in the same way whether it

used the theorical or the GPS data.

18 Part 3: Control algorithms

18

Part 3.3: Triangle racing

The triangle racing algorithm is quite easy to understand. The sailboat goes

from point to point, directly using the previous line following algorithm, and

storing a global variable to keep track of the movement phase.

When one point is reached (when the distance between the sailboat and the

point goes under a target value, here the waypoint size), the global variable is

increased, signifying the boat must now go towards the next point, still using

the line algorithm between the old and the new point. This global variable is

cyclic, so that the sailboat is always going from one point to another in order.

Figure 11: Results of triangleracing ()

As seen above, the boat reaches its targets without problems, the fidelity of the

trajectory when compared to the triangle depends here on two values:

-The waypoint size, which determines how near the sailboat needs to be

for the target to be considered as reached

-The cut-off distance, which determines how far the sailboat can move

away from the line.

Reducing these two values will result in a trajectory closer to the triangle, at

the expense of its speed.

Part 3: Control algorithms 19

19

Part 3.4: Station keeping 1: modified line following

algorithm

The main goal of the station keeping is to maintain the boat at a given position.

Given that the sailboat is above water and has no anchor, the only way to achieve

this goal is to keep controlling the boat so that even if its inertia or external

action keeps pushing it away it goes back to its position.

The first algorithm tested is a modified version of the line algorithm, and depends

on two values, diaouter and diainner.

-As long as the boat distance to the targeted point is greater than diaouter,

then it will simply use the line following algorithm to go toward this point.

-Once the diaouter distance has been reached, the algorithm compares the

targeted angle 𝜑𝑡𝑎𝑟𝑔𝑒𝑡 between the sailboat and the target to the wind's direction.

If these two angles are too close, then it will use a perpendicular angle to 𝜑𝑡𝑎𝑟𝑔𝑒𝑡

instead.

Figure 12: Results of stationkeeping ()

20 Part 3: Control algorithms

20

Regardless of the targeted angle, the algorithm now enter the close hauled mode,

and do the same computations as the line following algorithm to obtain φ_actual,

the only difference is that the nominal angle here is completely bypassed. From

this actual angle, it then computes the rudder and the maximum sail angles.

 -Finally, if the sailboat is within the distance diainner, the algorithm

computes 𝜑𝑎𝑐𝑡𝑢𝑎𝑙 based on the wind's speed, and from it the maximum sail angle.

The rudder's angle is then computed from the comparison between the sailboat's

cap and 𝜑𝑎𝑐𝑡𝑢𝑎𝑙.

As seen in the Figure 3.6, the algorithm seems to works most of the time, apart

when in some cases the boat gets "stuck" in front of the wind. The tack value

calculated while the boat is inside the circle leads to the sailboat trying to rotate

against the wind, and it needs some time to be able to rotate properly and then go

back to the station.

Part 3: Control algorithms 21

21

Part 3.5: Station keeping 2: repurposed triangle racing

Rather than making a brand-new algorithm from scratch, one possible way to

try to implement a station keeping algorithm is to repurpose the triangle racing

algorithm around the targeted point.

Four different configurations were tested:

1st configuration: triangle between diainner and diaouter

Figure 13: Results of stationkeeping () with case_n = 3

With a large waypoint, the sailboat triangleracing gives a smooth trajectory, and

stay mostly between the two circles. However, because it needs to go against the

wind, the close hauled mode leads it to get outside the diaouter circle.

Nevertheless, by adjusting the cut-off distance and the waypoint size it is

possible to get the sailboat to stay within the circle. This can be said for all the

algorithms completely reliant on the triangleracing algorithm.

22 Part 3: Control algorithms

22

2nd configuration: inverted triangle

Figure 14: Results of stationkeeping () with case_n = 2

In this configuration the sailboat behaves like in the previous configuration,

however the triangle is set in such a way that the close hauled mode do not requires

the sailboat to turn before reaching the next waypoint, leading to the ship always

staying within the circle.

3rd configuration: line parallel to the wind (with a point in the center)

Figure 15: Results of stationkeeping () with case_n = 1

Part 3: Control algorithms 23

23

This configuration leads the sailboat to be constantly in close hauled mode. It stays

mostly within the outer circle, and in this configuration the sailboat goes the most

often above the central point. However, unlike the two previous methods, it

requires the target to be in a position accessible to the sailboat, since it do not circle

around the target but instead adopt a sort of 88-figure-like trajectory.

4th configuration: line perpendicular to the wind (with a point in the center)

Figure 16: Results of stationkeeping () with case_n = 0

With this configuration, the sailboat has a very tight 8-shaped trajectory which

remains very close to the line: this is due to the latter being perpendicular to the

wind, allowing the boat to avoid facing the wind most of the time. This method

guarantee the sailboat to stay within the outer circle, however the whole line need

once again to be accessible by the boat.

24 Conclusion

24

Conclusion

The line following algorithm is able to handle different situations without

encountering any problem.

The close hauled mode handles the cases where the wind goes against the sailboat

well, and so far, no fail states were found in any of the simulations using directly

the algorithm with no modification. The precision is flexible, and we can adjust it

as needed depending on the simulation's requirements.

This algorithm is a strong base for all the other algorithms such as the station

keeping and the triangle racing, and these fared the best when they called directly

the line following with no modifications.

The end goal of simulating the three missions in the ROS environment was a

success, and while experimenting with the real sensors and the real algorithms

would have been more interesting from both a personal and a educational point of

view, this internship nevertheless remained instructive and made the best of a

difficult situation.

List of figures 25

25

List of figures

Figure 1: 3D model of the sailboat in RVIZ [1] .. 7

Figure 2: Table of the model parameters and their values [2] 8

Figure 3: Difference between the true wind and the apparent wind [2] 9

Figure 4: A simplified graph of the ROS nodes ... 10

Figure 5: an example with explanations of a GPGGA sentence [3] 12

Figure 6: NMEA frames being transmitted as string messages from the GPS

node to the main node in ROS .. 13

Figure 7: the line following algorithm [4] .. 14

Figure 8: Results of line_follow() with case_n = 1 .. 15

Figure 9: Results of line_follow() with case_n = 2 .. 16

Figure 10: Results of line_follow() with case_n = 3, without GPS (left) using

theorical data, and with GPS (right) .. 17

Figure 11: Results of triangleracing () .. 18

Figure 12: Results of stationkeeping () ... 19

Figure 13: Results of stationkeeping () with case_n = 3 21

Figure 14: Results of stationkeeping () with case_n = 2 22

Figure 15: Results of stationkeeping () with case_n = 1 22

Figure 16: Results of stationkeeping () with case_n = 0 23

26 References:

26

References:

[1] A.Courjaud: Autonomous Sailboat

https://github.com/AlexandreCourjaud/Stage2APlymouth

[2] C.Viel, U.Vautier, J.Wan, and L.Jaulin: Platooning Control for Sailboats

Using a Tack Strategy

https://www.ensta-bretagne.fr/jaulin/paper_ijcas_veil.pdf

[3] D. DePriest: NMEA data https://www.gpsinformation.org/dale/nmea.htm

[4] L. Jaulin: A simple controller for line following of sailboats

https://www.ensta-bretagne.fr/jaulin/paper_jaulin_irsc12.pdf

https://github.com/AlexandreCourjaud/Stage2APlymouth
https://www.ensta-bretagne.fr/jaulin/paper_ijcas_veil.pdf
https://www.gpsinformation.org/dale/nmea.htm
https://www.ensta-bretagne.fr/jaulin/paper_jaulin_irsc12.pdf

