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Abstract

This document is about my telework internship with the University
of Plymouth. The subject was the control of autonomous sailboats. It took
place in two parts. The �rst part was devoted to the development of so-called
deterministic algorithms. That is to say, algorithms inspired or using control
laws from robotics books. The second part was devoted to solving one of
the problems treated with deterministic algorithms by arti�cial intelligence
methods. In a context of health crisis, not having been able to make the trip
to Plymouth, all the algorithms developed were tested in simulation.

Résumé

Ce document traite du stage que j'ai e�ectué en télétravail avec l'université
de Plymouth. Le sujet portait sur la commande des voiliers. Il s'est déroulé
en deux parties. La première partie a été consacré au développement des
algorithmes dites déterministes. C'est-à-dire des algorithmes s'inspirant ou
utilisant des lois de commande issues des livres de robotique. La deuxième
partie a été consacré à résoudre un des problèmes traité avec les algorithmes
déterministes par les méthodes d'intelligence arti�cielle. Dans un contexte
de crise sanitaire, N'ayant pas pu faire le déplacement à Plymouth, tous les
algorithmes développés ont été testé en simulation.
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Introduction

Sailing ships have long been the means of transporting people and goods
in the seas and oceans. Starting with the industrial revolution, they were
gradually replaced by steamboats. Today, they are only used for entertain-
ment and sport [1]. But sailboats are �nding a new place in the �eld of
marine robotics. They consume less energy and pollute less than other un-
manned surface vehicles (USM). But automating sailboats is not an easy
thing. Indeed, the environment in which sailboats are built is made up of
uncontrollable and unpredictable phenomena such as wind, currents, waves...
This makes it very complicated to control them.

My internship deals with this problem of controlling sailboat robots.
The objective of the internship is to develop robust control algorithms by
deterministic and arti�cial intelligence.
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1 sailboat

1.1 Description

Sailboats are sailing boats whose engines are the sails and fuel the wind.
More precisely, sailboats are made up of :

• A hull: it is the �rst component of a sailboat and of a boat in general.
Its role is to ensure the buoyancy and watertightness of the sailboat.
Sailboats can have a single hull: monohulls, two hulls: catamarans or
three hulls: trimarans.

• A sail: This is the engine of sailing boats. On the water, the wind
exerts a force perpendicular to the sail no matter what angle it comes
from. It is this force that makes the boat move forward.

• A centerboard: which is often associated with a keel (which prevents
the boat from heeling), allows the boat not to drift. Indeed when the
wind exerts a force on the sails. This tends to make it drift. The pres-
ence of a daggerboard, creates an anti-drift force allowing the boat to
go straight ahead.

• A Rudder: which allows to control the boat. Placed at the rear of
the boat, it controls the course to be followed.
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Figure 1: Di�erent part of sail

1.2 Point of sail

On lake, sea, or ocean not all directions are navigable. Sails do not
work if the boat is pointing directly into the wind. In reality the sail will
only work if it is at an angle of more than 45 degrees to the wind.
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Figure 2: Point of sail

1.3 Modelisation

To simulate our sailboat, we need a model represented the state equa-
tions.
The sailboat can be described by the following state equations [3].
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(x, y) corresponds to the coordinates of the centre of gravity of the boat,
θ its orientation, δs and δr are the angles of the sail and rudder, a the speed
of the wind, v is its forward speed, ω is its angular speed, fs is the force of
the wind on the sail, fr is the force of the water on the rudder

2 Control of the sailboat by deterministic meth-

ods

Numerical simulation is a tool widely used in robotics. It allows the
development of control algorithms during the design phase of the robot. Or
it allows to limit the case, or to easily debug its code.

2.1 Basic algorithms

2.1.1 Heading following

After modeling the sailboat, the �rst command that could be imple-
mented is the head following.
The law of control used is the proportional control, the sailboat have two
inputs that we have to control. For the input corresponding to the rudder,
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I used the sawtooth function that prevents 2-π jumps.This sawthooth func-
tion can be de�ned in two ways: either with trigonometric functions(2 ×
arctan(tan(x/2)))or with the expression (x+ π)%(2× π)− π. So the expres-
sion of this command is:

urudder = krudder × sawtooth(θ − θ̄)

.
Concerning the control law for the command of the sail angle, I used the
formula from the book Mobile robotic of professor Luc Jaulin [3]:

usail = ksail × π/4× (cos(ψ − θ̄) + 1)

ψ being the wind angle, θ the heading of the sailboat and θ̄ the head-
ing we should follow follow. These two expressions imply that urudder ∈
[−π/4, π/4] and usail ∈ [0, π/2]

2.1.2 Line Following

The algorithm used is taken from Luc Jaulin and Fabrice Le Bars paper
on sailboat: A simple controller for line following of sailboats [2].

Figure 3: Line following controller

This algorithm uses the idea of an attractive line. Indeed, whatever
the position of the sailboat in relation to the line, the direction that the
sail should follow is a function of the distance of the sail from the line and
the angle that the line makes in relation to the abscissa axis. The greater
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this distance, the more the sailboat points more towards the line. When the
sailboat is able to follow the line its heading will be the angle of the line with
respect to the abscissa axis.
But when the angle of the line is in the nogozone, the sailboat will sail on
subsequent close hauled angles and tacking between them.
A simulation on ROS and the use of the rviz tool allows us to visualize the
�gures below.

Figure 4: (a) The boat follows the line AB shown in blue. The red lines
represent the strip to never leave. (b) In this �gure, we can see the boat
going upwind. It performs a series of tacks called beating

2.1.3 Station Keeping

Station keeping consists of sailing the boat around a certain area. An
area represented by a circle. Many algorithms have been implemented to
solve this problem. The idea of the �rst algorithm is to make the boat do
a cycloid. This cycloid will be composed of two circles connected by two
straight lines. To make the boat follow a circle, a vector �eld has been
used. The next 3 �gures show the boat performing the holding mission with
di�erent wind speed values. The purpose of these �gures is to justify the
robustness of the control law.
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Figure 5: From left to right, we observe the station keeping challenge for the
di�erent speed values v=1, v=3, v=5

2.1.4 Station keeping and avoidance

For this problem, the objective is to make the station keeping while
avoiding buoy in the center of the circle.
For this situation two algorithms have been developed. The �rst one consists
in making a triangle around a physical buoy while remaining a circle of well
de�ned radius. As in the previous case, I varied the wind speed to test the
e�ciency of the algorithm.
The second algorithm is that the boat can make a square. For this same
problem the results are rather satisfactory than the �rst one. The boat
manages to stay in the circle with the di�erent speed values.
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Figure 6: On the �gures, the red arrow indicates the direction of the wind,
the small white dots indicate the trajectory of the boat after several turns,
The big dot in the middle is the physical buoy.

2.2 Challenge of WRSC

The other main objective of the internship is to be able to use previously
developed algorithms in order to be able to carry out certain missions. These
missions are challenges of the WRSC competition (World Robotic Sailing
Championships) [4]. See for more information https://www.roboticsailing.org/2019/rules/

2.2.1 Fleet race

For this mission the boat starts from a start line, passes three virtual
buoy and then crosses the �nish line. To validate a buoy, the boat must
be within a radius of 5m around the buoy.The �gure below illustrates the
principle of the mission.
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Figure 7: Fleet race
To carry out this mission, I proceeded to a sequence of line tracking between
two buoy. But for this challenge, what counts is to cross the �nish line in the
shortest possible time. So it is necessary to �nd the shortest way between
the start line and the �nish line while passing through all the buoy. We
could model this small problem in a graph and apply the Dijkstra algorithm.
But I proceeded in a di�erent way. At each buoy where the sailboat is, I
look for the next closest buoy. And I do this step by step until I cross the
�nish line
Here is below a capture showing the sailboat carrying out the challenge.
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Figure 8: Boat perfoming the �eet race challenge

2.2.2 Station keeping and avoidance

This mission is a combination of two of the algorithms described above. The
�rst one is to stay in the zone for a certain time without constraint, then
to leave this zone and go to another zone but this time to stay there while
avoiding collisions with the physical buoy.

Figure 9: Station keeping and Avoidance
A simulation of this challenge on rviz is below.

Figure 10: Boat perfoming Station keeping and avoidance challenge
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2.2.3 Area scanning

This challenge consists in e�ectively analyzing a terrain. Four boats are
deployed for this task. Each boat must scan a maximum of new area in
order to receive a maximum of points. During the challenge the boats
receive the areas scanned by the other boats. When a boat scans an area
scanned by another boat, it will receive half of the points it could receive
if it had scanned a new area. And so the more area has been scanned the
more it loses value.

Figure 11: Area scanning
The algorithm I implemented consists in searching the non-scanning area
closest to the boat's position. Then when this area is identi�ed, then we
use the line following algorithm between the position where the boat was
and the center of this area. When I apply this algorithm to the problem, in
general, we don't �nd a single zone as the nearest area but two areas. To
choose between these two areas, we use these di�erent criteria:

• if the line to follow is in the nogozone, then we don't choose it. As the
two lines that the boat can follow are orthogonal, if one line is inside
the nogozone, then the other one is necessarily outside.
• When both lines can be followed, we choose the line that prevents the
boat to change its heading.

On the following �gure, we simulate this challenge.
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Figure 12: Area scanning challenge

3 Control by arti�cial intelligence methods

The results obtained previously are very satisfactory. Nevertheless, there
is still room for improvement. For example, when the wind speed is very
high, the boat does not manage to stay at the guard post. Also the area
scanning algorithm does not completely solve the problem. Indeed, when we
implement our area scanning algorithm on each of the 4 boats, 90 to 95% of
the areas are scanned.
During the second part of my internship, I had to develop arti�cial in-
telligence algorithms in order to obtain a better result than deterministic
algorithms.
To do this, I �rst had to have machine learning skills. Because being a
second year student, the courses on machine learning are planned for the
third year. So I started to study these courses during this period.
After having read enough articles and books, I decided to develop an
arti�cial intelligence algorithm for the area scanning problem.
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3.1 Machine Learning

The learning machine is a sub-domain of intelligence. It is about learning a
statistical model to make predictions from training data. So when you do
machine learning, there are two phases. A learning phase which consists of
training the model on training data. Then a prediction phase which consists
of using our model to make decisions. There are three paradigms in machine
learning [5].

• Supervised learning: the machine learns a prediction function from
labeled examples. More precisely, we want to be able to predict an
output y from an input x. So we give the model a large amount of
training data corresponding to a set of x and y values. So the model
will learn from these examples to make a correct prediction.

f(x) = y

f is le function(model) that translate x to y

• Unsupervised learning: the machine learns a model without the
learning examples being labeled. The machine will have to �nd the
similarities and distinctions within this data alone, and to group
together those that share common characteristics.

• Reinforcement learning: this paradigm di�ers from the two
previously mentioned by the fact that the learning data are generated
as the learning takes place. This technique is based on a cycle of
experience/reward and improves performance with each iteration.
This paradigm will be further explained in the next section.

Of these three paradigms, only the third has been applied to the area scanning
problem.

3.2 Reinforcement Learning

Reinforcement learning is one of the three paradigms of machine learning,
along with supervised and unsupervised learning. an agent (robot, etc.) is
placed in an environment, takes action according to its current state and
receives from the environment the next state and a reward (positive or
negative).
The objective of the agent in the reinforcement learning phase is then to
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seek a behaviour capable of accumulating the maximum of these rewards[6].

Figure 13: Interaction loop between the agent and its environnment
Markov Decision Problems (MDP) is one of the stochastic models capable of
formally describing the interactions between an environment and an agent.
A MDP is composed of four components: state, action, transition function
and reward function.

• State: the totality of information necessary and su�cient to predict
the future evolution of a system.

• Action: it is the set of possible movements that the agent can have
in order to interact with his environment.
The set of states and actions can be �nite or countless states can be
�nite or continuous.

• Transition function: it de�nes the e�ect of the agent's actions
on the environment. More precisely, it represents the probabil-
ity of going from state s to state s′ by taking an action a. When
all states and actions are �nite, this function is represented by a matrix.

• reward function: prescribes, for each transition from one state
St = s to another St+1 = s′ , following the execution of an action
At = a, a reward perceived by the agent, called immediate reward and
noted R(s, a, s′) . But this function may not depend on the state s′

R(s, a)) or on the state s′ and the action a (R(s)).

There is a wide variety of algorithms to solve reinforcement learning
problems. We can classify these algorithms in two groups: those based on a
model and those based without a model.
A model-based algorithm is that uses the transition function and the reward
function in order to estimate the optimal policy. So the algorithm without
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a model does not use the transition and reward functions to estimate the
optimal policy. During this internship, I decided to become interested in
algorithms without models and more precisely the Q-learning algorithm.
Because I �nd it easier to understand and implement.

3.3 Q-learning

As said before, the Q-learning algorithm belongs to the class of algorithms
without models. It seeks to learn a policy that maximizes the total reward.
For this it uses a state-action value function Q which measures the quality
of an action in a state. When the number of states is not very large then
this function can be replaced by a matrix called q-table. The rows of this
q-table correspond to the states and the columns to the actions. Initially
the values of this table are zero. The objective of the training phase is to
�nd the right values of this table. So at the end of the training phase, The
q-table will guide us to the best action at each state.
During the training phase, in each state, the agent takes an action in order
to interact with its environment. Now comes the dilramma of the choice of
actions. Indeed, in each state of the agent, several actions are possible but
which one to choose. After the training phase, can we be sure to have passed
through all the states? A very simple algorithm called epsilon-greedy allows
us to answer this problem. This algorithm uses the exploration-exploitation
trade-o�:

• Exploration: consists in randomly choosing (with a probability) of
epsilon an action among all possible actions. This allows the agent to
improve its current knowledge on each action but especially to discover
new states.

• Exploitation: consists in choosing for a given state the action that
has the highest value.

At each episode of the training, the Q-learning algorithm uses the bellman
equation to update the values in the table.

Q(st, at) = Q(st, at) + α · (rt + γ ·maxaQ(st+1, at)−Q(st, at))
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Q(st, at) value of the function in state st for the action at, rt is the reward
received when passing from the state st to the state st+1, α ∈ [0, 1] is the
learning rate and can be de�ned as how much you accept the new value
compared to the old one, γ ∈ [0, 1] is the discount factor and has the e�ect
of valuing rewards received earlier than future rewards, maxaQ(st+1, at) take
the maximum of the future reward and apply it to the reward for the current
state.
The following �gure shows the Q-learning algorithm.

Figure 14: Q-learning algorithm

3.4 Solving the area scanning problem with the Q-

learning algorithm

Among the classical problems solved by the deterministic algorithms devel-
oped during the �rst part of the course, it was necessary to choose a problem
and try to solve it with the Q-learning algorithm. Whatever the problem to
be solved, three elements must be well de�ned: The state of our agent, the
possible actions he can take, the rewards obtained by the execution of each
action. The de�nition of the rewards is the most important part when we
want to use a reinforcement learning algorithm. For example for the station
keeping problem, we could easily de�ne the rewards by: As long as the
sailboat is the zone, it receives a positive reward and this reward is greater
if the sailboat is close to the center of the zone. But if the sailboat is out of
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the zone then it receives a negative reward.
I chose instead to solve the area scanning problem. It is true that it is more
complicated to solve compared to the station keeping problem. Above all,
de�ning its reward function is not easy.

3.4.1 table Generation

The area to be scanned is composed of 400 grids of dimension 50×50 and each
grid is a square of 2.5×2.5. In order to have the dimension of my reasonable
Q-table, I thus considered the position of each grid as being the state of our
agent. The actions that can take the agent are eight in number. Depending
on the wind direction some actions are not possible. The following �gures
illustrate this.

Figure 15: The di�erent actions the agent can take
During the implementation of the Q-table in python, I represented it with a
dictionary. The keys being the states (thus the positions of each grid) and
each value of a key is represented by an array of eight real numbers (like the
eight actions).

3.4.2 Reward function

As I said before, de�ning the rewards well will lead to a better result.
The overall objective of the area scanning mission is to achieve (for the
four boats) to scan all the grids (400 in total) in a minimum time. So it
is necessary to avoid that the boats do not pass again on zones already
scanned, otherwise it will make us lose time. So each time the agent scans
a new grid, he gets a positive reward (+5), if he scans an area already
scanned, then he gets a negative reward (−5). But this de�nition is not
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enough. Indeed when we consider for example that the boat has an upward
heading and that the following grids are not yet scanned, it would be better
to choose the Up action. Because the other actions would force the boat
to change course, which would waste the agent's time. But if the grid in
the Up direction is already scanned, choose the Up-right action. The
following �gure explains the choice of the di�erent grids according to the
boat's heading.

Figure 16: The 1 corresponds to the preferred direction. The 2 and 2' cor-
respond to the following actions to be taken if the grid on action 1 has been
scanned. The 3 and 3' correspond to the following actions to be taken if the
three previous actions are not possible. Etc....

3.4.3 Results

Unlike other previously implemented algorithms, this algorithm has been
implemented in python. The training phase consisted in creating 4 agents
(i.e. four instances of a class) and making these agents evolve in the same
environment.

The reward function described above was the best reward function I ever
implemented. Indeed other reward functions were de�ned but they did not
have satisfactory results.
On the following �gures are the results of simulations with two di�erent
reward functions.
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Figure 17: On the left the result of the �rst reward function implemented.
On the right the result of the simulation with the reward function explained
in the previous paragraph.
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Conclusion

At the end of these four months of internship, I was able to consolidate some
knowledge seen during the school year such as the courses on robot control,
ROS, C++. Moreover I learned new skills in arti�cial intelligence even if
this knowledge will be learned in 3rd year.
The whole internship was done in simulation. Indeed because of the health
crisis, I did not go to Plymouth to do experiments on sailing boats. I think
that this is the downside of this course. Because one of my main objectives
during this training course was to do enough practice.
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