
Internship
Plymouth

CI 2020

September 30, 2019

ENSTA Bretagne
2, rue François Verny
29806 Brest cedex
France
Tel +33 (0)2 98 34 88 00
www.ensta-bretagne.fr

Autonomous Sailboat

Alexandre Courjaud
Alexandre.Courjaud@ensta-bretagne.org

www.ensta-bretagne.fr

Abstract

This report explains the work I did during my 2nd year internship at Plymouth University.
The subject of the course is the design of an autonomous sailing robot. This system was
tested during the WRSC and can be used for research. During this training I worked on the
low level of programming, the controllers of the sailing boat as well as on the simulation.
I will introduce the general system before approaching these 3 parts in this report, and
finally reflect on the participation in WRSC 2019 in China. I did this internship with
Corentin Jegat, Matthieu Bouveron and Alexandre Argento.

Résumé

Ce rapport explique le travail que j’ai réalisé lors de mon stage de 2eme année à l’université
de Plymouth. Le sujet du stage est la conception d’un système autonome pour voilier. Ce
système a été testé lors de la WRSC et pourra servir pour la recherche. Lors de ce stage
j’ai travaillé sur le bas niveau de programmation, les contrôleurs du voilier ainsi que sur la
simulation. Je présente le système général avant d’aborder ces 3 parties dans ce rapport,
pour finir sur la participation à la WRSC 2019 en Chine. J’ai réalisé ce stage avec Corentin
Jegat, Matthieu Bouveron et Alexandre Argento.

Acknowledgements

I would like to begin by thanking Jian Wan, a researcher at the University of Plymouth,
for welcoming me, for accompanying me and for making this internship possible. I would
also like to thank Ulysse Vautier, a PhD student at the University of Plymouth, for help-
ing me throughout this internship. I would then like to thank Luc Jaulin, researcher at
ENSTA Bretagne, for getting me in touch with Jian Wan and allowing me to carry out
this internship. Finally I want to thank Corentin Jegat, Matthieu Bouveron, Alexandre
Argento with whom I realized this 3-month internship.

1

Contents

Abstract and Acknowledgements 1

Table of contents 3

Introduction 4

1 System engineering 5
1.1 Objectives . 5
1.2 Starting point . 5
1.3 Constraints . 6
1.4 Hardware architecture . 6
1.5 Software architectural design . 7

2 Low-level programming 8
2.1 Arduino . 8
2.2 Sensors and actuator . 9

2.2.1 Inertial measurement unit . 9
2.2.2 Module GPS grove . 10
2.2.3 Wind sensor . 11
2.2.4 RCmodule . 12
2.2.5 Actuators . 12

2.3 Main program . 13

3 Simulation 14
3.1 The model . 14
3.2 Display . 15
3.3 Use . 15

4 Sailboat control 16
4.1 Cap and line following . 16
4.2 Waypoint Following . 16

4.2.1 Functioning . 16
4.2.2 Interest of this solution . 18

4.3 Station keeping . 18

2

4.4 Others idea . 20

5 Competition 21
5.1 Strategy . 21

5.1.1 Fleet race . 21
5.1.2 Station keeping . 22
5.1.3 Area scanning . 22
5.1.4 Hide and seek . 22

5.2 Feedback . 23

Conclusion 24

Bibliographie 25

A Appendix 26

page 3

Introduction

In order to validate my 2nd year at the ENSTA Bretagne I realized an internship at the
University of Plymouth. The internship was on autonomous sailing boats. More precisely,
the main objective of this training course was to design a system for an autonomous
sailing boat of one meter. I chose this course because it allowed me to put into practice
all the knowledge I had learned during the year in robotics. In addition, I did not have
the opportunity to work in marine robotics during the year’s projects. This internship was
therefore the opportunity to discover and work in this field. This internship was supervised
by Jian Wan and Ulysse Vautier.All the codes I have created are in my github repository
[2].

4

1
System engineering

1.1 Objectives

To begin, this 3-month course was divided into several objectives. The main objective,
the one for which I was recruited, was to design a robust and reliable system to make an
autonomous sailing boat with ROS. The second objective was to participate in the World
Robotics Sailboat Cup. Finally the 3rd objective was to show that the system designed
could be used to do fleet control for example.

1.2 Starting point

In order to start our work, Jian Wan gave us the following equipment:

• Arduino Uno Board

• Module Grove Base Shield

• 2 Actuators

• Adafruit 16-Channel 12-bit PWM/Servo Shield

• Module IMU 9 DOF Grove

• Wind sensors with a vane and a anemometer

• Anker Battery 20100 mAh

• Raspberry PI 3b+

• Module GPS Grove

• 1 Ragazza Proboat

In addition, we had access to Ulysse Vautier’s codes on the same subject [5]. However
the system set up was different and did not use the same sensors. These codes were also
useful to start.

5

1.3 Constraints Internship Plymouth

Figure 1.1: Ragazza proboat

1.3 Constraints

To achieve the sailing boat’s autonomous system, the following constraints must be met:

• Use ROS. The use of ROS has been chosen to provide a robust system with stan-
dardized messages.

• Do not drill holes in the boat. To ensure the waterproofness of the boat we had to
make no hole in it.

• Make a system easily adaptable on another boat. The system had to be simple and
standard enough to be bought and equipped on a new boat quickly.

1.4 Hardware architecture

We started this system from scratch. After several tests the final hardware architecture of
the system that we realized is drawn in the figure 1.2.

Figure 1.2: Hardware architecture

The choice of sensors and their operation are explained in the next chapter. This
diagram shows all the components included in the system: a Raspberry PI board, an

page 6 Autonomous Sailboat

Report Chapter 1. System engineering

Arduino board, a wind sensor, an imu, 2 servomotors with a shield, a GPS, a remote
control and finally an Xbee for outward communications.

1.5 Software architectural design

And here’s how we set up our program to make it all work.

Figure 1.3: Software architecture

We chose to concentrate the low level (using sensors and motors) on the Arduino board.
The Raspberry board contains the filters as well as the controllers. We chose not to filter
the data directly on the arduino board to lighten the program and get the best possible
frequency on the sensors. The 2 cards are connected by a serial connection via usb. You
can find explanations about the filters and other controllers in the report of Corentin Jegat.
Communication between systems can be found in Matthieu Bouveron’s report. The system
has been coded on ROS.

AC page 7

2
Low-level programming

In this part I will discuss in detail the work I did on Arduino during this course, as well
as my choices in board and sensor.

2.1 Arduino

First, the use of an Arduino board to manage the sensors was required. To facilitate the
connections I had at my disposal a Grove shield, and an Adafruit motor shield to control
the sail and the rudder.

Figure 2.1: Arduino Uno

Figure 2.2: Module grove base shield

Figure 2.3: Adafruit Servo Shield

However the use of ROS on Arduino requires a lot of dynamic memory. The creation
of the node represents 61% of the dynamic memory of an Arduino UNO. This limits the
use of topics and other libraries. So I chose to use an Arduino MEGA that offers 4 times
more memory.

8

Report Chapter 2. Low-level programming

Figure 2.4: Arduino Mega

2.2 Sensors and actuator

2.2.1 Inertial measurement unit

This sensor mainly served us to measure the course of our boat, indispensable for a good
regulation. That makes this sensor the most important part of the system. This explain
why Jian offered us a second sensor during our tests: the cmps12.

Figure 2.5: Imu 9Dof Figure 2.6: Imu cmps12

Unlike the 9Dof module, it can run in series, can be self-calibrated and can read Euler
angles directly. However thanks to the filter made by Corentin Jegat, explained in his
report, we had more reliable and stable results with the 9Dof module so we chose it.

Data acquisition

The 9Dof module works with i2c so requires the use of the wire library.h to be simple.
The data acquisition allows obtaining the 3 components of the acceleration in m/s2, the
3 components of the angular velocity in degrees/s and finally the 3 components of the µT
magnetometer.

Data communication

As previously presented, the system does not process data on the Arduino board in order
to optimize the reading frequency. So I chose to use the ROS sensor_msgs Imu message
to communicate the 9 raw elements on a single topic, with the acquisition time.

Sensor test

Sensor testing without calibration or filter is not accurate. However it is possible to check
roughly that the accelerations and the magnetometer work. For this it is enough to put the
sensor on a table, if the table is straight then the acceleration on the axis z is equal to the

AC page 9

2.2 Sensors and actuator Internship Plymouth

acceleration of gravity. You can check x and y the same way. To check the magnetometer
it is necessary to try to set 2 elements to 0, after calibration of the sensor the 3rd element
is the North for the sensor.

2.2.2 Module GPS grove

The grove GPS module runs in series with the Arduino board. The module communicates
multiple NMEA frames at a frequency of 1Hz. However, the time it took to acquire the
frames on the Arduino board considerably slowed down the acquisition frequency of the
other sensors. That’s why we decided to change the GPS to a USB GPS directly connected
to the Raspberry PI. We chose the Globalsat BU-353-S4.

Figure 2.7: GPS grove Figure 2.8: BU-535-S4

This choice allowed us to acquire and process the data directly on the Raspberry.

Data acquisition

In the same way as the grove module, this module communicates frames in series. Then
you have to sort the frames so that you only select the one you needed. So I chose the
GPGGA and GPRMC frames to keep the time, the latitude, the longitude, the number
of satellites used, the horizontal precision, the speed on the bottom and the heading in
degrees. It is then necessary to ensure that the frames are valid, for this reason each frame
has a parity check sum, so by performing an XOR on the characters of the frame then it
is possible to ensure that the frame is valid. After several tests I noticed that the sensor
data was stable so I did not make a filter to process them.

Data communication

To communicate the data I chose the ROS GPSfix message from GPS_common. This
message is used because it takes into account all the data that can be recovered from
the frames I have used, and even more if there is a need to improve the acquisition code.
Latitude and longitude are converted and reported to decimal for ease of use by controllers.
Moreover I chose to communicate in a message string the complete GPS frame so that it
is easier communicable with the Xbee programmed by Mathieu Bouveron.

Sensor test

The test of this sensor is simple. Just read the frames and check them via google map for
example.

page 10 Autonomous Sailboat

Report Chapter 2. Low-level programming

2.2.3 Wind sensor

The wind sensor is divided into two sensors: an anemometer and a weather vane. I used
the Standard Weathervane Anemometer – 7911 – Davis Instruments sensor.

Figure 2.9: Wind sensor

Data acquisition

The weathervane part works in analog and returns a value on 10 bits that can be converted
to obtain an angle. I chose to place this angle between –π and π. The raw data corresponds
to the apparent wind in the ship’s coordinate system; the zero indicates a back wind. The
anemometer part works with 1 bit, the sensor sends one pulse per turn. By detecting this
pulse and measuring the time between 2 pulses it is possible to deduce the sensor speed
and then the apparent wind speed. In the same way as for imu, the measured data need
to be filtered. These filters were made by Corentin Jegat and are explained in his report.

Data communication

The filters are not made on the Arduino board, so the raw values must first be communi-
cated. I chose to communicate the wind speed at each sensor pulse while the weathervane
values are communicated at the program frequency. So the two sensors do not have the
same frequency. So I used 2 different ROS messages of double type for these values. After
filtering there is only one topic with the real wind in the map coordinate system.

Sensor test

To test the weathervane, the raw values of the analog port must be displayed and the value
range returned by the sensor checked. After working with 3 weathervanes from the same
manufacturer I noticed that all the sensors did not use the 1024 values, it is possible that
the max value of a sensor is less than 1023. In this case the conversion function must be
adapted. To test the anemometer it is sufficient to rotate it and verify that one pulse per
turn is obtained.

AC page 11

2.2 Sensors and actuator Internship Plymouth

2.2.4 RCmodule

To ensure the safety of the system, I used the RC module with the original remote control
to control the boat if the autonomous mode ceases to function.

Data acquisition

I used 2 chanel of the RC module, one for the sail and one for the rudder. When the remote
is turned on, each chanel sends pulses out. By measuring the pulse time we obtain the
value communicated by the remote control. If no pulse is detected for two seconds then I
considered in my program that the remote was off.

Data communication

The remote control acts directly on the motors also in the Arduino board so there is no
need to communicate the data. However I still used a message ROS Vector3 to indicate
the status of the remote control and make easier the analysis of the data during the tests
of the boat.

Sensor test

To ensure the operation of the remote control and the RC module it is sufficient to read the
pins of the Arduino board, using the pulseIn() function for example, checking the reception
of values when the remote is on and the absence of a signal when it is off.

2.2.5 Actuators

The boat has only 2 actuators, one servomotor for the rudder and one for the sail.

Control

To control the engines I used an adafruit shield (figure 2.3). This shield connects in i2c
to the Arduino board and allows having a separate power supply more powerful. For
communication with the shield, adafruit provides a ready-to-use library.

Command acquisition

There are 2 ways to acquire orders for actuators. The first is the use of the remote control,
directly connected to the Arduino so there is no special message. To receive the controller
commands from the Raspberry PI I used 2 ROS messages of double type, one for each
servomotor. For the sail the program expects a command between 0 and π/2 corresponding
to the sheet length. For the rudder the program expects a command between –π/2 and
π/2 corresponding to its angle. I have added safeguards to the playback of messages that
make it impossible to request an impossible motion from the actuators.

Test

To test the actuators it is necessary to send several commands, starting with 0 and incre-
menting. This also allows finding the limit values of the servomotor.

page 12 Autonomous Sailboat

Report Chapter 2. Low-level programming

2.3 Main program

To integrate each component into the main program I realized a setup, update and publish
function for each sensor, and the setup and update functions for the actuators. The setup
function of my Arduino program initializes all the components, and then the loop recovers
the commands from the controller, sends them to the motors, updates the sensors and
finally publishes the measurements. In addition, the variable initializations necessary for
the operation of each component are performed in configuration files, included at the
beginning of the main program. Thus, to add a sensor it is necessary to perform these
3 functions, the configuration file and add the function calls in the setup and loop. To
change the sensor configuration, the initializations in the associated configuration file must
be changed. After optimization, the program is able to perform a loop at a frequency of
20Hz.

AC page 13

3
Simulation

An autonomous sailing ship system is much more complicated to test than a terrestrial
robot. That’s why I did a simulation with ROS to make sure the codes didn’t have any
major problem.

3.1 The model

To carry out the simulation I used the following model:

ẋ = v cos θ + p1a cosψ

ẏ = v sin θ + p1a sinψ

θ̇ = ω

v̇ = fs sin δs−fr sinu1−p2v2
p9

ω̇ = fs(p6−p7 cos δs)−p8fr cosu1−p3ωv
p10

fs = p4||Wap|| sin δs − ψap
fr = p5v sinu1

σ = cosψap + cosu2

δs =

 π + ψap if σ ≤ 0

−sign(sinψap) ·u2 otherwise

Wap =

 a cos (ψ − θ)− v
a sinψ − θ

ψap = angle Wap

Where (x, y, θ) corresponds to the posture of the boat, v is its forward speed, ω is its
angular speed, fs (s for sail) is the force of the wind on the sail, fr (r for rudder) is the
force of the water on the rudder, δs is the angle of the sail, a is the true wind speed, ψ is
the true wind angle and Wap is the apparent wind vector. The quantity σ is an indicator
of the sheet tension. In these equations, the pi are design parameters of the sailboat [4].

However, not having all the parameters of our boat we used those of another boat
provided by Ulysse Vautier. Even if the behaviour of our boat was not perfectly reproduced,

14

Report Chapter 3. Simulation

this model allowed us to check the proper functioning of our regulators.

3.2 Display

In order to visualize the results of the simulation I also programmed a display with Ros
and Rviz. The operation of the display is quite simple: the node retrieves all the data
useful to the position of the boat (GPS, Euler angles, wind, control of the rudder and sail,
the objective) then displays them.

Figure 3.1: Screen Rviz

Figure 3.2: Screen Rviz

The 3D models of the hull, sail and rudder are available on my github [2]. This code
also allows you to replay a mission. Indeed if the data of a test were recorded in a rosbag
then it is possible to replay it with this node in addition, we can then visualize and analyze
the behaviour of the boat during this test.

3.3 Use

Simulation is replacing the data that we would give the sensors. To use it you must launch
the simulation node instead of the GPS code and arduino code and filters. In addition,
controllers should be told to subscribe to simulated topics and not to real value topics. If
the user wants to view his test then he can also launch the visualization node in parallel.
By using the groups of a roslaunch, it is also possible to view several boats at the same
time on Rviz.

AC page 15

4
Sailboat control

After the low level, I worked on the sailboat controllers.

4.1 Cap and line following

The first controller I implemented on the robot is a heading following one. This controller
allows to check that the system is working properly. It may be useful to use it before
launching to ensure the condition of the sailboat. I then implemented a line-tracking
controller that runs the following fonction [4]:

1 def control(x,q):
2 zeta = pi/4
3 theta = x[2,0]
4 m = array ([[x[0,0]],[x[1 ,0]]])
5 e = det(hstack ((b-a,m-a)))/ norm(b-a)
6 phi = arctan2(b[1,0]-a[1,0],b[0,0]-a[0,0])
7 if (abs(e)>r):
8 q = sign(e)
9 thetabar = phi - arctan(e/r)

10 if (cos(psi -thetabar)+cos(zeta)) < 0:
11 thetabar = pi +psi -zeta*q
12

13 deltar = (2/pi)* arctan(tan (0.5*(theta -thetabar)))
14 deltamax = pi/4*(cos(psi -thetabar)+1)
15 u = array ([[deltar],[deltamax]])
16 return u,q

This controller takes in the robot state (position, heading, wind) as well as 2 points
(a,b). It then returns a rudder control and a sail control. It is a basic controller but very
interesting for our needs if we add a control on the line that the boat must follow.

4.2 Waypoint Following

In order to carry out the tests of the WRSC the line controller can be more than enough.
Indeed the 4 events do not require more than reaching points in a precise order.

4.2.1 Functioning

So I decided to code a way to control the line performed by line tracking.

16

Report Chapter 4. Sailboat control

Figure 4.1: Controller

The 2 controllers receive the data from the sensors, then the 1st controller communicates
the line to follow to the second. To use this controller, the user must create a mission file
in this form.

1 ref:
2 29.867139 ,121.538975
3 ###########################
4 29.867139 ,121.538975 ,0
5 29.867054 ,121.538999 ,0
6 29.867208 ,121.598678 ,0
7 29.867295 ,121 ,538401 ,0

This is the file we used for the race on the first day of the competition.
The line control works in cartesian system, so the reference position is useful for the

conversion of longitude and latitudes into cartesian system locally. For our tests we have
taken the habit of fixing the reference position in the place where we put the boat in the
water, so the display is easier to look at. But it can be anywhere as long as it’s near the
test area. Then the user enters the positions of the waypoints that he wishes to join in the
order "latitude, longitude, time". The 3rd value, time, is used for the Station Keeping,
which I would discuss in the next part.

The line controller will then retrieve these values and function as follows:

• Initially it creates a line between the starting point of the boat and the 1st waypoint.

• When it has reached its objective it creates a line between this point and the 2nd,
and so on up to the last point.

• When the last point is reached it creates a line between the position of the boat and
the last point. So the user easily notices when the boat completed the mission. One
possible improvement would be to return the boat to the user; it depends on the
needs of the user and is already possible if the user adds this waypoint in the mission
file.

AC page 17

4.3 Station keeping Internship Plymouth

4.2.2 Interest of this solution

As I said earlier, this is an easy-to-use solution. The objective of my internship was to
achieve a robust low-level complete system. So I spent less time on the controller, this
solution can be implemented without having a lot of test: if the line following works then
the mission works. In addition, this solution is very effective for the events that the WRSC
offers. In fact, most of the trials require a line on a lake. The weak point of this technique
is the realization of complicated trajectories, like circles for example, since it requires
breaking it down into several lines, it is therefore less optimized.

4.3 Station keeping

The most complicated technical test for the sailing boat is the station keeping. This is the
reason why I added in my mission file a 3rd column corresponding to the time in second
that the boat must stay close to this point before moving on to the next one. If this time
is different from 0 then the program perform a Keeping station around this point. I tested
5 different solutions with the constraint of making lines between 2 points in order to stay
as close to the point as possible.

Solution 1

The first solution is to make a line between the positions of the boat whatever its course
and the objective. This solution works well at the beginning of the manoeuvre. However
after some change of tack the boat tends to converge in a position facing the wind without
speed, which makes it uncontrollable, and drifty.

Solution 2

Figure 4.2: Station keeping 1

In the second solution, I make a line perpendicular to the wind. This solution allows
for good results: for example, it is the one we retained for the competition and helped us
achieving ninth over 23 teams. This solution may have been effective for our boat because
we had good manoeuvrability and needed little speed to make a successful tack. Thus we
were able to reduce the size of the line around 3.5 m without having any problem.

page 18 Autonomous Sailboat

Report Chapter 4. Sailboat control

Solution 3

Figure 4.3: Station keeping 2

The 3rd solution consists in making a triangle around the point. I thought the distance
between the boat and the point would be more consistent. This method has the advantage
of not passing on point, and therefore can be used to turn around a real buoy. In the case
of a virtual buoy the method is not interesting because it is the average of the distance
that is retained by the referees, so crossing by as close as possible to the virtual buoy is
more advantageous.

Solution 4

Figure 4.4: Station keeping 3

The fourth solution is close to the previous one. However, in the case of significant
wind I wanted to find a way to break the speed of the boat to stay close to the point.
That’s why I removed the side perpendicular to the wind of the triangle, so I force the
boat to turn almost in front of the wind and considerably reduces its speed. This also
reduces the difference that could exist in the passage of line at the point 1 (figure 4.3) in
the case of strong wind. Having very little wind on the day of the competition, we did not
use this solution.

AC page 19

4.4 Others idea Internship Plymouth

Solution 5

Figure 4.5: Station keeping 4

I thought of the last solution in case our boat has a lower manoeuvrability. This makes
it possible to make wider turns and never risked to face the wind when changing the line.
The idea is to achieve an «8», however it might be better to achieve this solution without
making lines but with a controller allowing to make circles or ellipses.

4.4 Others idea

Outside the context of the competition, we also wanted to prove that our system could be
used, for example, to control a fleet of boats thanks to Matthieu Bouveron’s communica-
tions. That is why I also realized a simple controller allowing to follow another boat that
would communicate its position to us. For this I have imagined 2 solutions:

• Draw a line between the 2 boats.

• Save the boat positions tracked at regular intervals and try to copy his trajectory.

These 2 solutions work on simulator however we did not have time to perform real
tests. Plus we have no obstacle avoidance so the tests are risky.

page 20 Autonomous Sailboat

5
Competition

The WRSC 2019 in China allowed us to conclude our internship with a real-life validation
of our system. It also allowed us to compare our performance to other teams.

Figure 5.1: Plymouth team

I competed with Corentin Jegat and Ulysse Vautier for the plymouth team.

5.1 Strategy

The competition is divided into 4 events. We used the controller presented in the previous
chapter for each of the tests. Our main objective was to validate each test and thus prove
that our system is usable and robust.

5.1.1 Fleet race

The race is the simplest event, the aim is to reach 4 waypoints as fast as possible. We
used the coordinates provided by the organisers to launch the mission. This allowed us to
validate a time of 3 minutes and 28 seconds, knowing that the best time is 1 minute and

21

5.1 Strategy Internship Plymouth

26 seconds and the least good time validated is 9 minutes and 56 seconds. 13 teams failed
to validate the test.

5.1.2 Station keeping

The station keeping test is divided into 2 parts. The first part is to stay close to a given
gps point. The second is to detect a real buoy and stay close. We used strategies 2 and 3
explained in the previous chapter and obtained the 9th place on the test.

5.1.3 Area scanning

Area scanning is an exploration test of the lake. Each team has 15 minutes to explore a
defined area separated down into brick. In each group of 7 teams, the first to explore a
brick wins 100% of the points, the second 50% etc. . . To carry out this mission we prepared
the mission file to scan as much area as possible in 15 mins, starting in the 1st. We got
the 10th place on this test. Here is a plan of our strategy

Figure 5.2: strategy area scanning

5.1.4 Hide and seek

Hide and seek is a paired event. Each team has an April tag on each side of their sail and
makes lines between 2 points.

Figure 5.3: April tag Figure 5.4: Hide and Seek

Each boat marks 1 point per line made and 3 more if it photographs and identifies
the code of the opposing team. Despite a working code, our camera did not have a high
enough resolution to identify the opposing code from far enough away. We finished 10th
on the test.

page 22 Autonomous Sailboat

Report Chapter 5. Competition

5.2 Feedback

We finally obtained the 7th place in the overall ranking. In addition, we have validated
each event, which is not the case for many teams. This was mainly due to the fact that our
system seemed simpler to put in place and more robust, even if the price was much lower.
So we were able to prove that our system could be used for research on controllers, for
example, therefore we are proud of that. It is nevertheless possible to make improvements,
especially with a better wind sensor. The one we had was not sensitive enough for very
weak winds and induced undesirable behaviours such as unnecessary tacking during trials.

AC page 23

Conclusion

To conclude, this internship was very rewarding. It allowed me to put in place in a very
concrete case all that we had studied in robotics during this 2nd year, and to end up with
a competition in China to validate our work.

At the end of this course I managed to program reliable and adaptable system with
a set of sensors and actuator. In fact to equip a new boat it is enough to update the
parameters of the servomotors and the sensors. I also created a simulation and a controller
that could be used for a competition like the WRSC. Generally speaking, we have proven
that the system we have designed is robust and usable for research. Moreover with the
communications in place it can be usable to control a fleet of ships for example.

Working on a topic of marine robotics has allowed me to become aware of specific
constraints such as the essential waterproof side. This is also an area where real tests are
complicated to implement, hence the importance of being able to build efficient simulations.
I advise this internship to people showing motivation about work on a sailboat.

24

Bibliography

[1] Matthieu Bouveron. Github repository. url: https://github.com/Matthix7/plymouth_
internship_2019.

[2] Alexandre Courjaud. Github repository. url: https://github.com/AlexandreCourjaud/
Stage2APlymouth.

[3] Corentin Jegat. Github repository. url: https://github.com/corentin-j/WRSC_
plymouth_JEGAT.

[4] Jaulin L. “Robmooc”. In: (Mar. 2019). url: https://www.ensta- bretagne.fr/
jaulin/robmooc.pdf.

[5] Ulysse Vautier. Github Plymouth Sailboat. url: https://github.com/Plymouth-
Sailboat.

25

https://github.com/Matthix7/plymouth_internship_2019
https://github.com/Matthix7/plymouth_internship_2019
https://github.com/AlexandreCourjaud/Stage2APlymouth
https://github.com/AlexandreCourjaud/Stage2APlymouth
https://github.com/corentin-j/WRSC_plymouth_JEGAT
https://github.com/corentin-j/WRSC_plymouth_JEGAT
https://www.ensta-bretagne.fr/jaulin/robmooc.pdf
https://www.ensta-bretagne.fr/jaulin/robmooc.pdf
https://github.com/Plymouth-Sailboat
https://github.com/Plymouth-Sailboat

A
Appendix

26

RAPPORT D'EVALUATION
ASSESSMENT REPORT

ENSTA
Bretagne

Merci de retourner ce rapport par courrier ou par voie électronique en fin du stage à :
At the end of the internship, please return this report vu, mail or email to:

ENSTA Bretagne - Bureau des stages - 2 rue François Verny - 29806 BREST cedt?x 9 - FRANCE
Il 00.33 (0) 2.98.34.87.70 / stages@ensta-hretagne. fr

I - ORGANISME / HOST ORGANISA110N

NOM/ Name Ùl\ ~\)l2.v'S;4~ t)1 QLYW\Ol,d.-h

Adresse/ Address Qytl \:u~ C~y(M"? l plyl\'\Qut\,\ o.evc.v-- PLi+-&Af\ u j(.

Tél/ Phone (including country and area code) + 4-4- b\ 1 Ç'l- S 8~l S 7

Nom du superviseur/ Name of internship supervisor '"1"'·
u \CAV\ vJ°' V\

Fonction/Function) eci:uY~Y ;...., C'D,n,+ycl 5'dSi"""-S EY..'j;t,eev,"'::)

""' Adresse e-mail / E-mail ad.dress j \~V\ . \.V0.1' €) V L'} \IV\ b"'-+" -O.. C. · Y~

Nom du stagiaire accueilli / Name of intern I C ou R.. J A V D /\ \ f Je Cl. ",l l' e

II - EVALUATION/ ASSESSMENT

Veuillez attribuer une note, en encerclant la lettre appropriée, pour chacune des caractéristiques
suivantes. Cette note devra se situer entre A (très bien) et F (très faible)
Please attribute a markjromA (excellent) to F (very weak).

MISSION/ TASK
❖ La mission de départ a-t-elle été remplie ?

Was the initial contract carried out to your satisfaction?
~BCDEF

❖ Manquait-il au stagiaire des connaissances ?
Was the intern lacking skills?

D ouilyes ÇJ non/no

Si oui, lesquelles ? / If so, which skills? ________________ _

ESPRIT D'EQUIPE / TEAM SPIRIT
❖ Le stagiaire s' est-il bien intégré dans l'organisme d' accueil (disponible, sérieux, s' est,~dapté au

travail en groupe)/ Did the intern easily integrate the host organisation? (flexible, con;cientious,
adapted to team work) i

\)tBCD E F

Souhaitez-vous nous faire part d'observations ou suggestions ?/ Jf you wish 10 t:nmmenl or make a
suggestion, please do so here____ _ _ - ------------------

7
Version du 05/04/201 9

	Abstract and Acknowledgements
	Table of contents
	Introduction
	1 System engineering
	1.1 Objectives
	1.2 Starting point
	1.3 Constraints
	1.4 Hardware architecture
	1.5 Software architectural design

	2 Low-level programming
	2.1 Arduino
	2.2 Sensors and actuator
	2.2.1 Inertial measurement unit
	2.2.2 Module GPS grove
	2.2.3 Wind sensor
	2.2.4 RCmodule
	2.2.5 Actuators

	2.3 Main program

	3 Simulation
	3.1 The model
	3.2 Display
	3.3 Use

	4 Sailboat control
	4.1 Cap and line following
	4.2 Waypoint Following
	4.2.1 Functioning
	4.2.2 Interest of this solution

	4.3 Station keeping
	4.4 Others idea

	5 Competition
	5.1 Strategy
	5.1.1 Fleet race
	5.1.2 Station keeping
	5.1.3 Area scanning
	5.1.4 Hide and seek

	5.2 Feedback

	Conclusion
	Bibliographie
	A Appendix

