
Second Year Internship Report

Deploying a desktop application online
Submitted by

Kévin AFFRAIX

ENSTA Bretagne Engineering School

2 Rue François Verny, 29200 BREST, FRANCE

Under the guidance of

Walid TAHA & Sundas MUNDIR

Department of Effective Modeling
Halmstad University

Kristian IV:s väg 3, 301 18 HALMSTAD, SWEDEN

Acknowledgment
I would like to thank Professor Walid TAHA for giving me the opportunity

to work on this project. I also would like to thank Sundas MOUNDIR and
Sotiris TZAMARAS for their support thorough this project.

i

Abstract
This report deals with the implementation of an online application for

modelling and simulation of cyber-physical systems. As another, more tech-
nical document has been produced for the future developers of this applica-
tion, this report will deliberately focus more on the strategies envisaged for
the development, as well as the tools and concepts used. It aims to give an
overall vision of the project and the reasons that led it to be what it is today.
Throughout the report, we will see how the web overlay of the project has
been structured, the main features that have been integrated on the web, as
well as the avenues for improvement that are to be explored for the future of
the project.

Résumé
Ce rapport traite de la mise en ligne d’une application de modélisation et

de simulation de systèmes cyber-physiques. Un autre document, plus tech-
nique, ayant été produit pour les futurs développeurs de cette application,
ce rapport sera volontairement plus axé sur les stratégies envisagées pour
le développement, ainsi que les outils et concepts utilisés. Il a pour but de
donner une vision globale du projet et des raisons qui l’ont mené à être ce
qu’il est aujourd’hui. Tout au long du rapport, nous verrons comment a été
structurée la sur-couche web du projet, les principales fonctionnalités qui ont
été intégrées sur le web, ainsi que les pistes d’amélioration qui sont envivagées
pour la suite du projet.

ii

Contents

1 Context 1
1.1 Laboratory presentation . 1
1.2 Acumen Project . 1
1.3 Objectives . 2

2 Problem definition 3
2.1 Main tasks of the internship 3
2.2 Constraints of the project . 3

3 Work Done 4
3.1 Structure the project . 4

3.1.1 Choose a hosting service 4
3.1.2 Strategies . 4
3.1.3 Final structure of Web Acumen 5

3.2 Modify Acumen source code 6
3.2.1 Find a new communication solution 6
3.2.2 Enable Headless Run 7

3.3 Implement Acumen features online 8
3.3.1 Code editor . 8
3.3.2 2D Plot . 8
3.3.3 3D Animation rendering 8

3.4 front-end Test . 9

4 Future Work 10
4.1 Optimize Acumen intern communication 10
4.2 Make Web Acumen a multi-user application 10

4.2.1 Make Acumen a multi-user tool 10
4.2.2 Enable Server to run one Acumen instance per web client 11

4.3 Implement online database . 12

5 Conclusion 13

References 14

iii

Chapter 1

Context

1.1 Laboratory presentation

During this internship, I worked in teleworking for one of the research
centers of the Halmstad University. Founded in 1983, this university is di-
vided into four schools: the School of Business, Engineering and Science,
the School of Health and Welfare, the School of Education, Humanities and
Social Sciences and the School of Information Technology. The Effective
Modeling Group, belonging to the School of Information Technology, was
the research team offering me the opportunity to take part in one of their
projects: Acumen.

The Effective Modeling Group directed by Professor Walid TAHA, spe-
cializes in Cyber-Physical Systems, which are, according to the group’s defi-
nition “ systems where embedded cyber components interact closely and in
complex ways with their physical environment ”. Concerning a vast major-
ity of future innovations, Cyber-Physical Systems needs more than ever new
tools allowing us to better understand, simulate and visualize their complex
behaviour.

1.2 Acumen Project

Quoting the definition in the reference manual:

“Acumen is an experimental modeling language and integrated
development environment (IDE) for model-based design of cyber-
physical system.” [1]

The desktop IDE (1.1) contains:

• A code editor with integrated text highlighting.

• A library of examples with an integrated browser to access it.

• A console printing messages generated by the computation core of Acu-
men.

• Three display windows actualized in real time. The Plot window will
display charts of all variables as a function of time. The Table window
will show a table containing the values of each variable at every single
step. Finally, the 3D window will show the 3D animation correspond-
ing to the model we created.

1

Figure 1.1: Acumen desktop IDE

Figure 1.2: Acumen Web Interface

Acumen always had three goals: to be rigorous, but also practical and
accessible, so that it would suit both researchers, teachers and students. The
desktop application, requiring the user to have programming experience for
the installation, did not perfectly complete those goals. Therefore, a project
to transform Acumen into a web application was born, the aim being to
improve greatly Acumen’s accessibility.

1.3 Objectives

This internship had two main objectives:

• First, I had to deploy Acumen on a web server. The aim here was to
explore the first attempt of the team to make a browser-based version
of Acumen, and to find a working structure integrating Acumen and
making it accessible on the web.

• Then, I was asked to work on a new Acumen semantic that would use
set-based analysis to provide a new way to integrate randomness in
Acumen language.

Unfortunately, the pandemic compelled us to work remotely, and the first
part has fallen behind. We chose to concentrate our efforts on the first task,
so that we could implement most of Acumen features online.

2

Chapter 2

Problem definition

2.1 Main tasks of the internship

Deploying Acumen online can be divided into tasks as follows:

• Acquire basic knowledge on the languages that will be used during
the internship: Scala (main language used for Acumen development),
HTML/CSS (web page rendering) and Javascript (script language for
web pages).

• Create or find a front-end / back-end template that can be deployed
on Heroku, the hosting service we chose.

• Build the communication between Acumen and the new front-end.

• Implement Acumen features on the front-end.

• Write a documentation for both users and future developers that will
work on the project.

• Create a test-bench for the additional code developed during the in-
ternship.

2.2 Constraints of the project

I identified three main constrains restraining the project during my in-
ternship:

• First, as Acumen is an open source application, all added libraries add
to be open source, or at least provide a sufficient free service. This
proved to be particularly restraining for the hosting service.

• The second main constraint of the project was that Acumen source code
had to be left untouched unless absolute necessity. All the additional
code had to be a software overlay handling the web IDE.

• Finally, the last main constraint of the internship was the choice of
Heroku as a hosting service. This must be nuanced as we were not
compelled to use this tool for the project, but as we discovered its
limits once the application was built especially to deploy it on Heroku,
we then just did not have the time to built a new project from scratch
again.

3

Chapter 3

Work Done

3.1 Structure the project

3.1.1 Choose a hosting service

We chose Heroku to host our application online. This choice was made
mainly because one team member already had experience with this tool. This
service provides:

• 512MB of RAM

• One free dyno (linux container): contrary to other services, Heroku free
dynos can always be activated (the hour limit was plently sufficient),
so we did not had to define offline hours. However, Heroku will put to
sleep all dynos inactive for more than 30 minutes, and therefore slow
down a bit the first access to the front-end to wake it up again.

• Facilitated deploy thought the use of Git.

• A custom domain with access to three ports (basic HTTP and HTTPS
ports and a third port to connect to our server).

3.1.2 Strategies

The first huge task to complete during this internship was to find or
create an application sample structure that could both be deployed easily on
server and integrate Acumen. In order to achieve this, we explored numerous
possible solutions:

• Deploy Acumen jar file: the first idea was to deploy directly the exe-
cutable jar file, which would have left Acumen source code unchanged.
However, Heroku server did not support Acumen jar file as it was not
running in headless mode. Moreover, each attempt to modify Acumen
source code to update it later would require to recompile and deploy
the whole file, which was not ideal. From this unsuccessful experience,
we learn that we would have to bypass Acumen graphic features, and
add it as a dependency to a bigger project. We then searched to divide
front-end services and back-end ones, and link Acumen source code as
a back-end dependency.

• The second idea we came up with was to build a front-end applica-
tion and a back-end server application separately, and then make them
communicate through Heroku. The reason was that Acumen required

4

an old version of SBT (which is the build tool used to compile scala
code) which was fine with the back-end requirements but would restrain
what we could do on the front-end side. We then tried to use the PM2
Module to handle both applications. However, because we had to use
Heroku free service, we were limited to one dyno (linux container) to
make the whole application work. Therefore, we had to create a struc-
ture that would integrate in the same application both the front-end
and the back-end.

• We then discovered that SBT allowed us to build sub-projects sepa-
rately and then merge them within a bigger one. Therefore, we tried
to create our own back-end and front-end projects, and merge them
together before deploying the application. Unfortunately, our lack of
knowledge on Scala and ScalaJS greatly hindered our progress. We
concluded that we either had to spend more time to familiarize our-
selves with the language, or to find another solution. As we began to
be short on time, we chose to search for sample applications that would
adopt a similar structure, so as to have little work to do to adapt it to
our problem.

3.1.3 Final structure of Web Acumen

The overall structure of the application was built relying on a tutorial
made by Antoine Doeraene [2] . First, this structure allows us to deploy easily
our work on Heroku, which was the main goal of the tutorial’s author. Next,
it contains both the front-end and back-end of the application in the same
global SBT project, but clearly separate both the code and the dependencies
of each one. This allows us to better adapt each dependencies’ version to
make it compatible with Acumen ones, which can sometime be old. As for
Acumen code source, it can be find on the official GitHub repository of the
project [3]. Finally, the work I completed during the internship can be found
on my personal GitHub account [4].

The tool used by the back-end of the tutorial is Play Framework. Not
many changes were made on this part of the application, but improvements
must be made here to find a better way to retrieve Acumen messages effi-
ciently

Three main parts form the front-end:

• First, a block using ScalaJS and the Laminar library. This part imple-
ments the overall display of the webpage. The display was written with
Scalatags. The part building http requests’ structure is no longer used

5

https://pm2.keymetrics.io/
https://pm2.keymetrics.io/
https://www.playframework.com/
https://www.scala-js.org/
https://github.com/raquo/Laminar
https://www.lihaoyi.com/scalatags/

but was left in case future developers prefer Scala language instead of
Javascript.

• Next, a block handling the style of all elements, using CSS language.
Some of this part has also been implemented in Scalatags, but because
the library is far from being as rich and documented as CSS, it is
advised to stick to CSS for that kind of work.

• Finally, most of the features implemented in the front-end rely on
Javascript. The main reason for using this language is its popularity on
the web developers’ community. Numerous libraries can be found, and
the support cannot compare to ScalaJS one, which is, in the end, only
a facade transforming Scala code into Javascript. This part mainly im-
plements what type of actions to launch when the user interacts with
the website.

3.2 Modify Acumen source code

3.2.1 Find a new communication solution

The hosting service we chose to work with is Heroku. It provides free
hosting and domain, if the application can work on a single dyno (Linux
container). However, that means we must give up on the Web Socket solution
that was implemented previously.

Now, we can identify two different types of communication in Web Acu-
men:

• First, the retrieval of Acumen messages (3.1). This kind of communi-
cation is for the time being necessary to handle all messages generated
by Acumen when an action is required by the user. Those messages
are first and foremost stored in a buffer. On the front-end side, the
client periodically sends a request to the back-end to see if the buffer
contains some message. In this case, the back-end will access the buffer
variable and send back the oldest message sent by Acumen. Empiric
test showed that Heroku server begins to show errors when the rate of
these request exceeds 3 times a second, while, locally, it can go up to
15 times a second. The length of request data that can be send being
limited, in case of very long messages, we split them into chunks of
data, and then send them in chronological order for the front-end to
receive them in the right order.

6

https://www.heroku.com/

• Secondly, the processing of the user’s actions (3.2). Each time the user
asks for an action requiring Acumen to intervene, this communication
will be fired. An XMLHttpRequest is generated, sending a JSON ob-
ject specifying the action Acumen must launch. The request then ends
and notifies the user in the console that Acumen has received the in-
formation. The result of this action, however, will generate a message
that will be processed as said above.

Figure 3.1: Illustration of Acumen-front-end communication

Figure 3.2: Illustration of front-end-back-end communication

3.2.2 Enable Headless Run

The desktop IDE provided with Acumen uses the Swing library to handle
the Graphical User Interface (GUI). It would run once the main class of
acumen was called, and load all graphic elements. However, this was now a
hindrance for two reasons:

• First, now that we handled the GUI through the front-end web inter-
face, it was now completely useless.

• Next, Heroku server required the application to run in java headless
mode, that is to say without calls to display elements.

7

To minimize both the time we spent on this issue and the amount of code
we had to modify, we chose to simply bypass only the displaying of elements,
so as to keep the instances of each element, most of which being tightly linked
to Acumen behaviour.

3.3 Implement Acumen features online

3.3.1 Code editor

The code editor we chose for Web Acumen is Ace Editor. To implement
text highlighting with Ace, we must configure two types of files.

• Ace mode: it allows you to the syntax highlighting you want for the
code written in the editor. Briefly, you choose here “what” you want to
highlight. To achieve that, ace will ask you to provide both the words
(language keywords, built-in functions, ...) and symbols you want to
highlight. More complex expressions can also be detected using regex
syntax.

• Ace theme: it enables us to choose “how” highlighted text is going to
stand out (Ace themes are basically defining CSS style for elements it
automatically generates).

3.3.2 2D Plot

To implement 2D plotting on Web Acumen, we use the Plotly library.
When the user wants to compute his code, Acumen will send data in real
time providing the active window is the Plot window (3.3).

3.3.3 3D Animation rendering

We tackled 3D animation rendering with the BabylonJS Library. Cur-
rently, Web Acumen does not support real time rendering. When the user
has computed the whole simulation one time, he can then replay the an-
imation, and Acumen will send all frames data at the same time once he
activates the 3D window (3.4). It works as follows:

• First, we declare a Scene object that will contain all animations.We
create a light mimicking the sunlight, setting its position and orienta-
tion. We also create a fixed camera and enable the user to modify both
its position and the target position it will be looking at.

8

https://ace.c9.io/
https://plotly.com/javascript/
https://www.babylonjs.com/

• Then we look, frame by frame, Acumen messages and create or trans-
form the objects it concerns. There are two ways to create an object:
simple shapes (cubes, spheres, axes, ...) can be created with BabylonJS
built-in functions, but more complex shapes described by .obj and .mtl
files can also be imported.

Figure 3.3: Plot window Figure 3.4: 3D window

3.4 front-end Test

Regarding tests, we chose to use the Cypress Library. The reason for this
choice is that numerous test are already checking if Acumen core is working
properly, so we only have to check if correct data is send to the front-end
and displayed correctly. It allows us to check the application from the user
perspective. A typical test would:

• Access the website

• Open a file (from the browser or through the drag and drop feature)

• Select a Semantic

• Run the simulation

• Open Plot and Table windows to see if data is correctly displayed

• Run 3D simulation

• Check if the 3D animation is correctly displayed on the 3D window

9

https://www.cypress.io/

Chapter 4

Future Work

4.1 Optimize Acumen intern communication

Using a buffer to store information cannot be a long-lasting solution.
We have to send requests be it empty or not and maintain a high rate to
load huge data arrival quickly enough. What is needed here is to implement
some kind of socket connection, whose server would be on the Play Frame-
work back-end and taking Acumen and the web user as two of its clients
exchanging information. The main issue here is that this connection cannot
have a dedicated port, because Heroku only provides a unique port for the
application back-end.

4.2 Make Web Acumen a multi-user applica-

tion

Currently, Web Acumen can handle only one client at a time. Main
reasons for this are:

• Currently the Server can have only one instance of Acumen at a time.

• Acumen is meant for one user at a time, so one instance of Acumen
can only work for one web client.

• The communication between Acumen and the front-end works thanks
to a buffer. Currently I check the buffer three times a second. More
clients would mean an explosion of http requests to check the buffer,
the Server would not keep up with that.

To tackle this issue, two paths should be explored: transforming Acumen
so that it can handle many clients at a time, or making the server run one
instance of Acumen per user connected.

4.2.1 Make Acumen a multi-user tool

Because Acumen was built as a desktop application, most of its features
only support one user at a time. Be it the computation, the console or the
code editor, Acumen should be able to run many of those and discriminate
between each client. This can seem to require too much computation power,
but actually many of Acumen actions are no longer required in the web
application. The swing library that was implemented to show the GUI of
the application can be removed, the jPCT library implemented to load 3D

10

animations should be suppressed . . . Acumen should, for a web version, only
be a “computation core” sending messages to the front-end. File gestion, 3D
rendering, GUI are now handled by the front-end and should not appear on
Acumen anymore.

Figure 4.1: Possible structure when Acumen becomes a multi-user tool

4.2.2 Enable Server to run one Acumen instance per
web client

Figure 4.2: Structure implementing multiple Acumen instances

However, the first solution, even if it is the more optimal, long-lasting
solution, requires colossal work. A more time-saving solution could be to

11

ask the back-end server to run one instance of Acumen for each web client
attempting connection. The main limitation would be of course that it would
generate a huge workload on the server, and Heroku free service would not
be the ideal solution then. To make this solution viable, in any case Acumen
should be made more lightweight and the “buffer communication” should be
replaced by an optimal communication.

4.3 Implement online database

On Acumen desktop application, the user could save and open his own
files from the local machine he was working on. However, a web page does
not have the same rights as a desktop application. For security reasons, a
web page cannot easily access nor make modifications on a local machine.
That is precisely why integrating a database would be interesting. In fact, a
database with a login process would enable the user to save his own files on
the cloud and retrieve it from any machine, mimicking what he would do on
the desktop application.

12

Chapter 5

Conclusion
In spite of many unforeseen events, most core features of Acumen has suc-

cessfully been deployed on Heroku and is available on the web. The structure
we chose allowed us to handle the web interface with minimal changes to Acu-
men source code, facilitating future updates. This project is far from being
completed, but clear guidelines have been defined to Improve Web Acumen.

Personally, I wanted to challenge myself on this project, being very curi-
ous about web development but knowing that it deviated from my studies.
The fact that a working product, although imperfect, emerged from this in-
ternship was very rewarding for me. The pandemic that I initially saw as a
greatly unfortunate event has given me the opportunity to gain insights on
what type of organisation and tools would be useful in this case. As more
and more IT projects gather contributors all around the world, I think this
project will be an important experience in my future career.

13

References
[1] Walid M. Taha, Abd-Elhamid M. Taha, Johan Thunberg, Cyber-

Physical Systems: A Model-Based Approach

[2] Deploying a full stack Scala application on Heroku, Antoine Do-
eraene, [Online] https://medium.com/@antoine.doeraene/deploying-a-
full-stack-scala-application-on-heroku-6d8093a913b3

[3] Acumen GitHub repository [Online] https://github.com/maroneal/acumen

[4] Web Acumen GitHub repository. [Online]
https://github.com/affraike/full scale scala app

14

List of Figures

1.1 Acumen desktop IDE . 2
1.2 Acumen Web Interface . 2

3.1 Illustration of Acumen-front-end communication 7
3.2 Illustration of front-end-back-end communication 7
3.3 Plot window . 9
3.4 3D window . 9

4.1 Possible structure when Acumen becomes a multi-user tool . . 11
4.2 Structure implementing multiple Acumen instances 11

15

	Context
	Laboratory presentation
	Acumen Project
	Objectives

	Problem definition
	Main tasks of the internship
	Constraints of the project

	Work Done
	Structure the project
	Choose a hosting service
	Strategies
	Final structure of Web Acumen

	Modify Acumen source code
	Find a new communication solution
	Enable Headless Run

	Implement Acumen features online
	Code editor
	2D Plot
	3D Animation rendering

	front-end Test

	Future Work
	Optimize Acumen intern communication
	Make Web Acumen a multi-user application
	Make Acumen a multi-user tool
	Enable Server to run one Acumen instance per web client

	Implement online database

	Conclusion
	References

