
Research Assistant Internship Report

Smart monitoring and data analytics of coastal
and marine environments using autonomous

sailboats

Author Supervisor
Agathe Archet Doctor Jian Wan

2nd year engineering student Lecturer in Control Systems Engineering
Autonomous Robotics University of Plymouth - AMS
ENSTA Bretagne

Institution Academic tutor
ENSTA Bretagne Professor Luc Jaulin

Engineering school Professor in Robotics
2 rue François Verny, Brest ENSTA Bretagne - LabSTICC

September 2020

Acknowledgments

I would like to express my sincere gratitude to my internship supervisor, Doctor Jian Wan,
researcher and lecturer in Control Systems Engineering at the University of Plymouth. Despite
the quarantine context, my internship has been maintained in France thanks to the sending
of all the equipment needed and weekly video conferences. Mr. Wan’s availability and advice
during this internship allowed me to discover and to further study a large number of key as-
pects of robotics.

Also, I would like to extend my gratitude to my responsible teacher, Professor Luc Jaulin,
researcher at ENSTA Bretagne engineering school, for getting me in touch with Mr. Wan and
for facilitating administrative procedures due to the coronavirus pandemic.

I would like to thanks Mr. Benoit Zerr, teacher-researcher in robotics, for guiding me to
accelerate administrative procedures.

Also, I want to thank Mr. Fabrice Le Bars, teacher-researcher in robotics, for lending me
hardware and authorizing me to keep it for four extra months.

Finally, my thanks also go to my classmate Robin Sanchez, who booked and sent me in
emergency extra equipment just before the French lockdown occurred.

1

Abstract

This report deals with the development of a measurement sailboat for water monitoring, as
part of a French second-year engineering school engineer/research assistant internship, with
the University of Plymouth. The mission consisted of the integration of scientific sensors and
the smart measurement path planning of an existing autonomous sailboat.

In this way, the following document is composed of two parts, reflecting the two main
issues studied over four months. A first low-level approach allows covering the adding of
measurement sensors, the filtering, and the transmission of the acquired data to the sailboat
for further analysis. Then, a high-level study proposes various strategies and models to make
the sailboat plan a measuring journey in coastal environments, in an autonomous or even
smart way.

Résumé

Ce rapport de stage présente le développement d’un voilier de mesure pour la surveil-
lance de l’eau, dans le cadre d’un stage de deuxième année d’école d’ingénieur dit assistant
ingénieur/chercheur, à l’Université de Plymouth. La mission consistait en l’intégration de
capteurs scientifiques ainsi qu’en la planification intelligente du chemin de mesure d’un voilier
autonome existant.

Ainsi, le document suivant est composé de deux parties, reflétant les deux principales prob-
lématiques abordées au cours de ces quatre mois. Une première approche bas niveau couvre
les étapes liées à l’ajout de capteurs de mesure, au filtrage et à la transmission au voilier des
données acquises, pour des analyses plus approfondies. Enfin, une étude plus haut niveau pro-
pose différents modèles et stratégies pour aider le voilier à planifier un trajet de mesures en
milieu côtier, de manière autonome voire intelligente.

2

Contents

Acknowledgments . 1

Abstract . 2

Résumé . 2

Introduction . 4

I Integration of the measurement sensors . 5

I.1 Definition of the objectives and constraints 5

I.2 Connection and data collection of the sensors 5

I.3 Transfer of the measurements to the boat through Bluetooth 7

I.4 Data filtering and management for a user interface 9

II Measurement path planning . 11

II.1 Definition of the objectives and constraints 11

II.2 Modeling of the autonomous sailboat and its environment 11

II.3 Strategies for an optimal measurement path 14

II.4 Obstacle avoidance approaches in dangerous environments 17

II.5 Reinforcement Learning for a more intelligent planning 18

Conclusion . 25

Bibliography 26

Appendices 27

A Complete BLE Attribute Protocol (GAAT) table of the Arduino Bluno 27

B Complete Arduino class diagram . 28

C Kalman filter: theoretical and experimental results 29

D Modeling equations and parameters . 30

E Effects of wind on path planning . 30

F Comparison of Q-Learning reward matrices . 32

G Assessment report . 35

3

Introduction

Firstly used exclusively for post-WWII mine-sweeping applications, Unmanned Surface
Vehicles (USV) now present a new interest over numerous modern applications and research
areas. These vessels without crew are particularly valuable in oceanography. Once equipped
with science sensors and navigational instruments, they become more proficient than moored
or drifting weather buoys, far cheaper than research vessels or weather ships, and more flexible
than commercial-ship alternatives. Among them, sailing ships offer the advantages of being
wind-driven and asking little energy to control them, which makes them reliable for long and
frequent missions in the ocean and therefore a trusted means for scientific purpose.

Controlling such boats can be remotely operated, partially autonomous, or fully autonomous.
The latter group, namely Autonomous Surface Vessels (ASV), has become a common field of
research in modern robotics, promising more optimal and even more energy-friendly water
monitoring of oceans, with new navigation-related challenges. This is, among other marine
systems engineering projects, one central theme studied by the Autonomous Marine Systems
(ASM) research group of the University of Plymouth.

In this approach, this report aims to reflect the work accomplished over 4 months, as part
of a research assistant internship carried out teleworking with the University of Plymouth.
More precisely, in the continuity of researches done by the ASM research group, the focus is
based upon smart monitoring and data analytics of coastal and marine environments using
autonomous sailboats. This theme leads to considering two main objectives: setting up and
managing measurements from various sensors on the boat, and proposing a navigation strat-
egy to guide the sailboat to the measurement points.

For safety reasons and due to the coronavirus pandemic, Mr. Jian Wan, my tutor, has
ensured the continuity of this internship in France by mailing all academic resources needed
and communicating by videoconference. All described codes are available on GitHub [1].

4

I Integration of the measurement sensors

I.1 Definition of the objectives and constraints

The autonomous sailboat, developed by students and searchers at the University of Ply-
mouth, is not equipped to perform measurements to analyze the Plymouth bay’s water quality.
This is why a series of specific sensors must be added to the existing architecture of the boat.

Requirements :

The boat must be able to measure and record pH and EC measurements in real-time. All
sensors will be contained in a waterproof housing, managed with an Arduino Bluno that will
communicate the results to the sailboat using Bluetooth. On the boat, here replaced by a
Raspberry Pi board, collected values will be managed and turned into standardized messages
with the ROS (Robot Operating System) middleware library, so to be ready to be used for
further analysis.

These needs will be covered and described by the next three parts :

1. The various provided sensors must be connected to the Arduino Bluno board, and pro-
vide realistic values of the environment. Their measures will have to be saved and be
ready to be sent.

2. A communication strategy has to be established from the Arduino Bluno board towards
the Raspberry Pi board (sailboat), using their integrated Bluetooth Low Energy (BLE)
modules.

3. The data received by the Raspberry Pi board will be processed and turned into stan-
dardized messages using the ROS middleware library.

I.2 Connection and data collection of the sensors

Assembly of the hardware components

All the hardware used in this section comes from DFRobot’s KnowFlow Basic Kit for Wa-
ter Monitoring [2]. The kit is provided with Open-source code examples for each sensor, and
an assembly guide.

Figure 1: The final mounting layout

5

The above kit contains:

• 1 Arduino Bluno, identical to an Arduino Uno with an additional BLE integrated module
• 1 IO Expansion Shield (v7.1) to facilitate the connections between components
• 1 Real-Time Clock circuit board (RTC) and its I2C 4-Pin sensor cable
• 1 MicroSD module and 1 8Go MicroSD card
• 1 Analog signal isolator and its analog cable
• 1 pH probe and its circuit board, with buffer solutions
• 1 EC probe and its circuit board, with buffer solutions
• 2 Analog sensor cables

Code organization

To manage the different data coming to the Arduino board, a central script WaterMoni-
tor.ino was edited from the Arduino IDE software with its proper local libraries. Each sensor
or module is described apart by its class written in the C++ language. More specifically, all
measurement sensors are derived classes of the general Isensor class with simple shared meth-
ods. Another class, GravitySensorHub, allows global management for existing sensors and is
designed so that future other sensors can be easily added (temperature, dissolved oxygen, and
red-ox potential sensors proposed by the same manufacturer).

Figure 2: General class diagram on Arduino

Parameters setting of the components

Before any interpretation of the raw data coming to the Arduino, the final data must be
categorized. Since precise date and time are often critical for measurements, an option has
been added to synchronize the Real-Time Clock (RTC) module with the internal time of the
user’s computer. Otherwise, the date and hour can be manually set up for convenience. The
2-decimal places-accurate measurements and the time are automatically stored on the 8 Go
SD card, written twice at each update to prevent any loss.

Interpretation and adjustment of raw data of pH and EC sensors are performed by the
open-source scripts provided by the manufacturer, in which a mean filter is applied to smooth
punctual aberrant values. However, to use the measuring instruments at their best perfor-
mance, a general calibration procedure was taken into account to avoid any malfunction. Ac-
cording to the manufacturer, the probes can reasonably be calibrated every month. When the

6

Arduino Bluno board is powered and the Serial Monitor opened, the measurements by default
take into account previous calibrated values (from the Arduino’s EEPROM long-term mem-
ory). Calibration can be made at any time, one probe at a time, as long as the code is running
on the Arduino board and the Serial Monitor is opened.

Reporting of results

After collection, calculation, filtering, and recording, the resulting values of the pH and EC
sensors can be updated approximately every second. This time appears to be reasonable for
two sensors but could reach more than 2 seconds with all future sensors added. The current
code’s global variables use 76% (1558/2048 bytes) of the dynamic memory of the Arduino,
which is already a lot but can be explained by the little size of the dynamic memory (SRAM)
offered by the Arduino Bluno model (similar to the Arduino Uno model). With additional sen-
sors, the code could be optimized in this direction, or another model among BLE-integrated
Arduino boards could be considered (eg. the Bluno Mega 2560 with four times more SRAM).

I.3 Transfer of the measurements to the boat through Bluetooth

Now that the data is correctly arranged, the measurements and their respective date can
be sent from the Arduino Bluno and be received by the Raspberry Pi 3 B+ (representing the
boat), through Bluetooth Low Energy. In this section, the Arduino board is managed and
monitored with the Arduino IDE software through a USB cable, the access to the Raspberry
Pi board is performed through ssh protocol from a computer.

How to communicate with BLE-integrated devices

Compared to classic Bluetooth, Bluetooth Low Energy (BLE) is designed to reduced con-
siderably power consumption and cost for a similar communication range. Both Arduino
Bluno and Raspberry Pi 3B+ boards have an integrated BLE module 4.0 and appear to be
compatible.

Any communication between two devices needs to be initiated in two stages:

• Device discovery is done through the Generic Access Profile Protocol (GAP), depending
on if the devices have either a peripheral or central role. A peripheral (Arduino, sen-
sors, or wearable...) advertises itself and waits for a central to connect to it, whereas a
central (Raspberry Pi or computer) scans other devices. Once connected, the peripheral
becomes a slave and the central a master.

• After discovery, device-to-device communication occurs through the Generic Attribute
Protocol (GATT). It establishes common operations and a framework for the data be-
tween the client (Raspberry Pi) who can READ/WRITE to the server, and the server
(Arduino Bluno) who can NOTIFY/RESPOND to the master and who possesses the
information to share. The Attribute Protocol (AT) table specifies all resources (services
and characteristics) proposed by the server.

Finally, based on the Attribute Protocol provided by the Arduino Bluno, the transmission
becomes:

7

Figure 3: Simplified BLE protocol used between the two devices

Data transmission and receiving

My tutor, Mr. Jian Wan, advised using the Bluez Linux tool and Bluepy Python library as
they have proved to give good results for one of its Ph.D. students.

As a first step, the Bluez software installed on the Raspberry Pi allows introducing the two
devices, by making the Arduino Bluno trustworthy. It also provides the MAC address of both,
which is equivalent to a unique personal identifier.

The Arduino Bluno automatically transmits trough BLE the data printed on its Serial
Monitor. The device is set on the USB-UART BLE transparent mode to allow debugging,
the minimum and maximum connection intervals are set up to 10 ms for better compatibility
with a computer, and the baud rate is fixed at 115200 as recommended by the manufacturer.
However, the transmissible data is limited in size, so a special format is employed to restrict
each message to its minimum so it is sent entirely. Three different messages are sent every 300
milliseconds at each update (lasting 1 second):

• “M–d–y–h–m–s–” : Date and time

• “pH—tp—EC—” : pH, temperature and electronic conductivity

• ”Do—Or—–” : dissolved oxygen and oxidation-reduction potential

The above dashes represent the effective values. Their accuracy is not limited in the mes-
sages, but the manufacturer decided to set it up to two decimal places. The last message is
not useful at this point, but it anticipates the additions of the remaining sensors.

On the Raspberry Pi 3B+, a ble_interface_node.py Python script using the Bluepy li-
brary manages the paring, the scanning, and reception of notifications sent by the Arduino.
The data is split and updated into variables in this same script.

Result of transmission

Using BLE, communication between the devices is feasible over at least 20 meters with-
out data loss (70 meters theoretically, but not tested because of material reasons). On the
receiver’s side, very rarely, the three different messages may not always arrive every second (as
normally sent from the Arduino), but it does not compromise the global data reception (one
occurrence every minute at most). If the data is not directly received, the last saved values are
used. The BLE is therefore an appropriate transmission protocol for the goals of this intern-
ship.

8

Finally, one crucial aspect is blocked by the BLE compatibility between the Raspberry Pi and
the Arduino Bluno. It seems indeed that a specific USB dongle proposed by DFRobot allows
getting rid of manually maintaining the Serial Monitor open, to allow data sending from the
Arduino. This issue could be studied to reach a user-free method for BLE communication.

I.4 Data filtering and management for a user interface

Finally, once collected by the Raspberry Pi, the data must be correctly sorted and filtered
before being sent to the user. A middleware architecture will be used to showcase general steps
and to better identify data flows.

Middleware architecture

In this section, the middleware used is ROS melodic v. 1.14.5, installed on a Raspberry Pi
3B+ running on Ubuntu 18.04 distribution. The use of middleware is needed to create three
interfaces: one for receiving and sorting the data previously acquired by BLE transmission,
one for data filtering to prevent any jumps in values due to many existing sources of errors,
and a final one that receives the filtered data and transmits it to the user.

Then, using the Rviz tool, the following node diagram is obtained :

Figure 4: ROS node diagram on the Raspberry Pi

The two services /raw_data_topic and /filtered_data_topic ensure the flow of informa-
tion. Each carries a custom message of type SensorsData to send all information at once.

Structure of SensorsData.msg :

Type Name
float64 ph
float64 conductivity
float64 temperature
float64 dissolved_oxygen
float64 redox_potential
string date
bool is_connected

Kalman filter node

The raw data received via BLE may present some inconsistencies, either due to measure-
ment errors from the sensors, or data losses from BLE transmission, or problems of update
synchronization. A Kalman filter, as wanted by Mr. Jian Wan, could reduce these errors by
correcting and predicting behaviors of the values.

9

Let x be the array of measurements to analyze. Then, the system chosen to reflect the
measurements process, at step k, is :

{
model : xk+1 = A× xk
measurements : yk = C × xk

{
estimed model : xes,k = A× xk + a

estimed measurements : yes,k = C × xes,k + b

(1)
with:

x =
[
pHvalue ECvalue

]T
A = I2

Gx = 0.2× I2

C = I2

Ga = 0.2× I2
Gb = 0.5× I2

(2)

where x is the state vector, Gx the estimated error on the initial state, Ga the estimated
error on the model, Gb the estimated error on each measurement, and I2 the identity matrix.

For more realistic equation models, some noises were imagined :

• A centered Gaussian white noise a on the model, to estimate the error on the values
made by the sensors. The resulting covariance matrix of the process noise is Ga, with a
variance of 0.5 (reflects a medium uncertainty on the model).

• A centered Gaussian white noise b on the measurements, to estimate the error on the
values made during the BLE transmission. The resulting covariance matrix of the ob-
servation noise is Gb with a variance of 0.2 (reflects a light uncertainty on the measure-
ments).

Consequently, the filter used in kalman_filter_node is:

Algorithm 1 Kalman Filter
Input: x, y, A, C,Gx, Ga, Gb

Output: xpred, Gx,pred

Correction
1: S ← C ·Gx · CT +Gb

2: K ← Gx · CT · S−1

3: ỹ ← y − C · x
4: Gup ← (In −K · C) ·Gx

5: xup ← x+K · ỹ
Prediction

6: xpred ← A · xup
7: Gx,pred ← A ·Gup · AT +Ga

8: return xpred, Gx,pred

Results of data processing

When launching the BLE transmission and the ROS process, data manipulation appears
to be easier. Intermediary nodes allow tests and debugging, but the final user is not affected
by them since its interface only receives the data after filtering. Also, filtering does not delay
the data flow, the user interface is updated every second.

10

A graphical tool has been implemented to better acknowledge the impact of the Kalman
filter in its corresponding node. After theoretical and practical tests, the filter does not al-
ways predict exactly the “true” sensors values, but still is nearer to the real ones than “raw”
values are. Its principal effect remains to smooth pH and EC measurements, but it cannot be
exploited further because of the impossibility of predicting pH and EC evolutions over time
(they are therefore designed as constants in the model). In future works, the Kalman filter
should be updated to process additional sensors.

II Measurement path planning

II.1 Definition of the objectives and constraints

Now that the sailboat is equipped to perform and communicate measurements on water
quality, it still needs to learn where and how to take the measurements so that water monitor-
ing could be automated on an entire area.

Requirements:

Given a set of points to visit in a known environment, the sailboat must be able to plan
a safe path to take measurements. The planning strategy will take into account the direction
of the wind and existing obstacles (rocks, coats) and has to be calculated under a reasonable
amount of time. The solution must be optimized so that the path is as short, fast, and energy-
efficient as possible.

These needs will be covered and described by the four following parts :

1. The main actors in the problem must be modeled. The boat model and simulation will
reflect the dynamics of a simplified sailboat, its controller will be implemented in ways to
steer this model with way-points guidance. The environment should also be represented,
and reflect constraints brought by the wind (in the first instance).

2. The optimization problem has to be identified to propose several simple solving strate-
gies.

3. For a more realistic resolution, constraints linked to borders and obstacles will be taken
into account to start to implement avoidance methods.

4. Finally, for better results, long-term strategies using Artificial Intelligence could be con-
sidered.

II.2 Modeling of the autonomous sailboat and its environment

To facilitate path planning, the problem modeling should take into account all constraints
associated with the sailboat’s properties, the wind’s speed and direction as well as the mea-
surement area’s borders and obstacles.

Sailboat modeling

The sailboat model used comes from John Melin’s Control and state-estimation for an au-
tonomous sailboat [3]. It assumes that the boat has a unique effective sail and evolves in a
2D-space, where the influence of waves and current is neglected and its velocity is assumed to

11

be small.

Among all parts of a standard sailboat, the paper notably relies on three main components:
the hull whose characteristics serve for the boat’s state vector, the angles of the sail and the
rudder for the dynamics and control.

(a) Standard sailboat (b) Sailboat for the simulation

Figure 5: Sailboat transformation for modeling

Sailboat’s variables

• The state vector of the boat, based on the hull’s properties, is defined as : X = [x, y, θ, v, w]T

with the sailboat’s position (x, y), velocity v, heading θ, and rotational speed w given in
a North-East-Up reference frame.

• δr is the angle of the rudder.

• δs is the angle of the sail which is proportional to the length of the mainsheet.

• Other variables (p0, ...p10) are intrinsically linked to the boat’s shape and dimensions
and remain constant over time. They have been changed to fit the Plymouth student’s
sailboat’s dimensions.

Wind’s variable

The wind is depicted accordingly to two frames for convenience :

Figure 6: Modeling of wind’s parameters

12

• True wind: Wtw, the coordinates in the global frame of the wind of speed a and direction
ψ.

• Apparent wind: Waw, the (cartesian or polar) coordinates of the wind perceived by the
boat in its frame (relative to its own direction).

Evolution equations

Considering the sail force, the rudder force, and the friction, the hull, the rudder and the
sail can evolve dynamically for the wind’s constraints (consult the appendix for more details).

Control of the sailboat

The following description refers to the strategy proposed by Mr. Jaulin and Mr. Le Bars
in A simple controller for line following of sailboats [4], in which they introduce a pragmatic
approach influenced by a potential field strategy for the sailboat model previously described.

With this method, the boat is progressively attracted by the line to follow until it fits it.
But some directions, like paths facing the wind, are not feasible for the sailboat. These un-
feasible courses form a no-go zone (painted in grey), that can be avoided thanks to a keep
close-hauled strategy. Therefore, instead of directly following a line, the boat will adopt a
zigzag trajectory to target the goal while staying at the frontier of the allowed zone.

(a) Controller algorithm (b) Dead zone range to avoid

Figure 7: The controlling strategy of Mr. Jaulin and Mr. Le Bars

Finally, the algorithm groups the two strategies: a potential field strategy if the boat is
guaranteed to stay in the allowed zone, and a closed-hauled strategy if it risks to end up in the
no-go zone. For more details on each step, consult the paper.

Environment modeling

Visiting a set of measurement points refers to an already well-known optimization theme
commonly illustrated by graph theory: the Traveling Salesman Problem (TSP), which natu-
rally leads to using graph theory to represent the environment to explore. Each measurement
area, visited by the boat, is therefore composed of:

13

• vertices, with unique labels, for the different points to visit
• edges, for the existing paths that link each point to other points
• weights, as efforts for traveling from one point to another (generally the distance). The

smaller the weight, the easier the travel.

A simple TSP generally asks for a complete undirected graph, in which every pair of dis-
tinct vertices is connected by a unique edge with a constant weight (all directions are possible
and the traveling from one place to another costs the same). Considering a sailboat this time,
the orientation of the wind prevents the boat from moving in all directions.

Figure 8: Effect of wind penalties on a graph

Consequently, the graph of the problem becomes asymmetrical (oriented). Moreover, it
is assumed that all measurement points are still reachable from every other point, but that
the effort between two points differs depending on the direction (a wind penalty increases the
distance). Then, a complete digraph is obtained to model the problem.

Models implementation

In practice, three Python classes group the previous modeling:

• Boat class: the boat model with its controller. The simulation of the boat is updated
with a Runge-Kutta fourth-order method for trajectory evaluation.
• Graph class: graph objects with possible solving strategies. All the corresponding data

is stored in lists instead of matrices, to reduce the complexity of the calculations when
the number of points to consider increases.
• Area class: to easily construct a set of points. The user can either choose between

automatically built grid and circle shapes with homogeneously distributed points, or
manually create an environment.

II.3 Strategies for an optimal measurement path

Now that the sailboat and the measurement zone are defined and modeled, various al-
gorithms can be implemented to solve this specific Traveling Sailboat Problem. Because it
becomes very difficult to use Dijkstra or Floyd-Warshall algorithms in this case, and it is not
possible to have recourse to the Christofides algorithm (triangle inequality not guaranteed),
alternative strategies should be built.

14

Edges building

Accordingly to what has just been introduced, edges can be easily created by linking all
possible pairs of points to visit. This method offers lots of combinations, therefore a better
chance to find the optimal solution. However, in the case of iterative solving algorithms, more
effort can be needed to find a good path. So to connect the vertices with their closest neigh-
bors, a new method based upon Delaunay triangulation is proposed so that long edges are
automatically disqualified.

(a) All edges building (b) Delaunay triangulation building

Figure 9: Two edges building methods applied to the same graph

From the obtained graphs, it is easy to see that the Delaunay triangulation already fa-
cilitates the future work of solving algorithms. However, its major weakness is the possible
absence of a final edge for returning to the starting point: an alternative edge (linking the
ending point with the starting one) is created in this case, but it may encounter an obstacle.

Solving algorithms

Four algorithms of various complexity are taken on. Their efficiency is evaluated from the
distance of the final path proposed.

• Random strategy: a basic algorithm that compares the scores of two paths constructed
from swapping two randomly-sectioned points.
• Loop strategy: same as random strategy, but all pairs of swapping points are evaluated.
• Nearest-Neighbor strategy: a one iteration greedy algorithm looking for the best weight

at each step.
• Genetic strategy: a random-based algorithm that brings in mutations (errors not re-

specting short-term rewarding but allowing long-term rewarding).

The efficiency of solving algorithms

The algorithms have been tested on various shapes, for various wind directions, and edges
all connected.

For several shapes and wind directions, the Nearest-Neighbor strategy seems to provide
the optimal existing path. A trend for straight and parallel sections of path also emerges with
other algorithms, but they cannot compete here with the score found by the first one, certainly
because the process got stuck at a time and it asks too many changes to significantly decrease
the total length. The loop strategy converges faster than the random strategy. The genetic
strategy needs more time than the others, but already offers a better score than the random

15

and loop algorithms.

Figure 10: Random strategy Figure 11: Loop strategy

Figure 12: Genetic strategy Figure 13: Nearest-Neighbor strategy

Wind penalties applied on the edges, according to their vertices orientation and the wind
direction, clearly affect the solutions proposed by each solving strategy. The same trends are
observed for different wind directions, with the two edges building methods.

Depending on the environment size and the parameters chosen for the algorithms, the ran-
dom, loop and genetic algorithms take between one and four minutes to propose a decent
solution. On the contrary, the Nearest-Neighbor strategy proposes a path immediately.

From these observations, the Nearest-Neighbor algorithm is undoubtedly the algorithm
providing paths with shortest lengths for various scenarios, in record time.

The efficiency of edges building methods

From this step, the Nearest-Neighbor strategy is selected as the most efficient solving algo-
rithm. The two building methods are tested on the two shapes for different wind directions.

Figure 14: Automatic edges building Figure 15: Delaunay triangulation building

For grid-shaped areas, the Delaunay method does not provide better results than the au-
tomated completion method. This is notably due to the solving algorithm that, for this geo-

16

metric configuration, directly disqualifies the longest edges.

For circle-shaped areas, however, the Delaunay strategy significantly improves the score of
the solution. Because if edges are all connected, the geometric configuration tricks the solving
algorithm at some points. So, the Delaunay method is insightful for such complex geometry,
and may even propose paths with fewer difficult U-turns.

II.4 Obstacle avoidance approaches in dangerous environments

Now that the most relevant edges building method and solving strategy have been selected,
the sailboat must now be prepared for more dangerous exploration allowing measurements
near coasts borders, and the presence of irregular obstacles.

Coastal shape

Figure 16: Graph before resolution Figure 17: Graph solved

Another more realistic coastal-shaped area is available in the Area Python class.
Now, when building edges, the border of the measurement area will be taken into account to
delete all edges passing across risky zones. If, because of the logic of algorithms, the path
effectively encounters a frontier, a detour will be planned like for other normal obstacles.

Obstacle avoidance strategy

Short detours are a solution to circumvent small obstacles without lengthening the path
too much. These deviations are calculated once the path is planned by the boat, so it allows
keeping a maximum number of edges without interfering directly with solving algorithms.

A safety distance is fixed to bypass the obstacles within a certain minimum perimeter, as
explained and justified in Optimization-Based Motion Planning With Obstacles And Priorities
paper of Greiff and Robertsson [5]. With this constraint, the shortest possible detour replaces
the problematical portion of the initial path.

17

Figure 18: Initial graph Figure 19: Avoidance Figure 20: Resolution

This strategy offers good results on simple graphs, as well as for graphs with hundreds
of points. However, if bigger obstacles show up in the next environments, maybe modifying
directly the graph and/or the solving algorithms could avoid useless long detours.

Voronoi diagram simple avoidance

The previous strategy is ideal in environments where measurements are necessary. In the
case of simply crossing dangerous areas, a common approach inspired by the Voronoi diagram
permits to quickly draw safe paths across multiple obstacles, by generating a graph of points.
After adding wind penalties on some edges of the obtained graph, the Dijkstra algorithm then
determines the quickest route between any pair of points.

Figure 21: Voronoi diagram-based avoidance strategy

II.5 Reinforcement Learning for a more intelligent planning

All paths calculated with previous algorithms do not necessarily offer the most optimal so-
lutions. Because, either time of calculation is limited, which bothers random-based strategies,
or the main approach mostly relies on a series of instant reward decisions (Nearest-Neighbor
strategy). Then, further approaches such as Machine Learning could provide more interesting
long-term strategies for the sailboat.

18

Which Machine Learning for the sailboat?

Main Machine Learning algorithms can be divided into three major groups, depending on
the task asked:

• Supervised Learning (task-driven) for classification into groups and prediction of future
values,
• Unsupervised Learning (data-driven) for indirect identification of clusters or patterns,
• Reinforcement Learning (learn from mistakes and reward) to understand how to act in

a given environment.

In path planning problems, evaluating a route with a score makes sense (length or obstacle
collisions), the optimal path is not always known, and finding general rules for performing a
good path, with directions alone at disposal, in an unknown environment, seems complicated
to be implemented. These reasons naturally lead to the use of Reinforcement Learning.

Neural networks turn out to require experience to be comprehended, and beyond this, no
model approximately meeting the conditions set by the sailboat has been found. For conve-
nience, methods using Q-Learning will be developed in this section.

Q-Learning philosophy

Reinforcement learning involves an agent s, a set of states S, and a set A of actions per
state. By performing an action a ∈ A, the agent transitions from state to state. Executing an
action in a specific state provides the agent with a reward (a numerical score). Q refers to the
function that returns the reward used to provide the reinforcement and can be said to stand
for the quality of an action taken in a given state.

Figure 22: Q-Learning principle

For a finite Markov decision process (a known number of possible positions), Q-learning
finds an optimal policy in the sense of maximizing the expected value of the total reward over
all successive steps, starting from the current state.

When Q-learning is performed, a Q-table is created. This matrix follows the shape of
[state, action] with arbitrarily-initialized values. Then, these Q-values are updated after each
episode and stored. This Q-table becomes a reference table for the agent, to select the best
action based on the Q-values. The process is implicitly configured with:

• ε the random explorer (either to avoid loops and encourage exploration or to encourage
exploitation of correct behaviors)
• e the horizon (number of total training)

19

Figure 23: Q-Learning implementation Figure 24: Example of a Q-Table

At each step t, the Q-Table is updated according to this Bellman’s equation:

where:

• α is the learning rate (how important are the new rewards compared to the previous
ones)
• γ is the discount factor (to balance immediate and future rewards)

The better these hyperparameters (ε, e, α, γ) are calibrated, the more efficient the algorithm.

Reinforcement learning applied to an autonomous sailboat

The main actors shown in the previous section are kept, but they need to be adapted to
enable a Q-Learning resolution. Their new modeling is inspired here by High-Level Path Plan-
ning for an Autonomous Sailboat Robot Using Q-Learning written by A. Junior, D. Henrique
dos Santos, A. Fernandes de Negreiros, J. Boas de Souza Silva and L. Gonçalves [6].

First, the Q-Learning agent corresponds exactly to the same sailboat model as depicted
before, used for static algorithms. However, only general dynamics will be considered: three
degrees of freedom in a 2D plane, with waves, currents, and gravitational forces neglected, and
a no-go zone present.

Figure 25: The sailboat agent Figure 26: Simplified dynamics

20

Also, the authors have chosen to represent the zone of measurements as a discretized envi-
ronment, instead of a graph. This directly allows a simple strategy for avoiding the obstacles
and borders (by discretizing them too). Each cell of the new environment is numbered to be
associated with a unique state.

Figure 27: Discretization of the environment

In this way, representing the map as a grid restrains the number of possible actions to 8
directions (horizontal, vertical, or diagonal moves). Some of these actions must be removed to
acknowledge the no-go zone due to wind.

Figure 28: The sailboat agent Figure 29: Set of actions

Finally, the authors have imagined a reward matrix based on the inverse distance between
the cells of the environment. All distances are calculated for each state from the ending point
(figure 30a), then inverted, and added with the maximum found distance to obtain a score
(figure 30b). In this way, the ending point has the highest reward of the grid. Cells with
obstacles have a score of -1000.

Figure 30: Distance matrix (a) and its associated gradient reward matrix (b)

Surprisingly, instead of simply being a combination of neutral, positive, and negative re-
wards, the reward matrix used in High-Level Path Planning for an Autonomous Sailboat Robot

21

Using Q-Learning relies on a various set of reward values, determined by a climb-gradient-like
method. This new rewarding method may bring real underlying advantages. Then, the mis-
sion becomes to set up some tests, to understand if this method is more relevant than classic
ones for two cities, or if it is more convenient for problems with even more cities.

Improving the reward matrix for two points

Classic reward matrices used in Q-Learning assign up to three different values: a neutral
value (-1) for standard cells, a consequent negative score for obstacle cells (-100), and a high
positive reward (+100) on the cell to reach.

Figure 31: Gradual reward matrix Figure 32: Classic reward matrix

With these configurations, the reward matrix presented in the article (figure 31) seems to
encourage an instant reward strategy (discount factor close to 0), whereas the classical one
(figure 32) is designed to find the shortest path by penalizing all normal cells and to encourage
long-term strategies thanks to its unique positive cell (discount factor close to 1).

Initializing all Q-Table values to zero allows obtaining a solution with the classic reward
matrix, whatever the discount factor. However, in order to use the gradient matrix reward, the
Q-Table must be set up differently: all the values in the row corresponding to the goal’s state
must be higher than a certain value (depending on the map, and distance from the starting
point). Otherwise, it is not sure that the agent arrives at the objective cell. This aspect may
be inconvenient to organize automatic path planning.

The following two results are run with Python and use the following hyperparameters: ε
= 0.3, episodes = 10000, α = 0.8, γ = 0.7. They are displayed with a graphic tool espe-
cially implemented, to spotlight the behaviors of the Q-Table and the general convergence of
accumulated errors.

Figure 33: Gradual reward resolution Figure 34: Classic reward resolution

22

The environment and the paths traveled are shown on left, with cells numbered accord-
ingly to their state. The Q-Table appears on the upper-right corner with states as rows and
actions as columns (disabled actions are identifiable by their constant color over time). The
accumulated error as a function of episodes is displayed on the lower-left corner.

Using the classic reward matrix (figure 34) tends to make the algorithm converge more
quickly. Both of them result in the same optimal solution for this map and configuration.
However, with different hyper-parameters, the gradient reward matrix (figure 33) does not
always propose a solution (because of infinite loops due to similar values in the Q-Table). By
analyzing the final appearance of the Q-Tables, it seems that values created by the gradient
rewarding are quite gradual and continuous, while those of the classic rewarding look more
heterogeneous. This may reflect a confidence in the path found among other possibilities.

Further comparison between the reward systems for two points

In the article, the authors have organized a series of different scenarios to test the robust-
ness of their model. These scenarios can be reused to compare further, step by step, the two
reward systems. The same hyperparameters, as described in the paper for each scenario, will
be used. The full comparison of the gradient reward system and the classic reward system are
presented in the appendices.

This further comparison finally leads to the same observations as the previous one (Q-Table
final appearance, convergence speed). For nearly identical results, the classic reward system
could replace the gradient one if convergence speed is a crucial criterion.

Test of the reward systems for three points and more

To return to the initial objective and solve the Traveling Sailboat Problem, the Q-Learning
strategy should expand to more measurement points. Taking into consideration more than
two points on the map forces to update the two previous reward systems. Ideally, the optimal
shortest path should go through every measurement point only once. By calculating the re-
wards accordingly to each interesting point’s position, this condition is not verified: the boat
can return to the same point, again and again, to maximize its score while ignoring the other
points to discover. One possible solution is to update the reward matrix after having visited a
point.

Algorithm 2 Reward Matrix updating
Input: R0, all_points_to_visit
Update for one episode

1: R = R0
2: points = all_points_to_visit
3: while all points have not been visited do
4: if a measurement point P is reached then
5: R = R(points− P)
6: points = points− P
7: end if
8: end while

23

The reward matrix, therefore, becomes dynamic. For initialization, this matrix R0 is built
to consider all points with the same usual score, so to not influence the agent in its path
planning. While the Q-Learning algorithm is running, it can be updated with the previous
algorithm. This updating method can be applied to both previous reward systems.

From observations, the classic reward system could converge less frequently because of the
appearance of random noise with time. This perturbation may come from updating the re-
ward matrix and can confuse the agent. Another source of error occurs with both algorithms
because it is impossible to force the order in which each city is discovered. One time, the path
will begin by point A and finish on point B, another time it will be the opposite. Considering
the wind besides, the algorithms generally tend to find a "blurred path" close to the solution
with some points of interest missing in the optimal found path.

Figure 35: Gradual reward resolution Figure 36: Classic reward resolution

As such, the gradient reward system imagined in the paper seems to be more reliable for
this issue. Cases with more points have been tested, but the results are less convincing and
take even more time for a single training (more than 5 minutes for 10 000 steps).

Hence limitations of Q-learning emerge when directly influencing the Q-table updating.
Although this method is robust for two points problems and offers the advantage of simply
avoiding obstacles and borders, it remains very sensible to applications outside its normal use.
Working with Deep Q-Learning, a more complex but versatile Machine Learning approach
seems unavoidable to deepen the modeling proposed in the studied article.

24

Conclusion

Although this internship was entirely carried out teleworking, it nonetheless allowed me
to study an interesting project in its whole. From hardware constraints to high-level fields
of study, the various themes often asked for the application of recently acquired theoretical
knowledge at ENSTA Bretagne, while making me discover new fields, which was particularly
gratifying.

The various tests conducted without the boat, for the adjustment and the integration of
the measurement sensors, could be deepened on the real sailboat by future students. That
being said, the sensors provided and data transmission through Bluetooth Low Energy have
proved to be robust means which meet the needs of water monitoring.

Also, working on an irresolvable optimization problem such as path planning, revealed to
be a significant but stimulating challenge. I was then allowed to study very recent papers, to
be confronted with specific current issues faced by modern robotics, and to propose partial so-
lutions to it. It would be really interesting if, future students who will resume the project could
address in more depth Machine Learning applied to the path planning for an autonomous sail-
boat.

I highly recommend this internship to those who would like to strengthen their hardware
knowledge, or who want to study an innovative subject such as autonomous sailboats.

25

Bibliography

[1] Agathe Archet. Github repository. https://github.com/AgatheArchet/
smart-water-quality-monitoring.

[2] DFRobot company. Kit knowflow basic for water monitoring. https://www.dfrobot.
com/product-1649.html.

[3] Jon Melin. Modeling, control and state-estimation for an autonomous sailboat. PhD thesis,
Uppsala Universitet, 2015.

[4] Fabrice Le Bars Luc Jaulin. Proceedings of the 5th international robotic sailing conference.
In Springer Eds, editor, A simple controller for line following of sailboats, Cardiff, England,
2012. Proceedings of the 5th International Robotic Sailing Conference.

[5] Marcus Greiff and Anders Robertsson. Optimization based motion planning with obstacles
and priorities. IFAC Proceedings Volumes (IFAC-PapersOnline), 50:11670–11676, 2017.

[6] Andouglas Gonçalves da Silva Silva Junior, Davi Henrique dos Santos, Alvaro Pinto Fer-
nandes de Negreiros, João Moreno Vilas Boas de Souza Silva, and Luiz Marcos Garcia
Gonçalves. High-level path planning for an autonomous sailboat robot using q-learning.
Sensors, 20(6):1550, March 2020.

26

Appendices

A Complete BLE Attribute Protocol (GAAT) table of
the Arduino Bluno

27

B Complete Arduino class diagram

28

C Kalman filter: theoretical and experimental results

29

D Modeling equations and parameters

Geometrical parameters linked to the shape of the sailboat

value unit parameter
p1 0.03 _ drift coefficient
p2 40 kgs tangential friction
p3 6000 kg.m angular friction
p4 200 kgs sail lift
p5 1500 kgs rudder lift
p6 0.5 m distance to sail CoE
p7 0.5 m distance to mast
p8 2 m distance to rudder
p9 300 kg mass of boat
p10 400 kg.m2 moment of inertia
p11 0.2 _ rudder break coefficient

Evolution equations

ẋ = v · cos(θ) + p1 · atw · cos(ψtw)
ẏ = v · sin(θ) + p1 · atw · sin(ψtw)
θ̇ = w

v̇ = gs·sin(δs)−gr·p11·sin(δr)−p2·v2
p9

ẇ = gs(p6−p7·cos(δs))−gr·p8·cos(δr)−p3·w·v
p10

(3)

E Effects of wind on path planning

(a) North wind - random strategy

(b) West wind - random strategy

30

(c) North wind - loop strategy

(d) West wind - loop strategy

(e) North wind - N N strategy (f) West wind - N N strategy

(g) North wind - genetic strategy

(h) West wind - genetic strategy

31

F Comparison of Q-Learning reward matrices

The same hyperparameters and environment, as described in the paper for each scenario,
are used. Results from the gradient reward system are on left, from classic reward system on
right.

Scenarios 1a/1b (area without obstacles with a fixed wind direction,
for different starting and ending points)

(i) 1a Gradient (j) 1a Classic

(k) 1b Gradient (l) 1b Classic

For scenarios 1a and 1b, the two reward systems converge towards the same solutions, the
classic reward system is quicker though.

Scenarios 2a/2b (area with obstacles with a fixed wind direction, for
different starting and ending points)

(m) 2a Gradient (n) 2a Classic

32

(o) 2b Gradient (p) 2b Classic

For scenarios 2a and 2b, with additional obstacles in their zone, the two reward systems
nearly converge towards the same solutions. As described in the paper, the convergence takes
more time to be reached than in scenarios with no obstacles.

Scenarios 3a/3b/3c (area without obstacles with different wind di-
rections, for same starting and ending points)

(q) 3a Gradient (r) 3a Classic

(s) 3b Gradient (t) 3b Classic

33

(u) 3c Gradient (v) 3c Classic

Concerning the last three scenarios, the two reward systems do not converge towards the
same solution, but the score of each final path is the same in each case. Maybe, here, the
classic reward system (on right) suggests paths with fewer zigzag lines, that could be more
easily performed by the boat. However this cannot be generalized as this system could have
found as well the same paths as the other one (because of their identical score).

This further comparison has finally led to the same observations as the previous one (Q-
Table final appearance, convergence speed). For nearly identical results, the classic reward
system could replace the gradient one if convergence speed is a crucial criterion.

34

G Assessment report

35

36

