
Robots and IoT devices for assistive automation

Internship report

Institut de Robòtica i Informàtica Industrial

Kévin Bedin - SPID - Robotic

10 june 2019 - 30 august 2019

Acknowledgements

Thanks to Guillem Alenyà Ribas and Sergi Foix Salmerón for their welcome, support and trust
throughout this project.

Résumé
Depuis quelques années, nous vivons chaque jour dans un monde toujours plus connecté. De ce phénomène se sont
développées les technologies de l’Internet of Things (IoT). Parallèlement, les progrès dans la robotique permettent
aujourd’hui d’avoir des robots de services autonomes dans leur mobilité et dans l’accomplissement de leurs missions.
La question qui se pose donc, à ce jour, est de savoir s’il pourrait être utile d’unir ces deux domaines.

Tout comme l’être humain le fait, comment permettre à ces robots de service d’intégrer les objets de l’ IoT à
leur environnement afin de faciliter l’accomplissement de leur mission ?

Ce présent rapport s’intéresse donc à la manière dont il est possible d’intégrer les objets de l’IoT dans l’environnement
d’un robot de l’entreprise PAL Robotics, TIAGo. Il est le fruit de douze semaines de stage au sein du laboratoire
de Perception et de Manipulation de l’Institut de Robòtica i Informàtica Industrial de Barcelone. Il est ainsi étudié
dans ce rapport la faisabilité, l’implémentation et l’utilisation d’une telle intégration. Le laboratoire dispose d’un
appartement dans lequel deux robots TIAGo évoluent. Ainsi l’objectif principal de mon stage était de domotiser cet
appartement et de rendre accessible les différents appareils de l’IoT aux robots. Pour ce faire, j’ai dans un premier
temps effectué un état de l’art en ce qui concerne les logiciels de domotiques opensource. Mon choix s’est porté sur
un logiciel très populaire dans le monde de l’IoT: OpenHAB (OH). Ce logiciel agit comme un hub, pouvant utiliser
la plupart des protocoles domotiques actuellement utilisés. J’y ai ainsi intégré différents capteurs et actionneurs du
monde de la domotique ainsi qu’une caméra IP. Par la suite je me suis penché sur le moyen de relier l’environnement
du robot à OpenHAB. C’est au travers du middleware ROS et du package iot bridge, que j’ai amélioré pour cette
implémentation, que cette liaison a été mise en place. Enfin j’ai développé des algorithmes pour la camra, sous
la forme d’un package ROS. Le principal algorithme permet de scanner l’appartement à la recherche d’une image
binaire (Aruco) et de fournir sa localisation dans l’appartement. Enfin, une mission consistant à trouver un Aruco
a été implémentée dans le robot. Pour ce faire il peut utiliser à la fois ses propres caméras mais aussi utiliser la
caméra IP grâce au package développé.
L’accomplissement de cette mission a permis de montrer qu’il est actuellement possible d’intégrer le monde de l’IoT
au sein de l’environnement d’un robot de service mais aussi d’en montrer l’utilité.

L’ensemble de mon travail est également disponible sous la forme d’un rapport technique (1) qui a donné lieu
à une publication sous la référence IRI-TR-19-03, publié par le CSIC-UPC sur le site de l’institut.

https://www.iri.upc.edu/publications/show/2223

Abstract
In recent years, we live every day in an ever more connected world. This phenomenon has developed the technologies
of the Internet of Things (IoT). At the same time, advances in robotics now make it possible to have autonomous
service robots in their mobility and in the accomplishment of their missions. So far the question is whether it might
be useful to unite these two areas.

Just as humans do, how do these service robots integrate the objects of IoT into their environment to facili-
tate the fulfillment of their mission?

This report focuses on how it is possible to integrate IoT objects into the environment of a PAL Robotics robot,
TIAGo. It is the result of twelve weeks of internship within the laboratory of Perception and Manipulation of the
Institut de Robòtica i Informàtica Industrial of Barcelona. It is thus studied in this report the feasibility, the imple-
mentation and the use of such an integration. The laboratory has an apartment in which two TIAGo robots evolve.
So the main objective of my internship was to domotise this apartment and make available to robots the different
devices of the IoT. To do this I first made a state of the art regarding opensource home automation software. My
choice fell on a very popular software in the world of IoT: OpenHAB (OH). This software acts as a hub, being
able to use most of the domotic protocols currently used. I have integrated various sensors and actuators from the
world of home automation as well as an IP camera. Subsequently I looked at how to connect the environment of
the robot to OpenHAB. It is through the ROS middleware and the iot bridge package, that I have upgraded for
this implementation, that this link was set up. Then I developed algorithms, in the form of a ROS package, for
the camera. The main algorithm allows to scan the apartment in search of a binary image (Aruco) and provide its
location in the apartment. Finally a mission to find an Aruco has been implemented in the robot. To do this it can
use both his own cameras but also use the IP camera with the developed package.
The accomplishment of this mission has shown that it is currently possible to integrate the world of IoT within the
environment of a service robot but also to show the utility.

All of my work is also available in the form of a technical report (1) which resulted in a publication under the
reference IRI-TR-19-03 published by the CSIC-UPC on the site of the institute.

 https://www.iri.upc.edu/publications/show/2223

Contents

1 Introduction 1

2 Context 2
2.1 Laboratory presentation . 2
2.2 Job description . 2
2.3 Available material . 2

3 Problem definition 3
3.1 Problematisation . 3
3.2 State of the art . 3

3.2.1 OpenHAB - Centralize the IoT devices . 3
3.2.2 ROS - Communicate with TIAGo . 4
3.2.3 iot bridge - Link ROS and OpenHAB . 5
3.2.4 Choosing an IP Camera . 5
3.2.5 Planned strategies . 5

4 Development 6
4.1 Rapsberry Pi . 6
4.2 OpenHAB . 6

4.2.1 Sensors and actuators integration . 6
4.2.2 Data saving . 6
4.2.3 Voice integration . 7
4.2.4 iot bridge . 7

4.3 IP Camera . 8
4.3.1 Redefine the strategy . 8
4.3.2 Manage the camera . 8
4.3.3 ROS integration . 9
4.3.4 Meet the missions . 10

4.3.4.1 PTZ controller . 10
4.3.4.2 Place saving . 11
4.3.4.3 Calibration . 12
4.3.4.4 Aruco detection . 13
4.3.4.5 Scan algorithm . 14

4.3.5 OpenHAB integration . 16
4.4 Global view . 16

5 Tests and results 18
5.1 Simulations . 18

5.1.1 Pan controller simulator . 18
5.1.2 Location simulator . 18

5.2 Integration tests . 19
5.2.1 Wallplug test . 19
5.2.2 Scan routine . 20

5.3 Mission of Aruco detection . 22

6 Conclusion 24
6.1 About the project . 24
6.2 Personal . 24

Bibliography 25

List of figures 26

Chapter 1

Introduction
Today in 2019, the world of the Internet of Things (IoT) sees itself as the technological industry of tomorrow. The
number of connected objects increased from 3.8 billion in 2015 to 8.3 billion in 2019, with a prediction of more
than 20 billion within 6 years, in 2025 (2). This is understandable by the progress in the speed of communication
networks allowing ever larger data flows in ever shorter times.
Along with this development, the robotic industry is growing. In 2017 the service robotics market was shared by
700 companies, including 29% of start-ups. It is estimated that the period 2018-2020 will grow by 20 to 25% in the
professional service robotics market and that the dedicated consumer market will reach a value of approximately $
11 billion over the same period (3).
So these two sectors being on the rise, would not it be the right moment to unite them? Could we not allow service
robots to use IoT objects so that it can fulfill its missions more easily, as a human being does? Would not that
make them more efficient?
This report is limited to the implementation of IoT objects in the environment of a TIAGo service robot. The
goal is to know how to integrate its objects within the robot as well as to show through a mission the usefulness
of such an implementation. Finally, being in a domain dedicated to individuals, the proposed solutions as well as
those used must be open source. It is the result of twelve weeks of internship within the labory of perception and
manipulation of the Institut de Robòtica i Informàtica Industrial of Barcelona.

1

Chapter 2

Context

2.1 Laboratory presentation

I did my internship in the laboratory of Barcelona: Institut de Robòtica i Informàtica Industrial. It is a laboratory
founded in 1995 under the alliance of Technical University of Catalonia (UPC: Universitat Politecnica de Catalunya)
and Consejo Superior de Investigaciones Cient́ıficas (CSIS) which is the equivalent of CNRS in France.

It is divided into four research areas: Automatic control, Kinematics and robot design, Mobile robotics and Intelli-
gent Systems, Perception and Manipulation. It is within this last pole that I did my internship. The team is made
up of around forty people, the majority of whom are students in the final year of study or doing their thesis. In
order to carry out their mission are available: two TIAGo service robots from the company PAL Robotics, various
robotic arms and an experimental apartment. The most important area of research is the manipulation of textiles
by robots.

2.2 Job description

To better understand the context of the work that was asked to me, here is the job description of the internship for
which I applied and selected, entitled ”Robots and IoT devices for assistive automation”:

“The Perception and Manipulation Group investigates in service robotics and has two TIAGo mobile
manipulation robots and a laboratory simulating an apartment. This project wants to investigate the
benefits of adding smart devices to this environment and making them available to the robot. In recent
years, a wide variety of IoT (Internet of Things) domestic devices have appeared that can monitor
environmental variables and control active parts, as well as several initiatives that try to standardize
protocols and access methods to these devices. On the other hand, service robotics has advanced
enormously thanks to the existence of robust solutions for critical parties, such as voice recognition or
navigation avoiding obstacles. Now is the propitious moment to unite these two worlds and interconnect
the robot with the environment. The robot would not only multiply its action capabilities but also
increase its data acquisition capacity. For example, if you do not have enough information with your
own sensors and cameras or it is ambiguous, you could connect to the surrounding network of cameras
and obtain images from different points of view and places.”(4)

So the purpose of my internship was to know if it was possible to integrate in the Lab’s apartment smartdevices
using various protocols within the environment of a TIAGo robot so that it can use it to enrich its range of actions.

2.3 Available material

In order to carry out the project I had access to:

• 2 Wallplugs from Fibaro company (IoT device)

• 1 Multisensor from Fibaro company (IoT device)

• 1 Motion sensor from Aeotec company (IoT device)

• 1 Z-wave plus stick from Aeotec company (IoT device)

• 1 Raspberry pi 3 B+

• 1 Amazon echo dot

• 2 robots TIAGo

• 1 IP Camera to choose

• A Gitlab workspace

2

Chapter 3

Problem definition

3.1 Problematisation

My first week of internship was to define the subject. It was necessary that I highlight various problems in order to
better understand the expectations of the project as well as the exploitable technical solutions. The first problem
was:

• How to use these sensors ?

Indeed before being able to connect it to the robots, you must know how to extract the information. The question
that arises if therefore to know if you can use a single tool that can integrate a wide variety of IoT protocols, ie the
existence of a hub for connected objects.

• Is it possible to standardize these protocols ?

After that it would be a question of how the robot interacts with its environment:

• What environment does the robot use ?

And then of course it would be necessary to know how to connect the world of IoT via a potential hub and the
environment interpretable by the robot:

• How to integrate these sensors into the robot environment ?

Finally, in order not to lose any functionalities as well on the side of the robot as on the side of the connected
objects, the last question is to know if these two systems can evolve independently while having a capacity of
communication:

• Is it possible to decouple the IoT part and the robot while having an activatable link if necessary ?

So, after having arisen this set of issues, I was able to focus on researching existing technical solutions by making
a state of the art.

3.2 State of the art

3.2.1 OpenHAB - Centralize the IoT devices

This part of the state of the art aims to answer the first two issues:

• How to use these sensors ?

• Is it possible to standardize their protocol ?

The world of IoT being born by definition on the Internet, it is relatively easy to find many software allowing to
use various protocols of the IoT as well as having a user-friendly Human Machine Interface (HMI) (5). The main
criterion is of course the fact that the software is free and open source. Here is the list of some of these software on
which I learned:

Name Origin Main language
Domoticz Netherlands C++
Home assistant USA Python3
OpenHAB Germany Java
Jeedom France PHP

Table 3.1: Home automation popular software

3

https://www.domoticz.com/
https://www.home-assistant.io/
https://www.openhab.org/
https://www.jeedom.com/

All these software are free, open source and allow to use the different protocols that the laboratory could use (Zwave,
MQTT, Zigbee, HTTP, WIFI, MI, Bluetooth, ...). However, there are two important criteria in choosing one for
a professional implementation: viability and reliability. These two criteria can be measured by the community
supporting the software:

• Home Assistant: The project with the largest community. Integrations are added weekly to the software.
The daily activity in the official forum is very high, giving great support to the platform. Questions are solved,
solutions are provided to the errors that arise and their own projects are shared. In addition, the updates are
constant, every little time (one or two weeks) new trips come out with improvements, corrections and new
component integrations.

• Domoticz: Characterized by consuming very few system resources, it make a very interesting solution if you
want to combine it with a Low Cost controller such as a Raspberry Pi. The different modules that compose
it are little decoupled from the ”core” of the system, that has the main impact of a complicated development
of new modules and functionalities. Moreover its documentation in C++ is not very detailed. This is now
causing a small loss in the community that redirects to newer and more active solutions, but continues to
have a good number of integrations.

• Jeedom: Is a much more modern French software in terms of its approaches and that has became a relatively
well-known solution within the European home automation market. Very popular in France, its international
community is still limited. Although of a more modern appearance and with a much more modular internal
architecture, its youth means that we are not faced with a solution that is robust enough to be implemented
in a system for professional use.

• OpenHAB: The visual design is relatively modern and the documentation is the most complete of those
consulted, both at the Core level and the accessory modules. It has a responsive design that adapts the
layout of the elements of the control panels to the size of the screen, which facilitates its consumption and
cross-platform visualization. It also has official applications for iOS and Android. Finally, its community is
as important as that of Home Assistant.

The natural choice is therefore between OpenHAB and Home Assistant. I preferred to rely on OpenHAB because
it offers better stability than Home Assistant. Indeed, OpenHAB plugins are subjected to heavier protocols that
ensure their smooth operation once made available on the official platform. However, OpenHAB requires more
hardware resources than Home Assistant and integrations of new protocols take longer to implement. Being in a
context of a semi professional use, the choice of stability prevailed.

3.2.2 ROS - Communicate with TIAGo

This part of the state of the art consists in answering the following problematic:

• What environment does the robot use ?

PAL Robotics has implemented the ROS middleware in their robot. As its name suggests, ROS (Robot Operating
System) is an operating system for robots (6). It provides services close to an operating system (hardware abstrac-
tion, management of competition, processes ...) but also high-level functionalities (asynchronous calls, synchronous
calls, centralized data database, parameterization system robot etc). ROS has 5 features that make it a must for
the robotics of tomorrow:

• Peer to Peer: Allows different computing units to communicate on the same Ethernet network, synchronously
or asynchronously as needed.

• Multi languages: ROS is neutral from a language point of view and can be programmed in different
languages. The ROS specification intervenes at the message level. Peer to peer connections are negotiated in
XML-RPC that exists in a large number of languages.

• Tool-based: Every command is actually an executable. The advantage of this solution is that a problem on
an executable does not affect the others, making the system more robust and scalable than a system based
on a centralized runtime.

• Lightweight: In order to fight against the development of algorithms more or less related to the robotic OS
and therefore difficult to reuse, the developers of ROS want the drivers and other algorithms to be contained
in independent executables.

• Free and open source: ROS has a large community that regularly adds new packages.

4

https://www.ros.org/

3.2.3 iot bridge - Link ROS and OpenHAB

The problem underlying this part is:

• How to integrate the hub sensors into the robot environment ?

In other words, it is about how to link ROS and OpenHAB. After some research, I could find a ROS package doing
this task: iot bridge. This package written in python uses the OpenHAB JSON database accessible on the local
network to read and write the data of the various integrated devices. This data is then distributed via topics on
the ROS middleware.

3.2.4 Choosing an IP Camera

Having chosen OpenHAB as an IoT controller, the choice of the camera was made in the interests of software
integration. An plugin, in development but usable, allows to connect some IP camera to OpenHAB2. Here is the
list of cameras tested and approved by this plugin:

Brand Amcrest Dahua Foscam Hikvision Instar
Model IP2M-841EW IPC-HDBW4433R-AS FI9831W DS-2CD2385FWD-I IN-8015 Full HD

IP2M-841B IIPC-HFW4431R-Z FI9821P DS-2CD2042WD-I
IP2M-844 IPC-HDW4421E-AS FI9900P DS-2CD2142FWD-IWS
IP3M-943B IPC-HDW2431R-ZS Fosbaby P1 DS-7208HUI-K2
IP8M-2493EW DH-SD22404T-GN PTZ C1 Lite DS-7208HQHI-F1 / N

C1 DS-2CD2383G0-I
C2 DS-7616NI-K2 / 16P

DS-2DE3304W-DE

Table 3.2: IP Camera used by the OpenHAB IP Camera plugin

Having not found a more robust solution already existing, I chose a cheap camera in terms of price / quality ratio
to perform integration tests. The camera we bought is an Amcrest IP3M-941W IP camera at a cost of $ 75. The
features of the camera are available in the annex.

The part of the state of the art upstream being completed a technical solution can then be considered.

3.2.5 Planned strategies

In order to keep the IoT part and the robot independent, the planned technical solution is to install OpenHAB2
and ROS on the Raspberry Pi available, that will connect to a network shared with the robot.

The deal is now to find which image should be used for Rapsberry. The choice was to turn to an image of Ubuntu
16.04.6 LTS (GNU / Linux 4.14.98-v7 + armv7l) with already integrated ROS: Ubiquity Robotics Raspberry Pi
Image, image which I already worked with. OpenHAB would then be installed as software and not via the image
for Rapsberry: OpenHABian.

All IoT devices (sensors, actuators, Alexa, IP camera, ...) would be connected to the Raspberry via OpenHAB.
The data will then be communicated to ROS internally via iot bridge and transmitted to the Robot, on the local
network, if necessary via ROS either by exporting the ROS MASTER or in MULTIMASTER.

5

http://wiki.ros.org/iot_bridge
https://github.com/Skinah/IpCamera
https://downloads.ubiquityrobotics.com/
https://downloads.ubiquityrobotics.com/
https://www.openhab.org/docs/installation/openhabian.html

Chapter 4

Development

4.1 Rapsberry Pi

As planned during the planning of the solutions, the installation of the Ubiquity image and the OpenHAB version
2.4 software was done well on the Raspberry Pi 3 B +.
In order to increase its IoT protocol use capabilities, a Z-wave plus stick was integrated and the Raspberry was
connected to a local network via a router.

4.2 OpenHAB

4.2.1 Sensors and actuators integration

The first step was to integrate the Zwave sensor available (the two wallplugs, the motion sensor and the multi
sensors) in OH2. Using Paper UI and with the Z-wave stick connected, the detection and the integration of the
Things is almost automatic. You only need to put the devices in paired mode and let the Inbox menu discover it.
Once added, you can manage the associated Item and display it then manage it.

Figure 4.1: HAB Panel screenshot

The second step was to add other IoT devices provided by Xiaomi, connected to the Xiaomi MI Gateway that is
connected to a WiFi network. Recently the company disabled the port 9898 that allowed the Xiaomi MI Gateway
devices to communicate with external devices. So, I had to hack the device to enable it. The OH community being
important, it was easy to find a solution on the main forum.
The solution was to solder an UART device to the Xiaomi device and send a command to activate the Gateway. The
pins on which the UART was soldered are pins allowing the manufacturer to configure the micro controller. The
correct baudrate for the communication is 115200 and the command is:

1 psm -set network.open_pf 3

Once the manipulation done, you can manage the Xiaomi devices through OpenHAB2 using the corresponding
binding.

4.2.2 Data saving

The sensors and actuators now integrated into the OpenHAB2 software, it seems so worthwhile to save the sensor
data so that they can be used by the robot if necessary. To do this I created a project on the gitlab of the laboratory:
OpenHab-MySQL.
The MySQL persistence is an OpenHAB plugin that allows you to save data from Items. So I created a configura-
tion that records all sensor and actuator data associated with the ROS group at each new data and every X minutes.

6

https://community.openhab.org/t/solved-openhab2-xiaomi-mi-gateway-does-not-respond/52963/3
https://www.openhab.org/addons/persistence/mysql/

Figure 4.2: Database from MySQL Persistence

This database being local, I made it accessible to all users of the local network by using the following command
lines:

1 sudo mysql -u root -p

2 mysql > CREATE USER ’new_user ’ @ ’IP_address ’ IDENTIFIED BY ’password ’;

3 mysql > GRANT SELECT , INSERT , UPDATE , DELETE ON OpenHAB. * TO ’new_user ’ @ ’IP_address ’;

4 mysql > FLUSH PRIVILEGES;

At the end of this first project, the data acquired via OpenHAB are now saved in the OpenHAB local MySQL
database and accessible from all users of the network subject to having the identifier. By this way, the robot
increased its sensor data and it can acquire information from devices that are present in the apartment.

4.2.3 Voice integration

An Echo Dot being installed on the head of one of the TIAGo, it seemed interesting to us to integrate it into the
developing IoT system. This desire resulted in a second project - alexa openhab - available on the gitlab of the
laboratory.

The integration of the Alexa voice to IoT objects linked to OpenHAB2 is done in four steps:

• Connecting the local OpenHAB server to the online server myopenhab.org

• Login amazon account associated with the echo dot to the online server myopenhab.org

• Labeling of OpenHAB Items to be recognized by Alexa

• Detection of labeled items via the amazon account

Once these four steps are done, it is possible to interact with the objects connected via Alexa. Here are some
sentences that can be used:

• Alexa, switch on the Kitchen.

• Alexa, what is the temperature in the Lab ?

4.2.4 iot bridge

Although functional, this package is based on version 1.0 of OpenHAB - based only on the concept of Item (an
actuator or sensor) - that became almost obsolete in favor of version 2.0 - that incorporates the concept of Thing

(a device) on which several Items are connected.

In order to better meet the needs of the laboratory and to be consistent with the version of OpenHAB used
(2.4), I therefore upgraded this package creating a new project: iot bridge upgrade.
I integrated the notion of Thing and a diagnostic topic to monitor all devices via rqt robot monitor.

7

Figure 4.3: Overview diagram of the iot bridge upgrade package

• /iot command (diagnostic msgs/KeyValue)
When iot bridge receives a name/value pair from the ROS iot command topic, it publishes those to OpenHAB
and OpenHAB sends that command to the device specified.

• /iot set (diagnostic msgs/KeyValue)
When the iot bridge receives a name/value pair from the ROS iot set topic, it publishes those to OpenHAB
and OpenHAB updates the status for the item specified (e.g. indicates that a switch is now ON).

• /iot updates (diagnostic msgs/KeyValue)
The IoT bridge receives updates from OpenHAB and publishes those as name/value pairs to the iot updates
ROS topic.

• /diagnostics (diagnostic msgs/DiagnosticArray)
The IoT bridge receives updates from OpenHAB and publishes those under a DiagnosticArray message to the
/diagnostic agg ROS topic to be monitored by rqt robot monitor.

4.3 IP Camera

My biggest project was to integrate an IP Camera in the environment of the robot so that the robot can fulfill
missions such as locating an object in the apartment using its own cameras and the IP camera in place. The IP
camera was positioned on the ceiling above the apartment.

4.3.1 Redefine the strategy

When choosing the adopted strategies and the camera, the connection between the camera and the robot should
be via iot bridge. The camera had to be linked to OpenHAB and communicates via ROS through the bridge.
However, after having configured the associated blinding, the speed and the possible action panel were very bad.
This did not allow to use the camera dynamically by the robot. So I had to adapt the strategy regarding the camera.

Thus, I developed a set of programs so that the chosen IP camera is both usable by the robot via ROS, but
also usable directly from the network, while being integrated with OpenHAB.

4.3.2 Manage the camera

The advantage of the chosen camera is that it has an integrated API in the form of HTTP GET requests. This
API allows you to configure videos, control the movement of the PTZ (Pan, Tilt, Zoom) camera, take snapshots,
etc. The question then arose as to whether the programming of a ”driver” using this API should do this in Python
or C++, being the two languages that can be easily integrated with ROS.
After some research, a Python module - python-amcrest - already existing, I turned to this language.

8

https://github.com/tchellomello/python-amcrest

The module does not include all the integrated features. Thereby, I upgraded it so that it can be integrated
into ROS with the necessary features. Two features have been added:

• Possibility of audio recording for a given duration

• Possibility of saving a PTZ position (preset point)

The version incorporating these changes is available in a Git repository on my account : python-amcrest ros used
branch (https://github.com/KevinBdn/python-amcrest). The second feature has resulted in a merge request
with the official module.

4.3.3 ROS integration

The python-amcrest module, being updated, I could create the following ROS package: amcrest ip camera. The
package aims to interact with the HTTP API of the camera through different topics. It is therefore a question of
making a second API usable via ROS.

You can check the class diagram of the package developed in the annex. Here is how you can interact with
the camera via ROS:

Figure 4.4: Graph node of the amcrest ip camera package

Two main topics are used as Subscriber

• /ip camera position: In the form of Point message, moves the camera according to PTZ configuration.

• /ip camera order : in the form of KeyValue message, allows a whole range of action of the camera described
in the following table.

9

https://github.com/KevinBdn/python-amcrest

Key Description
Goto Move the camera to a saved Place
SaveAs Save the current PTZ configuration as a Place
Remove Remove a saved Place
RTSP Enable/Disable the RTSP stream
AudioRec Record audio for a predefined time
AudioPlay Play an audio file
Mirror Configure the Image as the mirror of the current Image
Flip Flip the Image
Scan Scan the apartment looking for an Aruco
ScanImgPub Enbale/Disable the analyzed images during the scan routine
SetTarget Define the Aruco targeted during the scan routine
SetRoutine Define the place order during the scan routine
AddTarget Add an Aruco to the targeted Aruco list
RemoveTarget Remove an Aruco from the targeted Aruco list
Reboot Reboot the camera
VideoMode Change the video configuration
Move Change the PTZ configuration - Up/Down/Left/Right/etc
Zoom Zoom In or Out

Table 4.1: Available Key order in the amcrest ip camera package

In addition, the current status of the camera is published in a diagnostics message that can monitor whether or
not it works via rqt robot monitor.

Figure 4.5: rqt robot monitor from amcrest ip camera package

4.3.4 Meet the missions

The camera now integrated with ROS, it is possible to meet the missions that will be entrusted to it. For that, I
will go back in more details on some of the developed functionalities.

4.3.4.1 PTZ controller

A proportional controller has been integrated. The manufacturer’s HTTP API allows to send a single start or
stop command in one direction (left, right, up, down) with a speed ranging from 1 to 8. The same applies for the
zoom. The API also provides the possibility of getting the current PTZ configuration.
However, even when sending a start then stop request with a minimum speed, the camera takes a while to process
the HTTP requests - the minimum step is about 0.3°for the pan or the tilt. In addition you should know that the
camera has a ”no-go” area at the Pan angle between 180° and 185°. Regarding the zoom, there are 5 levels of

10

current state but the level between two levels is very wide so that for the same zoom value, the actual magnification
can be different.
Thanks to these various elements, I was able to create a regulator allowing to position the camera in a desired
PTZ configuration. In reality, there are three separated regulators because the camera can only handle one type of
movement at a time.
Here is the simplified algorithm implemented for the Pan angle controller:

Algorithm 1 Simplified Pan angle controller

1: function Sawtooth(α) . Implementation in degrees
2: β ← (α+ 180) mod (360)− 180
3: return β

4:

5: function Pan error(θ, θ̄)
6: ε← Sawtooth(θ − θ̄)
7: if ε < 0 and no-go zone is between θ and θ̄ then
8: ε← ε+ 360
9: else if ε > 0 and no-go zone is between θ̄ and θ then

10: ε← ε− 360

11: return ε
12:

13: function Pan controller(θ̄,∆θ,∆t,K)
14: if θ̄ is in the no-go zone then . θ̄: Goal Pan angle
15: θ̄ ← 180°or 185°according to the nearest angle

16: θ ← Reading the current Pan angle
17: ε← Sawtooth(θ − θ̄)
18: while |ε| > ∆θ do . ∆θ: maximum error
19: u← bmin(8,K.|ε|)c . K: proportionality coefficient
20: if ε < 0 then
21: Move the camera to the right at speed set to u
22: else
23: Move the camera to the left at speed set to u

24: Wait for ∆t seconds . ∆t: time interval
25: if |ε| < 7 then
26: Stop the camera . Step by step when the error is low

27: θ ← Reading the current Pan angle
28: ε← Sawtooth(θ − θ̄)

Here is schematically the utility of the Pan error function:

Figure 4.6: Illustration of the Pan error function

4.3.4.2 Place saving

Now able to position the camera in a desired configuration thanks to the controller, I set up an association between
a particular position and a place. Thus after configuration, using the Order topic with Goto as key, you can point

11

the camera on the Kitchen, Living room, Bedroom, TV, etc., of the apartment. This feature will be very useful
later. The dictionary thus created is saved in a local .yaml file to keep in memory this association.

4.3.4.3 Calibration

What is calibration ?

Calibrating a camera consists in determining the point transformation that passes from the 3D point expressed
in an absolute coordinate system to its image.
It is thus necessary to model the optics of the camera (intrinsic parameters) and to determine the transformation
absolute reference / camera reference (extrinsic parameters).
Without calibration we use a simplified model:

• Hypothesis of an image plan

• Pixels regularly spaced on the image plane are assumed

• No geometric distortion (the image of a line is a straight line)

This type of simplified model is used in most cameras marketed at low prices, including the chosen IP camera.

Figure 4.7: Illustration of the pinhole camera model (7)

P (X,Y, Z) ∈ Rc(Fc, Xc, Yc, Zc)
Q(x, y) ∈ (O, x, y), (x, y) in millimeters and (u, v) in pixels with:

1
ku

the horizontal dimension of the pixel in mm.
1
kv

the vertical dimension of the pixel in mm.

and: {
x
f = X

Z
y
f = Y

Z

But: {
u/(O,x,y) = ku.x+ u0
v/(O,x,y) = kv.v + v0

⇒
{
Z.u = ku.f.X + u0.Z
Z.v = kv.f.Y + v0.Z

It is about finding αu = ku.f , αv = kv.f , u0 and v0 (intrinsic parameters).
The matrix written in homogeneous coordinates is:s.us.v

s

 =

αu 0 u0
0 αv v0
0 0 1


︸ ︷︷ ︸

K

.

XY
Z



12

The transformation absolute reference (R0(F0, X0, Y0, Z0)) / camera reference (Rc(Fc, Xc, Yc, Zc)) is a displacement
defined by a rotation R and a translation T :XY

Z

 = R.

X0

Y0
Z0

+ T = [R T].


X0

Y0
Z0

1


So: s.us.v

s

 = K.[R T]︸ ︷︷ ︸
P

.


X0

Y0
Z0

1


Calibrate a camera means finding its perspective projection matrix P .

How to calibrate ?

To do this, many processes exist. One of them is to calculate P with a plane object whose geometry is known.
The parameters are calculated from the observation of several views of the object without needing to know their
position (8). The method can be used via opencv and is described in the official documentation following robust
methods (9).

Figure 4.8: Calibration process

I used a ROS package - ros calibration - that allows to calculate the coefficients associated with the matrix P
by using a checkerboard whose number of boxes and dimension of a square are entered in parameter. I had to
publish the camera image and camera information under two topics and launch the camera calibration package.
In order to obtain the result, it is necessary to move the checkerboard in the image of the camera in X, Y and
Z then according to the corresponding angles. The package then generates a .yaml file containing all the coefficients.

(a) (b)

Figure 4.9: Illustration of the correction: during (a) and after (b) the calibration

4.3.4.4 Aruco detection

Now that the IP camera is calibrated, it can be used to detect objects. The objects used are binary square fiducial
markers, this form makes them particularly robust to error detection. The ones the lab uses are Aruco.

Two possibilities could be exploited:

13

http: //wiki.ros.org/camera calibration/Tutorials/MonocularCalibration
http://www.uco.es/investiga/grupos/ava/node/26

• Use OpenCV which has an Aruco library, do the processing via this library directly in the package and publish
the result

• Use the ROS package aruco detect which must first have an already corrected image

Schematically here are the two solutions:

Figure 4.10: Aruco detection directly using OpenCV library

Figure 4.11: Aruco detection using aruco detect ROS package

ROS consuming many resources, I chose to do the treatment internally in the package and not to use the existing
package. After implementation we obtain such results:

Figure 4.12: Result of an Aruco detection

Having the calibration - by image processing - the Aruco library of opencv makes possible to obtain the vectors of
translation and rotation of the Aruco in the reference frame of the camera.

4.3.4.5 Scan algorithm

The camera is now able to:

• Point in a desired direction

14

http://wiki.ros.org/aruco detect

• Detect an Aruco and locate it in the camera reference frame

We can now consider an algorithm allowing the camera to scan the apartment in search of an Aruco and providing
its location in the reference frame of the apartment.
Here is the simplified algorithm in the form of a flowchart:

Figure 4.13: Flowchart of the simplified scan algorithm

It is therefore divided into two main threads:

• The first is to make two turns of the different places defined in arguments. For each place we capture K
(integer in argument) photos (from the stream RTSP) to have slightly different images for the same place.
These captures are stored in an image queue to be analyzed. During the first turn, the camera configuration
is in a first mode in Black and White with a high contrast, which allows to see better the Aruco. During the
second turn, the camera is in a color mode. Thus we finally capture 2.K images including K of each mode.

• The second is to scroll through the queue of images to be analyzed from the first thread. As soon as a new
image appears, it is analyzed to detect an Aruco. If this is the case, then one calculates its position in the
reference frame of the apartment having the configuration in Pan and Tilt of the camera, knowing its initial
position and obtaining the position of the Aruco in the reference frame of the camera. We can then make a
change of reference and publish the position of the calculated Aruco and the place in which it was detected.

The use of threads allows you to go faster by doing parallel operations. Thus, the analysis of the images can be
done while the scan routine continues. For instance, the scan of the apartment in 9 places with K = 8, so 144
images, is in about 2 minutes.

15

4.3.5 OpenHAB integration

The camera can be managed from the online HMI provided by the manufacturer and now from ROS. It seemed inter-
esting to me to control it from OpenHAB2, the initial idea. So I created a new Gitlab project: ip camera openhab.
This project consists in generating the necessary scripts to integrate the camera, used by OpenHAB2 from two con-
figuration files:

• The first being the necessary information for its use ie: IP address, user, password, port.

• The second is the dictionary of places and preset points that can be generated and modified via ROS (see
above).

The principle is then to generate switches for each recorded place making it possible to point the camera according
to the corresponding place. But also to have a visual via MJPG stream that can be enabled or disabled (to save
the bandwidth of the network). It is by directly using the HTTP GET requests of the manufacturer’s API that it
is possible to integrate these elements to OpenHAB2.

Thus the generator program resulting from this project is based on Parser techniques in order to generate codes.
I used Python3.6 and the Jinja2 module for their ease of use to generate scripts based on templates. In addition,
this program allows you to add several different cameras using different configuration files, that can be useful if the
laboratory decides to buy new IP cameras.

The generated scripts are:

• The interrupter - .items - associated with the camera: Multi-choice switch for the places and the switch for
activating or deactivating the MJPG stream.

• An entity - .sitemaps regrouping these switches, as well as the video stream.

(a) (b)

Figure 4.14: The script generator process (a) and its result in HABPanel (b)

After comparison, this method allows a much faster camera management via OpenHAB2 than when using the
developing binding initially considered.

4.4 Global view

Here then in schematic form all the projects developed and previously presented allowing the implementation of
the IoT part:

16

Figure 4.15: Global IOT architecture developed

Each blue description of the legend is a project or tutorial I have developed available on Gitlab and/or Github:

• Alexa skill: alexa openhab (4.2.3)

• Database saving: OpenHab-MySQL (4.2.2)

• IoT bridge: iot bridge upgrade (4.2.4)

• Python Amcrest module: python-amcrest ros used branch (4.3.2)

• Amcrest ROS package: amcrest ip camera (4.3.3)

• Scripts generator: ip camera openhab (4.3.5)

17

https://gitlab.iri.upc.edu/perception/lab/iot_apartment/alexa_openhab
https://gitlab.iri.upc.edu/perception/lab/iot_apartment/openhab-mysql
https://gitlab.iri.upc.edu/perception/lab/iot_apartment/iot_bridge_upgrade
https://github.com/KevinBdn/python-amcrest/tree/ros_used
https://gitlab.iri.upc.edu/perception/lab/iot_apartment/amcrest_ip_camera
https://gitlab.iri.upc.edu/perception/lab/iot_apartment/ip_camera_openhab

Chapter 5

Tests and results

5.1 Simulations

In order to implement the various developed elements of the camera, I went through a simulation phase for the pan
controller (being the most complex) and the location of the Aruco in the reference system of the apartment.

5.1.1 Pan controller simulator

The simulator allowed me to study the behavior of the regulator according to the configuration of the camera. For
example, it is possible to reverse the directions of the following pan and tilt angles if the mirror and flip modes are
on or off.
The figures below represent to the right the camera seen from above with the red cross being the objective to reach
and the blue arc being the movement of the camera made. On the left is the error with respect to the setpoint.

(a) (b)

Figure 5.1: Pan controller simulator: Error evolution (a) and evolution of camera movement (b)

In order to better adjust the proportionality coefficient of the implemented controller, I introduced a Gaussian noise
in the time lag between two consecutive measurements, which represents the minimum execution time between two
HTTP requests from the camera queue. During this time the camera continues its motion, resulting in a minimum
angle of about 0.3°. In some cases, a slight overshoot can be obtained, that can be accompanied by oscillations.
This can be reduced by choosing a higher ∆θ (of the order of 0.4°/0.5°) which will represent the uncertainty of the
position of the regulator.

5.1.2 Location simulator

In order to locate in the reference frame of the apartment an Aruco detected in the reference frame of the camera,
I simulated the calculations to implement the good formulas within the ROS package.
In a first time, it allows to calibrate the initial position of the camera in the apartment. By positioning the Aruco in
the center of the apartment’s reference frame, measuring its depth knowing the Pan and Tilt angles, the simulator
can estimate the initial position P0 of the camera.
Then in a second time, it allows to check the consistency of the calibration, which provides the location of the Aruco
in its reference frame. Thus by recovering, from an image with Aruco detection, the Aruco translation vector Vt as
well as the rotation vector Vr, the simulator can locate and return the position and orientation of the Aruco in the
reference frame of the apartment.

18

(a) (b)

Figure 5.2: Location simulator: Calculated coordinates (a) and the location (b) with the representation of: the
camera (up), the Aruco (middle) and the apartment origin (down)

The new translation vector Vt is obtained by reference frame change:

Vt/Apartment =

cos(θ) −sin(θ) 0
sin(θ) cos(θ) 0

0 0 1


︸ ︷︷ ︸

θ=Pan angle

.

1 0 0
0 cos(φ) −sin(φ)
0 sin(φ) cos(φ)


︸ ︷︷ ︸

φ=Tilt angle︸ ︷︷ ︸
RC

.Vt/Camera + P0︸︷︷︸
Initial camera position

The new matrix rotation R/Apartment is obtained by combining the rotation matrix of the camera RC , known thanks
to its angles Pan and Tilt, and that generated by the Rodrigues’ formula (10), R/Camera, from the rotation vector
Vr provided by the camera.

ψ ← ||Vr||
Vr ← Vr

ψ

R/Camera = cos(ψ).I + (1− cos(ψ)).Vr.V
T
r + sin(ψ).

 0 −Vrz Vry
Vrz 0 −Vrx
−Vry Vrx 0


R/Apartment = R/Camera.RC

5.2 Integration tests

Two main integration tests were carried out. They made it possible to test communicating elements through
different links of the IoT chain thus developed. The first is to test the chain between ROS and OpenHAB2 via
iot bridge. The second one aims to test the apartment scan algorithm in its entirety until the communication of the
location of the Aruco in the apartment.

5.2.1 Wallplug test

The Wallplug test was a test performed in order to check the behavior of OpenHAB2, the OpenHAB MySQL
database, the iot bridge upgrade package and its topics. During the test period, the wallplug is switched ON and
switched OFF two times per day. The command is send to the iot command topics of the iot bridge package from
the wallplug test node of the Wallplug python script.
At each new command, the database is checked before sending the command and one second later to control the
proper operation of the data recording when a change of state occurs.

The command line is tested as follow:

• An user wants to activate an device through ROS

• The iot command topic catch the order

• The order is send to OpenHAB through the iot bridge

• OpenHAB changes the state of the Item

19

• The MySQL persistence saves the new value into the OpenHAB database

Figure 5.3: Wallplug test process

You can check the results of the test in the report.log file in annex which was generated by the wallplug test
script during the test. Notice that on the Raspberry (and so in the database) the time is UTC (so there are two
hours difference between the time in the log info and the time in the database info). As hoped, the command line
works well and fast, there is less than one second between the publication of the command to the iot command
topic and the data saving into the database.

5.2.2 Scan routine

It is a matter of testing the entire scan algorithm of the camera. For this, the package is launched on the Rapsberry
Pi and must provide to a computer - connected on the same local network - the Aruco position in the apartment.

The command line tested is:

• Export the ROS Master to a network computer

• Stimulation of the ip camera order node to start the scan

• Running the scan algorithm internally

• Report the current state of the camera via the diagnostics node

• Sending results via ip camera scan result broadcast node of the camera and Aruco TF

• Visualization of the results via RVIZ

20

Figure 5.4: Scan routine test process

You can thus compare the result of RVIZ with the actual location of the Aruco in the apartment.

Figure 5.5: Result of the Scan routine test

As expected the detection of Aruco works well and its location in the apartment is good with an error of the
decimeter. The error on the position is not a real problem because the purpose of this algorithm is to provide an
indication to the robot so that it can get a visual itself on the Aruco. Thus the geographical indication - Kitchen,
TV, Linving room, etc. - is sufficient for this use.

21

5.3 Mission of Aruco detection

After having implemented the scan algorithm in the ROS package, we are now able to use it with TIAGo in a
mission of Aruco detection. Here is, under a flowchart form, an algorithm tested to success this kind of mission.

Figure 5.6: Flowchart of the algorithm used in the mission of Aruco detection

To make it possible, I used the Lab’s API on a computer making the bridge between the Raspberry Pi and TIAGo
and providing a way to monitor the mission.

Here is the process used in the performed test:

Figure 5.7: Architecture used in the mission of Aruco detection

1. An Aruco is placed on the table in the living room near to the sofa. The TIAGo is the bedroom.

22

2. TIAGo does not find the Aruco using its own camera. The scan routine from the amcrest ip camera
package on the Raspberry Pi is started with a ROS export on the monitoring computer. When the scan
routine finds an Aruco, it publishes its location on the ip camera scan/result/place topic.

3. TIAGo is ordered to go to the corresponding place.

4. TIAGo finds the Aruco by itself using its own camera.

Here are the Aruco detection from the IP Camera and that by TIAGo at the end of the process.

a.

b.

Figure 5.8: Aruco detection by the camera (a.) and by TIAGo (b.)

This example of implementation shows that it is useful to use IoT devices in a mission for assistive automation. We
can now imagine more complex algorithms and missions where IoT devices are part of the robot’s environment.

23

Chapter 6

Conclusion

6.1 About the project

All my work has shown that it was currently possible to integrate the many devices of the world of IoT within a
service robot using the ROS middleware. Such an implementation not only enriches the robot’s sensors but also
increases its range of actions. The use of IoT in robotics thus makes it possible to increase the speed with which
a robot can take information by providing it these new tools. As we do it, the robot - according to the mission
which has been given to it - can use or not this information. I was able to highlight this phenomenon through the
mission of detection and location of an Aruco in the apartment. However, I have found that the fragility of this
union relies on - like most of our current technologies - the capacity and the robustness of the network in which it
evolves. Indeed, the use of these many IoT protocols, the IP camera in real time, as well as the ROS middleware
in multimaster and / or export consumes a lot of bandwidth of the local network. Furthermore, using several IoT
devices such IP cameras can consume more resources than a Raspberry Pi 3B+ is able to provide. It would therefore
be interesting to study solutions to ensure that the exchange of information between these various elements is at
their maximum capacity and is neither curbed nor slowed down by the network nor by the hardware in which they
operate.
More globally, this project adds a brick to the features developed by the Perception and Manipulation laboratory.
This is how the laboratory works, each thesis subject, each project, each research allows, thanks to the modularity of
the ROS architecture implemented in the Tiago robots, to build a much larger and more robust system, project after
project. My project has therefore formed the basis for IoT within this laboratory and should allow its integration
into other projects.
To finish all of my work is also available in the form of a technical report (1) which resulted in a publication under
the reference IRI-TR-19-03, published by the CSIC-UPC on the site of the institute.

6.2 Personal

More personally this project allowed me to discover the functioning of a laboratory animated by thesis and end of
studies project. Indeed I was able to take part in various experiments conducted by doctoral students. I have also
been able to improve my english by writing daily and communicating within the laboratory as well as my Spanish
using it in everyday life.
From a technical point of view, I learned a lot about IoT and ROS. In addition, the daily use of Git has brought
me a lot in terms of the structure and operation of a collaborative program. It is the same regarding the C, C++
and Python programming.
I have also been able to use and enrich knowledge acquired in the classroom such as controller, reference frame
changes, parsing techniques and image processing.
Thus this internship was very enriching as well on the technical, theoretical as human level.

24

 https://www.iri.upc.edu/publications/show/2223

Bibliography
[1] K. Bedin, S. Foix, and G. Alenya, “Robots and IoT devices for assistive automation IRI Technical

Report,” p. 40.

[2] L. Columbus, “10 charts about the iot’s growth,” June
2018. [Online]. Available: https://www.forbes.com/sites/louiscolumbus/2018/06/06/
10-charts-that-will-challenge-your-perspective-of-iots-growth/#7baeeca33ecc

[3] I. F. of Robotics, “Why service robots are booming worldwide IFR forecasts sales up 12%,” Oct. 2017.
[Online]. Available: https://ifr.org/downloads/press/2017-10-11 PR IFR World Robotics Report 2017
Service Robots ENG FINAL 1.pdf

[4] “IRI - Robots and IoT devices for assistive automation.” [Online]. Available: https://www.iri.upc.edu/
pfc/show/179

[5] G. A. A. de Oliveira, R. W. de Bettio, and A. P. Freire, “Accessibility of the smart home for users with
visual disabilities: an evaluation of open source mobile applications for home automation.” ACM, Apr.
2016, p. 29.

[6] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and A. Y. Ng, “ROS: an
open-source Robot Operating System,” in ICRA workshop on open source software, vol. 3. Kobe, Japan,
2009, p. 5.

[7] “Camera Calibration and 3d Reconstruction OpenCV 2.4.13.7 documentation.” [Online]. Available:
https://docs.opencv.org/2.4/modules/calib3d/doc/camera calibration and 3d reconstruction.html

[8] Z. Zhang, “A Flexible New Technique for Camera Calibration,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 22, Dec. 2000.

[9] J. Heikkila and O. Silven, “A four-step camera calibration procedure with implicit image correction,” in
cvpr, vol. 97. Citeseer, 1997, p. 1106.

[10] J. S. Dai, “EulerRodrigues formula variations, quaternion conjugation and intrinsic connections,” Mech-
anism and Machine Theory, vol. 92, pp. 144–152, Oct. 2015.

25

https://www.forbes.com/sites/louiscolumbus/2018/06/06/10-charts-that-will-challenge-your-perspective-of-iots-growth/#7baeeca33ecc
https://www.forbes.com/sites/louiscolumbus/2018/06/06/10-charts-that-will-challenge-your-perspective-of-iots-growth/#7baeeca33ecc
https://ifr.org/downloads/press/2017-10-11_PR_IFR_World_Robotics_Report_2017_Service_Robots_ENG_FINAL_1.pdf
https://ifr.org/downloads/press/2017-10-11_PR_IFR_World_Robotics_Report_2017_Service_Robots_ENG_FINAL_1.pdf
https://www.iri.upc.edu/pfc/show/179
https://www.iri.upc.edu/pfc/show/179
https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html

List of Figures
4.1 HAB Panel screenshot . 6

4.2 Database from MySQL Persistence . 7

4.3 Overview diagram of the iot bridge upgrade package . 8

4.4 Graph node of the amcrest ip camera package . 9

4.5 rqt robot monitor from amcrest ip camera package . 10

4.6 Illustration of the Pan error function . 11

4.7 Illustration of the pinhole camera model (7) . 12

4.8 Calibration process . 13

4.9 Illustration of the correction: during (a) and after (b) the calibration 13

4.10 Aruco detection directly using OpenCV library . 14

4.11 Aruco detection using aruco detect ROS package . 14

4.12 Result of an Aruco detection . 14

4.13 Flowchart of the simplified scan algorithm . 15

4.14 The script generator process (a) and its result in HABPanel (b) . 16

4.15 Global IOT architecture developed . 17

5.1 Pan controller simulator: Error evolution (a) and evolution of camera movement (b) 18

5.2 Location simulator: Calculated coordinates (a) and the location (b) with the representation of: the
camera (up), the Aruco (middle) and the apartment origin (down) 19

5.3 Wallplug test process . 20

5.4 Scan routine test process . 21

5.5 Result of the Scan routine test . 21

5.6 Flowchart of the algorithm used in the mission of Aruco detection 22

5.7 Architecture used in the mission of Aruco detection . 22

5.8 Aruco detection by the camera (a.) and by TIAGo (b.) . 23

26

Annex

Class diagram of the amcrest ip camera ROS package

27

Wallplug test : report.log file

1 [21 _06_2019 -16 H07m22s] ’Start test ’

2 [21 _06_2019 -16 H07m22s] ’* ON order date: [’21_06_2019 -16 H08m10s ’,

’21_06_2019 -22 H14m12s ’, ’22_06_2019 -10 H00m34s ’, ’22_06_2019 -18 H06m10s ’,

’23_06_2019 -14 H00m55s ’, ’23_06_2019 -21 H44m10s ’, ’24_06_2019 -03 H00m10s ’,

’24_06_2019 -15 H22m10s ’]’

3 [21 _06_2019 -16 H07m22s] ’* OFF order date: [’21_06_2019 -16 H11m25s ’,

’21_06_2019 -22 H15m10s ’, ’22_06_2019 -10 H05m08s ’, ’22_06_2019 -18 H07m10s ’,

’23_06_2019 -14 H01m03s ’, ’23_06_2019 -21 H46m10s ’, ’24_06_2019 -05 H00m10s ’,

’24_06_2019 -15 H34m10s ’]’

4 [21 _06_2019 -16 H08m10s] ’ It ’s time to send <ON >’

5 [21 _06_2019 -16 H08m10s] ’ [MySQL] Previous value - 2019 -06 -21 14:03:25 OFF ’

6 [21 _06_2019 -16 H08m10s] ’ [ROS] Command <ON > sent to <HTC02_Switch >’

7 [21 _06_2019 -16 H08m11s] ’ [MySQL] New value - 2019 -06 -21 14:08:10 ON ’

8 [21 _06_2019 -16 H11m25s] ’ It ’s time to send <OFF >’

9 [21 _06_2019 -16 H11m25s] ’ [MySQL] Previous value - 2019 -06 -21 14:10:00 ON’

10 [21 _06_2019 -16 H11m25s] ’ [ROS] Command <OFF > sent to <HTC02_Switch >’

11 [21 _06_2019 -16 H11m26s] ’ [MySQL] New value - 2019 -06 -21 14:11:25 OFF ’

12 [21 _06_2019 -22 H14m12s] ’ It ’s time to send <ON >’

13 [21 _06_2019 -22 H14m12s] ’ [MySQL] Previous value - 2019 -06 -21 20:00:00 OFF ’

14 [21 _06_2019 -22 H14m12s] ’ [ROS] Command <ON > sent to <HTC02_Switch >’

15 [21 _06_2019 -22 H14m13s] ’ [MySQL] New value - 2019 -06 -21 20:14:12 ON ’

16 [21 _06_2019 -22 H15m10s] ’ It ’s time to send <OFF >’

17 [21 _06_2019 -22 H15m10s] ’ [MySQL] Previous value - 2019 -06 -21 20:14:12 ON ’

18 [21 _06_2019 -22 H15m11s] ’ [ROS] Command <OFF > sent to <HTC02_Switch >’

19 [21 _06_2019 -22 H15m12s] ’ [MySQL] New value - 2019 -06 -21 20:15:11 OFF ’

20 [22 _06_2019 -10 H00m34s] ’ It ’s time to send <ON >’

21 [22 _06_2019 -10 H00m34s] ’ [MySQL] Previous value - 2019 -06 -22 08:00:00 OFF ’

22 [22 _06_2019 -10 H00m34s] ’ [ROS] Command <ON > sent to <HTC02_Switch >’

23 [22 _06_2019 -10 H00m35s] ’ [MySQL] New value - 2019 -06 -22 08:00:34 ON ’

24 [22 _06_2019 -10 H05m08s] ’ It ’s time to send <OFF >’

25 [22 _06_2019 -10 H05m08s] ’ [MySQL] Previous value - 2019 -06 -22 08:00:34 ON ’

26 [22 _06_2019 -10 H05m08s] ’ [ROS] Command <OFF > sent to <HTC02_Switch >’

27 [22 _06_2019 -10 H05m09s] ’ [MySQL] New value - 2019 -06 -22 08:05:08 OFF ’

28 [22 _06_2019 -18 H06m10s] ’ It ’s time to send <ON >’

29 [22 _06_2019 -18 H06m10s] ’ [MySQL] Previous value - 2019 -06 -22 16:00:00 OFF ’

30 [22 _06_2019 -18 H06m10s] ’ [ROS] Command <ON > sent to <HTC02_Switch >’

31 [22 _06_2019 -18 H06m11s] ’ [MySQL] New value - 2019 -06 -22 16:06:10 ON ’

32 [22 _06_2019 -18 H07m10s] ’ It ’s time to send <OFF >’

33 [22 _06_2019 -18 H07m10s] ’ [MySQL] Previous value - 2019 -06 -22 16:06:10 ON ’

34 [22 _06_2019 -18 H07m10s] ’ [ROS] Command <OFF > sent to <HTC02_Switch >’

35 [22 _06_2019 -18 H07m11s] ’ [MySQL] New value - 2019 -06 -22 16:07:10 OFF ’

36 [23 _06_2019 -14 H00m55s] ’ It ’s time to send <ON >’

37 [23 _06_2019 -14 H00m55s] ’ [MySQL] Previous value - 2019 -06 -23 12:00:00 OFF ’

38 [23 _06_2019 -14 H00m55s] ’ [ROS] Command <ON > sent to <HTC02_Switch >’

39 [23 _06_2019 -14 H00m56s] ’ [MySQL] New value - 2019 -06 -23 12:00:55 ON ’

40 [23 _06_2019 -14 H01m03s] ’ It ’s time to send <OFF >’

41 [23 _06_2019 -14 H01m03s] ’ [MySQL] Previous value - 2019 -06 -23 12:00:55 ON ’

42 [23 _06_2019 -14 H01m03s] ’ [ROS] Command <OFF > sent to <HTC02_Switch >’

43 [23 _06_2019 -14 H01m04s] ’ [MySQL] New value - 2019 -06 -23 12:01:03 OFF ’

44 [23 _06_2019 -21 H44m10s] ’ It ’s time to send <ON >’

45 [23 _06_2019 -21 H44m10s] ’ [MySQL] Previous value - 2019 -06 -23 19:30:00 OFF ’

46 [23 _06_2019 -21 H44m10s] ’ [ROS] Command <ON > sent to <HTC02_Switch >’

47 [23 _06_2019 -21 H44m11s] ’ [MySQL] New value - 2019 -06 -23 19:44:10 ON ’

48 [23 _06_2019 -21 H46m10s] ’ It ’s time to send <OFF >’

49 [23 _06_2019 -21 H46m11s] ’ [MySQL] Previous value - 2019 -06 -23 19:44:10 ON ’

50 [23 _06_2019 -21 H46m11s] ’ [ROS] Command <OFF > sent to <HTC02_Switch >’

51 [23 _06_2019 -21 H46m12s] ’ [MySQL] New value - 2019 -06 -23 19:46:11 OFF ’

52 [24 _06_2019 -03 H00m10s] ’ It ’s time to send <ON >’

53 [24 _06_2019 -03 H00m10s] ’ [MySQL] Previous value - 2019 -06 -24 01:00:00 OFF ’

54 [24 _06_2019 -03 H00m10s] ’ [ROS] Command <ON > sent to <HTC02_Switch >’

55 [24 _06_2019 -03 H00m11s] ’ [MySQL] New value - 2019 -06 -24 01:00:10 ON ’

56 [24 _06_2019 -05 H00m10s] ’ It ’s time to send <OFF >’

28

57 [24 _06_2019 -05 H00m10s] ’ [MySQL] Previous value - 2019 -06 -24 03:00:00 ON ’

58 [24 _06_2019 -05 H00m10s] ’ [ROS] Command <OFF > sent to <HTC02_Switch >’

59 [24 _06_2019 -05 H00m11s] ’ [MySQL] New value - 2019 -06 -24 03:00:10 OFF ’

60 [24 _06_2019 -15 H22m10s] ’ It ’s time to send <ON >’

61 [24 _06_2019 -15 H22m10s] ’ [MySQL] Previous value - 2019 -06 -24 13:00:00 OFF ’

62 [24 _06_2019 -15 H22m10s] ’ [ROS] Command <ON > sent to <HTC02_Switch >’

63 [24 _06_2019 -15 H22m11s] ’ [MySQL] New value - 2019 -06 -24 13:22:10 ON ’

64 [24 _06_2019 -15 H34m10s] ’ It ’s time to send <OFF >’

65 [24 _06_2019 -15 H34m10s] ’ [MySQL] Previous value - 2019 -06 -24 13:30:00 ON ’

66 [24 _06_2019 -15 H34m10s] ’ [ROS] Command <OFF > sent to <HTC02_Switch >’

67 [24 _06_2019 -15 H34m11s] ’ [MySQL] New value - 2019 -06 -24 13:34:10 OFF ’

68 [25 _06_2019 -08 H41m06s] ’End test ’

29

Amcrest IP3M-941W IP camera features

Amcrest 3MP Dual Band Wi-Fi PTZ IP Camera

Technical Specifications

Model IP3M-941B, IP3M-941W

Camera

Image Sensor 1/3” Megapixel progressive scan CMOS

Effective Pixels 3M (2304x1296)

Scanning System Progressive

Electronic Shutter Speed Auto/Manual 1/3 (4) ~1/100000

Min. Illumination 0. 1Lux / F2.2 (Color), 0Lux / F2.2 (IR on)

S/N Ratio More than 56dB

Video Output N/A

Camera Features

Max. IR LEDs Length 10m (32.8ft)

Day/Night Auto (ICR) / Color / B&W

Backlight Compensation BLC / HLC / WDR

White Balance Auto / Manual

Gain Control Auto / Manual

Digital Zoom 16x

Noise Reduction 3D

Privacy Masking Up to 4 areas

Lens

Focal Length 4mm

Max Aperture F2.2

Focus Control Manual

Angle of View 90°

Lens Type Fixed lens

Video

Compression H.264H / H.264B / H.264 / MJPEG

Resolution 3M(2304x1296)/1080P(1920×1080)/720P(1280×720)/VGA(640x480)

Frame

Rate

Main Stream 3M(2304x1296) (1 ~ 20fps), 1080P/720p (1 ~ 30fps)

Sub Stream VGA (1 ~ 30fps)

 IP 3 M - 941

30

Bit Rate H.264H: 12K ~ 10240Kbps

Audio

Compression G.711MU, G711A, AAC

Interface 1 in/ 1 out

Network

Ethernet RJ-45 (10/100Base-T)

Wi-Fi 2.4GHz (802.11b/g/n) / 5GHz (802.11ac/a/n)

Protocol

IPv4/IPv6, HTTP, HTTPS, TCP/IP, UDP, UPnP, ICMP, IGMP, RTSP,

RTP

Interoperability ONVIF, PSIA, CG

Streaming Method Unicast / Multicast

Edge Storage NAS, FTP, Local PC, MicroSD Card (128GB)

Management Software

Amcrest Surveillance Pro (Windows/MAC)

Amcrest View Pro app for IOS and Android

AmcrestCloud.com Video Storage Subscription Service (Chrome,

Edge, Firefox, Safari)

Blue Iris Professional (Third Party)

Web Browser (Pale Moon, Sea Monkey, Firefox 49.0, Internet

Explorer, Chrome with Amcrest Extension, Safari)

Auxiliary Interface

Memory Slot Micro SD

Alarm Alarm in/ Alarm out

General

Power Supply DC5V, 2.0A

Power Consumption <7.5W

Working Environment -10°C~+45°C, Less than 95%RH

© 2019 Amcrest Technologies LLC

31

32

33

	Introduction
	Context
	Laboratory presentation
	Job description
	Available material

	Problem definition
	Problematisation
	State of the art
	OpenHAB - Centralize the IoT devices
	ROS - Communicate with TIAGo
	iot_bridge - Link ROS and OpenHAB
	Choosing an IP Camera
	Planned strategies

	Development
	Rapsberry Pi
	OpenHAB
	Sensors and actuators integration
	Data saving
	Voice integration
	iot_bridge

	IP Camera
	Redefine the strategy
	Manage the camera
	ROS integration
	Meet the missions
	PTZ controller
	Place saving
	Calibration
	Aruco detection
	Scan algorithm

	OpenHAB integration

	Global view

	Tests and results
	Simulations
	Pan controller simulator
	Location simulator

	Integration tests
	Wallplug test
	Scan routine

	Mission of Aruco detection

	Conclusion
	About the project
	Personal

	Bibliography
	List of figures

