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Abstract 
This report deals with the development and commissioning of a fleet of autonomous sailboats 
as part of the French second year engineering school assistant engineer internship, focusing in 
particular on the project's communications and artificial vision axes. The assembly, integration 
of the electronic elements, software and commissioning of the sailboats were carried out by a 
team of three people over three months at the University of Plymouth. The boats are equipped 
with a low-cost system, easily reproducible and adaptable to different types of sailboats and 
are able to carry out autonomous missions. These missions may require coordination between 
several sailboats, under the control of an operator. 
 
 
 

Résumé 
Le présent rapport traite du développement et de la mise en fonctionnement d’une flotte de 
voiliers autonomes dans le cadre du stage dit Assistant-Ingénieur de deuxième année d’école 
d’ingénieurs, en s’attachant notamment aux axes communications et vision artificielle du 
projet. Le montage, l’intégration des éléments électroniques, les logiciels et la mise en service 
des voiliers ont été réalisés par une équipe de trois personnes pendant trois mois à l’Université 
de Plymouth. Les bateaux sont équipés d’un système peu cher, facilement reproductible et 
adaptable à différents types de voiliers et sont capable d’assurer des missions en autonomie. 
Ces missions nécessitent éventuellement une coordination entre plusieurs voiliers, sous le 
contrôle d’un opérateur. 
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The University of Plymouth 
 

The University of Plymouth is a vast complex 
hosting a wide variety of academic profiles, such 
as law, psychology, geographical sciences, 
computing, art, health, business and marine 
science. It is also a reputable research centre in 
these fields, with a specific attention paid to 
Marine and Ocean Engineering. 
 

Much work and advertisement is done around 
the ocean issues in the University of Plymouth, 
highlighting the fact that this is a core 
preoccupation nowadays. In line with this 
approach, climate activist Greta Thunberg was 
welcomed in Plymouth earlier this year and met 
with members of the University’s International 
Marine Litter Research Unit.  
 
 
 

Introduction 
Not so long ago, sailboats used to dominate maritime trade. However, the industrial revolution 
quickly relegated them to recreational use, as their lack of speed and their dependency upon 
the weather conditions made them unable to compete with powerful motorised ships. 
 
New preoccupations such as cost reduction and public pressure around climate change are 
nevertheless beginning to bring sailboats back into fashion. Indeed, as opposed to their 
motorised counterparts, sailboats require only little energy to be stored on board to power the 
actuators, as the main energy source is the wind. Most advanced sailboats can even be energy 
self-sufficient using wind turbines, solar panels, etc. 
 
Moreover, 19th - 20th centuries commercial sailing ships were globally inefficient against the 
wind, making them intolerably dependent upon weather conditions. Much progress has been 
done about this, which now allow sailboats to be effective in most directions. Another drawback 

Figure 1: University of Plymouth 



Introduction 

 
6  Internship Report, M. Bouveron  
 

of sailboats used to be that they required a large crew to move the sails. However, automation 
now allows to easily control the sailing configuration of any boat, with a reduced crew. See the 
example of the Maltese Falcon, which can technically be operated by a single person. 
 

 
This efficiency concerning power consumption and the fact that they do not have so much 
drawbacks anymore, along with the miniaturisation of electronic devices such as computers 
and GPS, make sailboats suitable for long missions in the ocean. In the same time, scientists 
always seek reliable means to get data on the ocean on a regular basis. Organizing scientific 
missions with big motorized boats quickly becomes expensive as a crew is also needed for a 
long time in this case. In order to be able to provide research such a stream of data, an 
alternative is to use a fleet of autonomous sailboats which, as we saw above, offer both a good 
manoeuvrability and a very low energy dependence. 
 
The purpose of this internship report is to show the steps of the creation of such a fleet, from 
the expectations of the supervisor to the tests. After the description of the tasks carried out by 
the working team, this report will mainly focus on communications and artificial vision. 

  

Figure 2: Maltese Falcon 
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1. Expectations 
 
The purpose of the internship was to be able to operate a fleet of different kinds of autonomous 
sailboats, with the choice for the operator of either giving them a specific mission or remote-
controlling them. 

 
To do this, three radio-controlled sailboats were available: a monohull, a catamaran and a 
trimaran. Each one was approximately one meter long. The idea was to equip them with 
sensors, communications modules and electronic boards (Raspberry Pi 3B+ and Arduino Mega) 
to make them able to sail by themselves and realise various tasks. 
 
The supervisor put some constraints in order to assure the reproducibility of the design: it was 
necessary to avoid expensive products, and as much as possible avoid modifying the original 

Figure 3: Synthesis of the expectations 
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architecture of the boats. These constraints allow to transfer or copy the project to implement 
it on other boats, so that it is easy to lead test performances on different hulls or quickly create 
a controllable fleet. Indeed, such a fleet with simple architecture would be nice to train students 
on control algorithms or for research purpose. 
 

2. Architecture and work distribution 
 
Controlling an autonomous sailboat involves the realisation of multiple tasks and the use of 
multiple devices. The first step of this project was therefore to agree on the architecture to be 
used, as simple as possible, and on the role of each teammate. 

Figure 4: Architecture and work distribution 
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The first task to be addressed is to make all low-level components work together. This includes 
powering the electronic boards (Arduino, Raspberry Pi), collect data from the sensors and send 
commands to the actuators, along with creating a reliable path to exchange data with the 
Raspberry Pi board (mentioned as RPi hereinafter). For more security, this part also includes 
the integration of the original radio receiver in order to be able to take direct control of the 
actuators if needed, using the remote. 
 
The second task is to improve the data coming from the sensors. After having chosen the 
sensors, this is done by inserting a filter layer between the raw data inputs and the controllers. 
The interest of this layer is to provide more reliable and stable data than using only the sensors. 
Each filter must be generated in accordance with the sensor to which it is attached and the 
reactivity wanted for the corresponding data. 
 
One of the purposes of the project is to trigger different reactions of the fleet accordingly with 
what happens in its environment. The first task allows to react to wind changes and position 
changes, but it is also needed to detect external object that may require an action, either 
acquiring data or avoiding an obstacle. Thus, a camera was added to the sailboat to do this 
with the adequate software. 
 
To perform fleet operations and allow complete remote-controlling, data exchange is needed 
between the boats of the fleet and an operator on the shore. On the one hand, depending on 
the mission, a boat may indeed require the position of the other boats or the data from their 
sensors. On the other hand, the operator may prefer to control the boats from a single keyboard 
rather than from a distinct remote for each boat. 
 
Lastly, the coordination of all the tasks above is at the heart of the project in the controllers. 
These controllers must make the sailboats able to lead any mission the operator wants, from 
the direct control of the actuators with the keyboard to coordinated manoeuvres around specific 
location, using the different capabilities of the boats. 
 
To carry out all these tasks, the team was made of three members, as shown in the previous 
illustration with the dotted lines. One allowed the low-levels controls (first task) and realised 
some of the controllers. The second took care of the filter layer and created the other high-
level controllers. The third created the communications software accordingly with the hardware 
and took charge of the artificial vision capacities of the boats.  
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3. Communications 
Sharing data is important when designing an autonomous sailboat because it allows you to 
keep an eye on its decisions. But it becomes crucial when you decide to implement fleet 
coordination because the decisions of all boats are then linked to the data relative to the others. 
 
This necessity to have all boats share data, the implementation of computer-based remote-
control and the wish to be able to launch specific commands without having to use Wi-Fi 
explains why so much time was dedicated to communications during this project. 
 

a. Shared data 
 
Each boat needs the data from the others, as mentioned before. But the more each boat 
communicates data, the more data must be processed and thus more time and power is 
consumed. Even if this is not a real issue when the fleet only contains a few boats, it is still 
better to choose wisely which data is relevant to be communicated and which data can be kept 
internally. 
 

 

Figure 5: Communications overview 
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As shown in the picture above, we chose to share six sets of data per boat.  
The two first sets give measures of the wind so that if the fleet operates in a small area, each 
boat can improve the measures from its sensors or even keep sailing properly with broken 
sensors. This might also be an interesting piece of data for scientific research and it is better 
to have it stored on a computer on the shore rather than in the SD card of a sailboat. 
Next set is the GPS frame right as the GPS outputs it. This is used for many purposes: it 
allows the operator to keep an eye on the fleet via a control window, it allows the other boats 
to possibly join the emitter and permits further study after the mission by replaying it. 
Then, the Euler angles (especially the heading component) allow the other boats to predict 
movement of the emitter and facilitates for instance platooning manoeuvres. It might also be 
useful for the operator to detect issues. The idea is quite the same with the waypoints that are 
published by the boats: they correspond to its current objectives. 
Moreover, the operator can himself send data to the boats through a variable that sets the 
control mode (autonomous, remote control, etc.…) and another that indicates things to be done 
(command for actuators, waypoints… in accordance with the control mode). 
 
 

b. XBee devices 
Radio devices XBee Pro S1 were used for this project. These are highly configurable long-range 
radio modules that can be plugged on an adapter so that they can be controlled with the USB 
ports of the RPi. It is otherwise possible to use them directly plugged on the Arduino board 
using an Arduino serial library, but we preferred the first option to avoid overloading the 
Arduino board and keep more control on the XBee devices. 
 

 
 

Figure 6: XBee module with adapter 
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These radio modules come with a user-friendly application (XCTU) that allow to reconfigure 
them. There are many options that may be changed, especially the type of network and the 
role of each device in this network. This setup can also be done directly in lines of commands 
using serial port, but this is much less intuitive. 
According to their technical sheet1, XBee modules have an operative range of about 1km, which 
make them perfectly suitable for controlling a fleet with an operator on the shore.  
 
Using the USB adapter, the XBee device can be used with serial libraries included in Python. 
From there, every character string sent through serial port will be sent by the device to the 
other devices of the network via radio (except a few specific commands, which will be exposed 
later in this report). All that is to be done is therefore to create the character strings for 
emission and reception. 
 
When an XBee device emits a character string, the corresponding receiver(s) receive one 
character after another without any distinction. This means that the beginning and end of the 
original character string are not known a priori. This also means that if two XBees are emitting 
at the same time, their messages will be mixed up. These issues require a robust message 
structure and a good synchronisation to be solved. 
 

c. First version: four communication slots 
For the setup part, we elected a basic architecture using one module called Coordinator, which 
is connected to the operator’s computer, and one module per boat called End Point. This 
architecture is the simplest to use: coordinator can broadcast data to all connected end points, 
while these end points can only talk to coordinator and not between themselves. If the fleet 
were to grow in size, this architecture would quickly encounter speed issues as it uses a single 
communication channel and therefore requires a synchronisation of the modules to avoid mixing 
up several messages. As the size of the fleet is not expected to be higher than 5 boats, we did 
not consider the implementation of a more efficient but more complex network. 
 
Given that the team had three sailboats available for tests, the first version of the 
communications system was built as a quick functional prototype. The main purposes with this 
prototype were to communicate data through XBees, receive valid data through XBees and 
connect to the global system. 
 
 

                                        
1  www.digi.com, « User Guide - XBee/XBee-PRO S1 radio modules », 
https://www.digi.com/resources/documentation/digidocs/pdfs/90000982.pdf, p. 121. 
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i. Connecting to the rest of the system 
As this project is based on the use of Robot Operating System (ROS) with three packages234 
corresponding to the work of each of the three teammates, all data pass through channels called 
topics. The programs executed to complete specific actions (nodes) can either publish data in 
these topics, or subscribe to these topics to access the data. 
Thus, connecting the communications software in the global system simply means: 
- picking up the data to share in the topics where it can be accessed  
- giving access to the external data in new topics, where controllers can access it. 
 
The concerned topics are shown in Figure 7 above. Notice that the communications part of a 
sailboat (with an end point module connected) has six input sets of data, as detailed in Figure 
5 (clustered in Figure 7 for readability purpose), and 3 * 5 + 2 = 17 output topics (5 for each 
possible boat and two for the operator commands). 
 
As mentioned before, this was only a prototype built to perform remote communications, with 
no performance nor adaptation goals yet. This is why output channels are hard-coded and exist 
for three sailboats even if less boats are actually connected. Thus, the connection part was 
more developed in the second version. 

                                        
2 Matthieu Bouveron, GitHub/Matthix7/plymouth_internship_2019, s.l., 2019 [2019]. 
3 Corentin Jegat, GitHub/corentin-j/wrsc_plymouth_2019, s.l., 2019 [2019]. 
4 Alexandre Courjaud, GitHub/AlexandreCourjaud/Stage2APlymouth, s.l., 2019 [2019]. 

Figure 7: Communications architecture for first version 
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ii. Communicating data 
As mentioned before, a robust message structure is required to ensure good remote 
communications with the XBee devices. This structure must allow to reconstruct the character 
string and check transmission errors. 
 
The first step in creating the character string before sending it is to get the interesting data 
from the topics and convert them into character strings (using comas as separators if the data 
is a set of variables). This is easily done with call-back functions and global variables under 
Python ROS architecture. Then, theses character strings are assembled together with 
separators to create the core of the message, which contains the interesting data. 
The case of the Coordinator is slightly more complicated as most of the interesting data are 
what the sailboats share, thus this data come from the XBee device and not from topics. The 
Coordinator first reconstructs the character strings coming from the sailboats (see 
Synchronisation below) and then assemble them in a single character string containing the 
data from all sailboats and from the operator. If nothing comes from the sailboats (connection 
issue, sailboat not connected …), the software is not blocked and fills the sets with default 
values. 
Once the core message has been created with a separator between each set of data, we 
implement a security check: counting the number of characters in the message. This number 
is put at the beginning of the message with a separator. The last step before sending the 
message is to add start and end symbols to it. 
 
Receiving and decoding the messages logically follows the same steps in reverse order. The 
receiver, coordinator or end point, reads characters from its serial port until it finds a start 
symbol. From there, it assembles incoming characters in a character string until an end symbol. 
Then it removes these start and end characters and finds the checksum. After having checked 
if the message length is the same as indicated by the checksum, the remaining character string 
is parsed to publish the data sets in their corresponding topics. 
 
 

iii. Synchronisation 
The previous steps are executed multiple times per second (≈ 7 Hz). But as mentioned before, 
the messages sent by the XBee devices can be mixed up and therefore become unreadable. To 
avoid this, it is necessary to implement robust synchronisation so that the sailboats and the 
coordinator never try to talk at the same time. In this version, no connection phase was 
implemented so the process begins as soon as the coordinator software is launched. 
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Each transmission loop begins with a broadcast emission from the coordinator, as described in 
the previous section. This emission occurs whether or not data is received from the sailboats. 
This emission not only shares the common data to the whole fleet, but also serves as a clock 
signal to synchronise speaking times. 
 
The reception of the message from the coordinator triggers a timer on sailboats’ side. Before 
emitting its message, each sailboat waits for the number of speaking slots corresponding to its 
identifier. Speaking slots correspond to a quarter of the period of the transmission loop              
(≈ 1/7 s). XBee devices on sailboats are given IDs from 1 to 3 (remember, we only used three 
sailboats for tests). At the end of each slot, the coordinator overwrites the default values 
contained in the message in the spaces allocated to the corresponding sailboat. At the end of 
the third slot, it sends the message containing the data from all boats and a new loop begins. 
Depending on the time needed to parse the messages, the time for each slot may vary. This is 
taken into account by measuring this processing time and giving some margin. 
 
 

 

Figure 8: Transmission loop 
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d. Second version: n+1 communication slots 
The second version of the communications software relies on the same principles as the first 
one. The network architecture is the same, with a coordinator and one or several end points. 
The aim with this second version was to make the communications scheme designed in the first 
version more adaptive, in order to be able to use any reasonable number of sailboats. Secondary 
goals include communicating more data and partial replacement of SSH protocol to launch 
commands. 
 

i. Adaptability 
In the first version, the ID of the boats that sent messages were known to be between 1 and 3, 
with no more than three connected boats at a time. Thus the message structure on coordinator 
side was fixed and was like: 
 [startCharacter][checksum]_1_dataBoat1_2_dataBoat2_3_dataBoat3_[endCharacter] 
Knowing the ID of the sailboat that sent data during the current slot (ID sent by the boat), it 
was simple to fill the structure with the data. 
With the second version, IDs could be any integer and more than three boats could be 
connected at a time (not too much though, as it slows the communication down). To manage 
this, the idea was to come back to a case similar to the previous one. So we implemented a 
connection phase during which each sailboat of fleet sends its ID to coordinator so that it can 
build a list of the connected sailboats. Once this list is built, the coordinator builds a linking 
dictionary to create relative IDs it will use for next steps and sends the list to all the sailboats 
so that they can do the same operation. 
 
Example: Consider a fleet of two sailboats (IDs: 3 and 7) and a coordinator (ID: 0 by 
convention). The first step is to launch the coordinator software without omitting to tell it how 
much sailboats it should expect to connect. The connection phase begins. Launch the software 
n the two sailboats: they will start to spam the coordinator with their IDs. For each new ID 
the coordinator receives, it adds it to a list. Once this list contains two elements, the 
coordinator sends it to the two sailboats, therefore telling them that the connection phase has 
ended. Then, both the coordinator and the sailboats create a linking dictionary: {0: 3, 1: 7}. 0 
and 1 become the relative IDs of the connected sailboats for software purpose. These IDs will 
be used to create lists dedicated to these boats and then store and access data in them.  
 
The coordinator and the sailboats then create lists of publishers in which the publishers will 
be accessed using the relative IDs. As opposed to the previous version, we now have only the 
required publishers: six for each connected boat. Then the transmission loop begins just like in 
the previous version, except that each loop is divided into n+1 slots instead of four (three 
sailboats and the coordinator) and there is a bit more data.  
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ii. Remote control 
Remote control was implemented in the first version of the communications software, but faced 
limitations. Firstly, the commands chosen by the operator for the actuators were sent to all 
the sailboats of the fleet (meaning that they were all remote-controlled at the same time with 
the same commands). Secondly, the operator had to make sure he had clicked in a specific 
window for his keyboard interactions to be taken into account. The second version improved 
this part too with the creation of a separate node for human interaction. 
 
The use of the Python library pynput allowed to monitor all the keyboard interactions, without 
any constraints for the operator. With this library, we can monitor all the keys of the keyboard 
and assign actions to them, whereas the first version used the ROS package key_teleop which 
limits the interactions to the arrows. From there, it became possible to send distinct commands 
to each boat. More precisely, each boat receives the commands for all boats, but these 
commands are organised in a dictionary using the IDs of the boats. 
 
This new nodes allow much more flexibility for the operator. Indeed, he is able to control two 
distinct boats at a time with distinct commands using two pads (arrows and WASD) on his 
keyboard. Specific keys are dedicated to system actions such as putting a sailboat in remote-
control or autonomous mode (one key per boat) or sending terminal-style command lines (see 
below).  
 
 

Figure 9: Communications architecture for second version 
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To communicate the commands, to sets of data are used: 
- The first consists in a dictionary linking boats’ IDs with their control mode  

(0: autonomous, 1: remote-controlled, 2: command line) 
- The second is also a dictionary, linking boats’ IDs with the commands for their 

actuators (rudder and winch). These are taken into account only of the corresponding 
control mode is at 1. 

Once the commands are sent through the XBee devices by the coordinator and if the operator 
wants the sailboat to be remote-controlled, they are received by the communications part in 
the sailboat, which then sends them to a control layer that directly acts on the actuators 
instead of calling a controller. 
 

iii. Command launcher 
A new functionality implemented in the second version is to partially replace the SSH protocol. 
Partially only, because we wanted the operator to be able to launch terminal-style command 
lines through the radio devices, but could not assign time enough on this part to be able to 
monitor what really happens in the on-board terminal. 
 
This functionality is realised using the libraries pynput and pyautogui on the coordinator side 
and the library subprocess on the sailboat side. The first one monitors any actions on the insert 
button on the keyboard, the second one displays a window where the operator can type the 
command he wants to be executed. This is done in the same node as the remote control and 
uses the same messages. 
 
Pressing the insert button displays the prompting window. In this window, the operator types 
first the ID of the receiver (broadcast is also available) and then the terminal-style command 
as he would write it in a normal terminal. Some additional features are available to kill running 
nodes.  
 

Figure 10: Keys used for remote control and command launcher 
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Example: As before, consider a fleet of two sailboats (IDs: 3 and 7) and a coordinator (ID: 0 
by convention). Considering that both boats are already running autonomous controllers, the 
operator wishes to change the behaviour of boat 7. The figure below explains what happens 
when he launches a command to do so by changing the controller (simplified version). 
 

 
 
The work described in this part resulted in the creation of a platform that makes possible fleet 
coordinated actions and allows the operator to monitor/control the behaviour of each sailboat. 
Even though no real graphical user interface was designed, the use remains quite intuitive as 
the user is guided in the terminal for each of his actions. Moreover, a 3D representation of the 
fleet makes monitoring easier (made by a teammate). 
 
The next part of this report tackles a totally different topic: artificial vision. Giving a sense of 
vision to a sailboat is a very interesting thing as it opens fields for new measurement or even 
improve measurement from other sensors. 

  

Figure 11: commands transmission 
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4. Image processing 
a. Horizon detection 

An auxiliary goal for this part was to make it as independent as possible from the other sensors. 
This makes it more easily reusable for future projects, more secure in case of a failure in the 
rest of the system, and makes tests a lot easier. However, it requires more work and does not 
work in all situations (see Tests chapter). 
 
Basically, the only sensor on which the artificial vision relied was the IMU. Indeed, the main 
goal for a camera is to find headings to interesting objects. However, a sailboat has a lot of roll 
and this fact affects the heading estimated by the vision software. To compute the true heading 
leading to a target, the roll angle is needed. This angle may be obtained from the IMU, but 
another solution is to compute it from the horizon line. To achieve the auxiliary goal, the 
second solution was chosen in a first approach. 
 
The figure below details the main steps that lead to finding the horizon line and therefore the 
roll angle of the sailboat from an initial picture taken by the camera. The base image here is 
of course artificial, created specifically to show all aspects of artificial vision tackled during the 
internship, but was processed by the same algorithm as during real missions. 

Figure 12: Looking for the horizon line 
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The top picture of Figure 12 represents the image as it is provided by the camera. As the 
camera is fixed on the bow of the sailboat, 10cm above the deck, the image has the same roll 
angle as the sailboat. This angle is highlighted on the picture, with the horizon line in green. 
Using a Sobel-style custom-tailored gradient filter, the vertical lines are discarded and we get 
the middle picture. This step assumes that the sailboat keeps a reasonable roll angle (still up 
to ≈60°). 
Then a Hough transform is applied on this binary picture. Hough transform for lines measures 
the number of white pixels in a line-shaped mask, iterating until the mask has been on all 
possible positions with all angles. It can therefore build a chart where numbers of white pixels 
in the mask are linked with the position and the angle of the mask. More information about 
this algorithm can be found on OpenCV online page5. The interesting thing is that this 
algorithm directly outputs the angle of the line (in fact the angle of the red dotted line), 
meaning that if it can be assured that this line is actually the horizon then the algorithm 
succeeds. In the example, even if the horizon line is not perfectly clear (mast, lighthouse, 
reflections, mountains …) the algorithm is robust enough to detect it and crop the image around 
it. The green line was drawn in the algorithm too, showing how accurate it is. 
 
However, the reliability of the software is not enough to ensure the success of the mission: it 
also has to be efficient. The Hough algorithm is quite efficient as implemented in OpenCV 
library, but still takes too much time to deliver enough real-time data. Indeed, early tests using 
Raspberry board and camera showed that the maximum processing speed was at two images 
per second, which is quite slow. An efficient way to improve speed is to make the assumption 
that the roll angle of the sailboat cannot change heavily in the meantime between two pictures. 
Therefore, it is possible to search the horizon line close to where it was found during the 
previous iteration of the algorithm. This is done by saving the data related to the line at time 
t, then crop the image shot at t+dt using the stored data and use this cropped image instead 
of the original image in the algorithm described above. Doing this reduces the number of pixels 
to be considered in Hough algorithm and therefore increases significantly the speed  
(≈ 50% faster).  
 
The outputs of this module of artificial vision are: 

- Horizon line localisation in the image (for next iteration) 
- Image cropped around the horizon line (for next section: masts detection) 
- Roll angle for the computing of true headings in next steps 

                                        
5  Hough Line Transform — OpenCV-Python Tutorials 1 documentation, https://opencv-python-
tutroals.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_houghlines/py_houghlines.html, 
(consulté le 24 septembre 2019). 
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b. Masts detection 
A possible interesting thing to detect for an autonomous fleet is the presence of other boats in 
the navigation area. Considering that the camera is almost at water level, any floating object 
should be seen at the horizon line level. This module is called masts detection because its first 
goal is to detect other sailboats, but in fact it should be able to detect anything that crosses 
the horizon line. 
Using the cropped image delivered by the previous module, a gradient filter can be used to 
discard horizontal lines and keep only vertical lines. From there, the Hough line transform 
allows to identify the main lines that remains in the binary image obtained with the gradient 
filter, and the intersections of these lines with the horizon line give headings that lead to 
floating objects. This heading is computed from the number of pixels that separate the points 
from the centre of the image, multiplied by a resolution factor calculated before in a calibration 
part. 

 
In the example above, the top picture correspond to the cropped image returned by the horizon 
detection module. One may notice that the sailboat is clearly visible, but is not the only thing 
that crosses the horizon line. The aim of this algorithm is to be able to distinguish punctual 
objects (sailboats, lighthouses …) from the landscape (trees and landforms included). Thanks 
to a reliable chain of operations, the goal can be achieved in a large variety of situations. Here, 
the identified objects (lighthouse and sailboat) are marked with a red vertical line.  
 
An interesting thing about Hough transform as implemented in OpenCV is that in fact it does 
not only return one single line but a list of lines ordered by their filling (number of pixels in 
the mask). In the previous module only the first one, most filled, was considered as being the 
horizon line. This time, multiple lines must be kept. However, a single object often generate 
several lines so some precautions are needed to detect each object only once.  
 
 

  

Figure 13: Looking for floating objects 
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c. WRSC vision tasks 
 
Even if it was not the main objective of the internship, the team took part in the World Robotic 
Sailing Championship in China with one of the boats (the monohull). It did not require any 
changes in the system as this challenge requires abilities that an autonomous fleet requires too. 
The only exception was in the detection of particular markers, which we implemented in the 
artificial vision software. 
 
The first type of objects to detect were coloured buoys. As these buoys were used as marks for 
a station keeping challenge, positioning them with a good precision seemed interesting so we 
added an estimation of distance.  
 

 
Once again, the 𝑆௙ constant is used for the computation of the heading. This constant is the 
angle in radians that a pixel represents. Using trigonometric formulas and knowing both the 
real radius of a buoy and the radius in pixels it takes on the picture, it becomes easy to compute 
an approximation of the distance that separates the buoy from the camera. However, this 
approximation relies on the detection of all pixels that are part of the buoy, included in case 
of reflections, shadows, etc. Thus, the estimation of distance is a lot noisier than the estimation 
of heading and this must be taken into account for the realisation of the positioning filter that 
comes downstream (not in this report). 
 
 
  

Figure 14: Looking for buoys 
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The second type of objects to detect were printed markers (ArUco 
markers and April Tags). These markers were positioned an all the 
sailboats in the navigation area during a hide & seek challenge. In this 
challenge, two teams were opposed. Each sailboat had to complete 
round trips back and forth between two buoys and detect the opponent 
sailboat’s marker to mark points.  
 
 
We implemented the two types of detection (ArUco and April Tags) in the machine vision 
software. A specific OpenCV library is dedicated to the detection of this type of markers, so 
we used it for the ArUco markers. A few lines are sufficient to detect markers in an image, 
store the image and identify the position of the marker in relation to the camera. Unluckily, 
the April Tags detection was implemented in version 4.0 of OpenCV, but version 3.4 was used 
for this project and it appeared too complicated to change. Thus, a dedicated package6 was 
used for this. 
 

5. Modularity and agile methods 
From the beginning, this project was designed to be very modular and followed agile 
development style. Indeed, the versioning of communications software made it possible to focus 
on essential communications points only so that we could have it working for the early tests 
with the rest of the system. It is in a second step that non-essential features were added to 
reach the final communications program. Similarly, the machine vision software is actually 
built on five Python files: four specialised modules (each of them being independently testable) 
for the four tasks detailed previously and the image acquisition, and one synchroniser that calls 
functions of these modules when needed. Calling or not the different modules can be done with 
setup variables, making it very adaptable to the real mission needs. Moreover, with this method 
each module can be improved independently without putting the whole software at risk. 
 
 

6. Tests 
Each development stage was tested in both the communications and machine vision programs. 
The communications part was quite easy to test inside the working room as all devices were 
available and it was easy to simulate the data coming from the rest of the system. The only 
thing that could not be tested inside was the range of communications. However, outside tests 

                                        
6 GitHub/AprilRobotics/apriltag, s.l., AprilRobotics, 2019 [2018]. 

Figure 15: Example of ArUco 
marker 
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with the entire system connected showed that some additional security were necessary to avoid 
occasional crashes. 
Testing the artificial vision software was a little more complicated and required to adapt the 
program so that it could be switched from camera to video input. Even though some tests were 
still conducted outdoors especially to check the acclimatisation to light conditions, the majority 
if tests for this part were carried out with videos of maritime landscapes. These videos were 
chosen to give an overview of what a sailboat could observe during it missions.  
Before the World Robotic Sailing Championship, a video was issued showing the navigation 
area. The test carried out using this video showed that the software would not be able to locate 
the horizon line, putting at risk all headings computations. This inability is due to the fact 
that the competition took place in small lake in a city centre with walls and buildings all 
around the water, which is a landscape too far from what was expected for the sailboat. We 
therefore decided to replace the original roll computation with the data provided by the IMU. 
 
During the internship we had time for five tests in real conditions with the full system. No 
major issues occurred and we never lost any of the boats because we were always able to 
remote-control them via XBees or remote. Concerning the parts described in this report, one 
issue occurred that was hard to solve; some hardly visible damages in the camera cable made 
the images abnormally bright. We therefore protected it and it worked for next tests. The last 
of them was the World Robotic Sailing Championship itself, where our system proved to be 
reliable enough to complete all the challenges and finished 7th out of 22, first non-Chinese.  
 
 

 

Figure 16: Two sailboats during the first outdoor test 
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7. Next steps 
 
Even though the current system is fully operable, many things could still be improved or added. 
Indeed the last of the three months was mostly dedicated to make sure everything would work 
as expected for the World Robotic Sailing Championship so only little time was given for fleet-
specific development.  
 
On the one hand, improving the monitoring ability of the operator would probably be an 
interesting thing. This could be done by displaying some more information from the boats on 
his screen and adding an error feedback to the command launcher. Indeed, the command 
launcher is a really powerful tool as it has much more operating range than a standard Wi-Fi 
router and is directly included inside the system, but currently only the behaviour of the 
sailboats allow to see whether an error occurred or not. Improving the communication speed 
could be a good idea too in order to manage a bigger fleet. 
 
On the other hand, one drawback of the current network architecture is that the missions that 
require fleet coordination can be done only a radius of ≈300m around the coordinator, meaning 
that there are still restrictions to its autonomy. Thus, a possible improvement would be to 
adapt or change completely the architecture of the network so each boat can communicate 
directly with others and the operator can connect or disconnect for monitoring purpose 
whenever he wants. 
 
Concerning the artificial vision software, the current version uses a thread to grab pictures 
from the raspberry camera. It could be interesting to compare the performances of this 
architecture with dedicated nodes that already exist with ROS.  
 
Eventually, one interesting objective could be to make the software able to detect more objects 
in the water, specifically pollution signs. 
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Conclusion 
Although the share of work allocated to the championship was higher than initially planned, 
most of the original objectives were met. In view of the performances achieved in the 
championship, it can be said that each sailboat equipped with the system developed during the 
course has the individual qualities expected. Although the majority of the tests were conducted 
on monohulls, the first outdoor test showed that the system could also be installed without 
problems on a catamaran. 
 
Artificial vision software is part of the sailboat's individual skills and seems reliable and robust 
for maritime environments. It might have been good to conduct more tests in such 
environments in real conditions, but for safety reasons our yachts were mainly sailing in 
relatively closed areas. 
 
However, fleet performance has not really been tested, but some functionalities have been 
implemented. In particular, the communications software is fully operational despite the few 
limitations detailed above. It allows each boat in the fleet to have access to all the interesting 
information from the others, so it remains to develop controllers using this data to give 
coordination skills to the sailboats. 
 
This internship was an excellent opportunity to rediscover sailing under a robotic approach. 
Moreover, the time devoted to artificial vision made it possible to complete the courses taught 
in the second year at ENSTA Bretagne. Added to the work done on inter-system 
communications, this internship proved to be very instructive and gave me new areas of 
expertise. 
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