

Internship report

ENSTA Bretagne
2 F. Verny street
29806 BREST Cedex 9
France

Alexandre ARGENTO
alexandre.argento@ensta-bretagne.org

Year 2018-2019
Semester 2

mailto:alexandre.argento@ensta-bretagne.org

 Alexandre Argento Page 2 / 30

Acknowledgements

I would like to thank my internship tutor Dr Jian Wan for his support and his availability during my
work in Plymouth University.

My thanks also go to the researcher Ulysse Vautier who provided me with some useful skills for
Arduino coding and helped me dealing with many issues I encountered.

 Alexandre Argento Page 3 / 30

Contents
I. Introduction .. 4

II. Pre-coding discussion .. 5

II.1. Project requirements ... 5

II.1.a) How autonomous ? .. 5

II.1.b) Work progression assessment ... 5

II.2. Environment and existing technology analysis .. 7

II.2.a) Use of sensors ... 7

II.2.b) FAST .. 8

II.3. Work tools ... 9

II.3.a) Code organization .. 9

II.3.b) Modularity .. 10

II.3.c) Bill of material... 11

III. Coding structure... 13

III.1. Information flow ... 13

III.2. Arduino structure ... 15

III.3. Protocols ... 16

IV. System intern security .. 18

IV.1. Robustness ... 18

IV.2. Risk list .. 19

V. Fleet building ... 22

V.1. Assembling.. 22

V.2. Fleet behavior ... 24

VI. Conclusion ... 26

VII. Appendices .. 27

VII.1. Arduino class architecture ... 27

VII.2. Code test protocol ... 27

VII.3. Code modification protocols .. 28

VII.4. Sensor integration protocol .. 28

VII.5. Actuator integration protocol .. 29

VII.6. ROS node integration protocol .. 29

VII.7. Maintenance protocol .. 29

 Alexandre Argento Page 4 / 30

I. Introduction

In order to complete my second year of studies at ENSTA Bretagne and my international training, I
chose to do my internship at the University of Plymouth, in the UK. For 12 weeks, I worked on the
development of autonomous sailboats.
This document aims to present my internship as an assistant researcher at the University of
Plymouth, from June 10th to August 30th.

Because of my interests in the research work about robotics, I wanted to study a specific area in
order to see how I could contribute. The subject of controlling a robot sailboat fits with my training
in robotics and practice of coding cards used for such systems. It also presents the specificity of
the robot’s movement, which, while having a low energy cost, requires a more complex decision in
choosing a path.

The research axis, wanted by my internship tutor Jian Wan, was to design an autonomous sailboat
with basic moving functions. I had to work, along with other interns, with the goal of making it
usable for testing more complex control command, including a fleet control. The “fleet” component
involves designing a sailboat so as to be able to reproduce it easily.

Despite the practical oriented aspect of the work of the other interns, I chose to direct my work
towards the project’s analysis that could help knowing how to use, test or improve it.
In particular, I started with the aggregation of data allowing the establishment of the budget and the
equipment used. The coding analysis is about the architecture and the way codes operate in the
sailboat. The following sections deal with the system’s use once his main code has been set up.

 Alexandre Argento Page 5 / 30

II. Pre-coding discussion

II.1. Project requirements

II.1.a) How autonomous ?

To begin with, the subject of developing an autonomous sailboat might need some clarification
about what is called “autonomous”.
In fact, speaking about autonomy is to be understood “at a certain level” because we won’t leave
full autonomy to the boats we are sending to the sea. Still, from a user’s point of view who has
simple requests, autonomy is the fact of dealing with problems that doesn’t require the user’s
attention for solving it. These problems may or may not occur depending on the environment the
system is facing.

In other words, autonomy can be considered as the resolution of sub-problems for which the
resolution doesn’t need the user’s consultation and has been previously implemented by the
designer.
For example, while sailing from a point A to a point B, we might have to:

 adapt according to the wind, which is rather obvious,
 avoid unexpected obstacles,
 deal with internal problems such as the lack of battery or a system crash, …

The identification of such features comes from analyzing the environment in which the robot has to
act. This environment generates problems if it contains elements that may slow down or
jeopardize the accomplishment of the robot’s task.
These features will be added in a FAST (Function Analysis System Technique) diagram, after
considering another utility when we use requirements, which is the work progression.

II.1.b) Work progression assessment

We can assess a work progression by defining goals reachable in terms of condition and
performance. The condition is the “if” of “if it works, then we can move on (…)” and the
performance is the “how”.
Outside of the requirements of the business world and the industry, rather in an opening field, a
research work tend more to reach the “if” than the “how”. In other words, it is better to evaluate
progress with conditions rather than performance. One might find wiser sometimes to use both
condition and performance for one task in order to divide it.
On the other hand, more in a business context, we might be looking into some specific conditions
already fulfilled and improve their performances.

We can now set up a FAST diagram of the project, by dividing the main objective into intermediate
tasks, from the left to the right. Features that are related to the autonomy viewpoint are
represented in green boxes. Requirements that are detailed in another FAST are represented in
purple boxes and technical solutions, in red circles.

Starting with the largest target:

Figure 1 – Autonomy illustration

Client’s request

Resolution

A B

A B

 Alexandre Argento Page 6 / 30

Then, for i in ⟦2, n⟧ :

Figure 2 – General FAST diagram

Autonomous sailboat i

Sailing

Electronic core

Low level treatment
Arduino Mega

board

High level treatment Raspberry Pi board

Power supply USB Battery

Power-control interface
Arduino motor

shield

Environmental data
capture

Sailing parameters control

Heading control

Speed control

Control algorithms

Obstacle avoidance

Intern problem adaptation

Response to low battery

Response to partial system
crash

Behavior control inside a
fleet

Distance regulation

Information recording

Design autonomous
sailboats sailing together

Autonomous fleet of n
sailboats

Autonomous sailboat 1

Autonomous sailboat 2

...

Autonomous sailboat n

Figure 3 – Sailboat FAST diagram

 Alexandre Argento Page 7 / 30

With, for the detailed control algorithms requirements:

The remote manual control is a security measure also convenient for testing, the idea is to be able
to regain control of the sailboat if there is a problem with its autonomous behavior. Hence the
manual control priority over autonomous mode, to be coded as well.
We will not treat the “Computer communication” requirement in this report, it is part of the work of
Matthieu Bouveron, another trainee from ENSTA Bretagne.

We haven’t yet completed the Sailboat FAST diagram with all the technical solutions to our
requirements. In order to do so, we need to analyze the inputs needed for our sailboat system in
order to fulfill its sailing function.

II.2. Environment and existing technology analysis

II.2.a) Use of sensors

We consider in the sailboat’s environment all physical signals that can be collected through
sensors and that can be significant for its sailing behavior.

Such sailing behavior can be defined by the state vector 𝑋⃗, which contains all parameters that
characterize the sailboat’s state. This state vector is important for giving any information for a
specific controller and can be used in order to implement a Kalman filter, tool used for helping the
sailboat locate itself.
Our state vector here will be the following:

𝑋⃗ =

(

𝑥
𝑦
𝜃
𝑣
𝜔)

Where 𝑥 and 𝑦 are the coordinates, either in a 2-dimensional plane, if we can consider the earth
flat in the sailing region, or as latitude and longitude. 𝜃 is the angle corresponding to the ship’s

heading relative to a fixed reference, 𝑣 is its velocity and 𝜔, its rotation speed.

Control algorithms

Remote autonomous mode
selection

(through computer)

Computer communication

Cap following

direction control Code

heading into the wind Code

Line following

Cap following Code

Position control Code

Remote manual control
(through playing remote)

Playing remote
communication

Code

Rudder and sail control Code

Manual control priority over
autonomous mode

Code

Figure 4 – Control algorithms FAST diagram

 Alexandre Argento Page 8 / 30

Sensors can be used in order to measure the state vector’s components and other information
needed such as the presence of obstacles and their distance or the apparent wind for path
planning. These sensors are presented in the table below:

Characteristic Symbol Sensor

Position (𝑥, 𝑦) GPS

Heading 𝜃 IMU (Inertial Measurement
Unit)

Velocity 𝑣 (no direct measurement)

Rotation speed 𝜔 IMU

Wind direction (apparent wind) 𝜓𝑎𝑝 Weathercock

Wind force (apparent wind) 𝑎𝑎𝑝 Anemometer

Presence of obstacles or fleet
sailboats

 Camera

Knowing the wind direction and strength is not only crucial to know how to sail against the wind,
but gives information about the sailboat’s behavior and how its state vector is affected.
The equations that characterize the evolution of the state vector are the following:

{

𝑥̇ = 𝑣 cos 𝜃 + 𝑝1𝑎 cos𝜓
𝑦̇ = 𝑣 sin𝜃 + 𝑝1𝑎 sin𝜓

𝜃̇ = 𝜔

𝑣̇ =
𝑓𝑟 sin 𝛿𝑠 − 𝑓𝑟 sin𝑢1 − 𝑝2𝑣

2

𝑝9

𝜔̇ =
𝑓𝑠(𝑝6 − 𝑝7 cos 𝛿𝑠) − 𝑝8𝑓𝑟 cos 𝑢1 − 𝑝3𝜔𝑣

𝑝10
𝛿𝑠 = 𝐹1(𝑎, 𝜓, 𝜃, 𝑣, 𝑢2)

𝑓𝑠 = 𝐹2(𝑣, 𝑢1)
𝑓𝑟 = 𝐹3(𝑎, 𝜓, 𝜃, 𝑣, 𝑢2)

𝑢1 and 𝑢2 are respectively the rudder angle and the mainsheet length that regulates the sail’s
opening.
The 𝑝𝑖 are coefficients related to the mechanical characteristics of the sailboat, 𝑓𝑠 is the force of the

wind on the sail, 𝑓𝑟 is the force of the water on the rudder,
𝜓 is the true wind angle, which is defined here because of the difference between the apparent

wind on the boat 𝜓𝑎𝑝 and the wind felt when we are not moving (𝜓). A relation 𝜓 = 𝐹4(𝜓𝑎𝑝, 𝑎, 𝜃, 𝑣)

allows us to find 𝜓 from available or measurable data. Likewise, 𝑎 is the true wind speed, obtained

from 𝜓𝑎𝑝, 𝜃, 𝑣 and the apparent wind speed 𝑎𝑎𝑝.

Without detailing the functions 𝐹1 , 𝐹2 and 𝐹3, we know that measuring the apparent wind speed
and direction will not only allow us to decide how to follow a cap, but also help localizing the
sailboat.

We can note that the IMU sensor uses a magnet to measure the sailboat’s heading. It will require a
regular calibration phase before

II.2.b) FAST

From here, we can complete the Sailboat FAST diagram with appropriate technical solutions:

Table 1 – Sensors for measurements needed

 Alexandre Argento Page 9 / 30

The battery level sensor was a requirement I left aside because I didn’t find any easy solution for
measuring the level of an USB battery.

II.3. Work tools

II.3.a) Code organization

The choice of using an Arduino board connected to a Raspberry Pi board has already been made
the past year by a researcher in the University of Plymouth and also other trainees. On the one
hand, the Arduino board has a low-level library to get sensor data the most effective way. On the
other hand, the Raspberry Pi board allows us to have more computing power in order to use a
middleware, ROS (Robot Operating System), and code more advanced control laws with
multithreading.

Autonomous sailboat i

Sailing

Electronic core

Low-level treatment Arduino Mega board

High-level treatment Raspberry Pi board

Power supply USB Battery

Power-control interface
Arduino motor

shield

Environmental data capture

Wind force Anemometer

Wind direction Weathercock

Position GPS

Inertial measurements and
heading

IMU

Sailing parameters control

heading control Rudder

speed control Sail

Control algorithms

Obstacle avoidance

Intern problem adaptation

Response to low battery

Code

Battery level sensor

Response to partial system
crash

Code

Behavior control inside a
fleet

Distance regulation Camera

Information recording Code

Figure 5 – Final sailboat FAST diagram

 Alexandre Argento Page 10 / 30

Communication between Arduino and Raspberry Pi can be done with the rosserial protocol, wich
will allow the Arduino board, once wired to the Raspberry Pi, to publish data on a specific topic and
to subscribe to other topics.

As a computer, I used the Raspberry Pi by connecting it to a screen, a mouse and a keyboard. The
code developed was stored in the Raspberry Pi and uploaded on an internet platform, Github.
All the codes were contained in the following two main folders, one for Arduino and the other to be
“launched” through the Raspberry Pi board:

 Arduino folder
 Main code (.ino)
 Low-level controller 1 (.cpp)
 Low-level controller 2 (.cpp)
 …
 Arduino libraries

 ros_lib (library for rosserial)
 Other Arduino library
 …
 Arduino class 1
 Arduino class 2
 …

 ROS workspace
 src

 ROS node 1 (.cpp)
 ROS node 2 (.cpp)
 …
 Launch file (.launch)

 CMakeLists.txt
 Package.xml

The folder Arduino libraries was only used for storage, as the Arduino software uses a specific
folder named “libraries”. When updating our local Arduino libraries for the first time, we need to put
the folders contained in the “Arduino libraries” folder inside the “libraries” folder used by Arduino.
However, to change code on any library, we can modify the local library files from the “libraries”
folder and save them later, on the “Arduino libraries” folder for storage and uploading it on Github.

Arduino (.ino files) code can be edited in the Arduino software along with the libraries and low-level
controllers in c++. When the code is ready for testing, the Upload function updates the Arduino
board with the main code (.ino) selected and the libraries in the local “libraries” folder.

ROS files such as nodes and launch files are edited in a local pre-created ROS workspace. Then,
all ROS features for launching the nodes, view topic information with rqt or visualize data with rviz
are command line to enter through command prompts.

II.3.b) Modularity

Something is modular if can fit several uses. Here, in our sailboat system, modularity can be used
in order to save time assembling the boat, changing its electronic components or programming it.
In order to build a fleet, the best guideline for choosing our components is to use ones that has
connections, that group the most functions we need and that we know to be reliable in terms of
availability. This way, the sailboat will be easier to build and less likely to have construction
defects.

Here is how we can represent our system, from a point of view of the connection between three
groups of elements:

 Alexandre Argento Page 11 / 30

The Electronic system groups all boards, electronic cables and sensors except for the sail and
rudder actuators which will already be included in the sailboat body on purchase.
What needs to be done is the supports that will allow some of the sensors to be secured to the
sailboat body, with the necessary protection against oxidation.
The compatibility between the code and electronic need to be established in a way that the ROS
workspace needs to be prepared and the Arduino local files filed.

II.3.c) Bill of material

The bill of material allows us to anticipate the project costs and theoretically follows from the
considerations made previously. However, me might need to compromise between the equipment
we already have and the ideal one. In my case, my internship tutor already knew a large part of the
material I was going to use, because of his experience. Hence, I gained time on the order of
components.

Component Model Price Availability Link

Sailboat Pro Boat
Ragazza 1
Meter
Sailboat V2

£285.99 Currently out
of stock

https://www.elitemodelsonline.co.uk/Boat
s/By-Manufacturer/Pro-Boat/22231-/Pro-
Boat-Ragazza-1-Meter-Sailboat-V2-RTR

GPS GlobalSat
BU-353-S4
USB GPS
Receiver

$26.08 OK https://www.amazon.com/GlobalSat-BU-
353-S4-USB-Receiver-
Black/dp/B008200LHW

Wind
sensor

Anemometer
for
MicroLogger
Weather
Station

£190.00 OK https://www.measurementsystems.co.uk/
sensors_and_meters/meteorological-
sensors/anemometer-for-micrologger-
weather-station-
analog?gclid=EAIaIQobChMIqvv0kcXA4
wIVh0PTCh2uvQp-
EAkYAyABEgIK0_D_BwE

Camera Raspberry Pi
camera v2.1

£24.00 OK https://shop.pimoroni.com/products/raspb
erry-pi-camera-module-v2-1-with-
mount?variant=19833929735¤cy=
GBP&utm_source=google&utm_medium
=cpc&utm_campaign=google+shopping&
gclid=EAIaIQobChMI--
vU26fB4wIViZ3VCh1dXgMtEAkYASABE

Sailboat body

Electronic system

Sensor
installation

Download from
Github,

Arduino Upload

Waterproof
protection

Cable
attachment

ROS and Arduino code

Figure 6 – Modularity and compatibility issues

https://www.elitemodelsonline.co.uk/Boats/By-Manufacturer/Pro-Boat/22231-/Pro-Boat-Ragazza-1-Meter-Sailboat-V2-RTR
https://www.elitemodelsonline.co.uk/Boats/By-Manufacturer/Pro-Boat/22231-/Pro-Boat-Ragazza-1-Meter-Sailboat-V2-RTR
https://www.elitemodelsonline.co.uk/Boats/By-Manufacturer/Pro-Boat/22231-/Pro-Boat-Ragazza-1-Meter-Sailboat-V2-RTR
https://www.measurementsystems.co.uk/sensors_and_meters/meteorological-sensors/anemometer-for-micrologger-weather-station-analog?gclid=EAIaIQobChMIqvv0kcXA4wIVh0PTCh2uvQp-EAkYAyABEgIK0_D_BwE
https://www.measurementsystems.co.uk/sensors_and_meters/meteorological-sensors/anemometer-for-micrologger-weather-station-analog?gclid=EAIaIQobChMIqvv0kcXA4wIVh0PTCh2uvQp-EAkYAyABEgIK0_D_BwE
https://www.measurementsystems.co.uk/sensors_and_meters/meteorological-sensors/anemometer-for-micrologger-weather-station-analog?gclid=EAIaIQobChMIqvv0kcXA4wIVh0PTCh2uvQp-EAkYAyABEgIK0_D_BwE
https://www.measurementsystems.co.uk/sensors_and_meters/meteorological-sensors/anemometer-for-micrologger-weather-station-analog?gclid=EAIaIQobChMIqvv0kcXA4wIVh0PTCh2uvQp-EAkYAyABEgIK0_D_BwE
https://www.measurementsystems.co.uk/sensors_and_meters/meteorological-sensors/anemometer-for-micrologger-weather-station-analog?gclid=EAIaIQobChMIqvv0kcXA4wIVh0PTCh2uvQp-EAkYAyABEgIK0_D_BwE
https://www.measurementsystems.co.uk/sensors_and_meters/meteorological-sensors/anemometer-for-micrologger-weather-station-analog?gclid=EAIaIQobChMIqvv0kcXA4wIVh0PTCh2uvQp-EAkYAyABEgIK0_D_BwE
https://www.measurementsystems.co.uk/sensors_and_meters/meteorological-sensors/anemometer-for-micrologger-weather-station-analog?gclid=EAIaIQobChMIqvv0kcXA4wIVh0PTCh2uvQp-EAkYAyABEgIK0_D_BwE
https://shop.pimoroni.com/products/raspberry-pi-camera-module-v2-1-with-mount?variant=19833929735¤cy=GBP&utm_source=google&utm_medium=cpc&utm_campaign=google+shopping&gclid=EAIaIQobChMI--vU26fB4wIViZ3VCh1dXgMtEAkYASABEgI0GfD_BwE
https://shop.pimoroni.com/products/raspberry-pi-camera-module-v2-1-with-mount?variant=19833929735¤cy=GBP&utm_source=google&utm_medium=cpc&utm_campaign=google+shopping&gclid=EAIaIQobChMI--vU26fB4wIViZ3VCh1dXgMtEAkYASABEgI0GfD_BwE
https://shop.pimoroni.com/products/raspberry-pi-camera-module-v2-1-with-mount?variant=19833929735¤cy=GBP&utm_source=google&utm_medium=cpc&utm_campaign=google+shopping&gclid=EAIaIQobChMI--vU26fB4wIViZ3VCh1dXgMtEAkYASABEgI0GfD_BwE
https://shop.pimoroni.com/products/raspberry-pi-camera-module-v2-1-with-mount?variant=19833929735¤cy=GBP&utm_source=google&utm_medium=cpc&utm_campaign=google+shopping&gclid=EAIaIQobChMI--vU26fB4wIViZ3VCh1dXgMtEAkYASABEgI0GfD_BwE
https://shop.pimoroni.com/products/raspberry-pi-camera-module-v2-1-with-mount?variant=19833929735¤cy=GBP&utm_source=google&utm_medium=cpc&utm_campaign=google+shopping&gclid=EAIaIQobChMI--vU26fB4wIViZ3VCh1dXgMtEAkYASABEgI0GfD_BwE
https://shop.pimoroni.com/products/raspberry-pi-camera-module-v2-1-with-mount?variant=19833929735¤cy=GBP&utm_source=google&utm_medium=cpc&utm_campaign=google+shopping&gclid=EAIaIQobChMI--vU26fB4wIViZ3VCh1dXgMtEAkYASABEgI0GfD_BwE
https://shop.pimoroni.com/products/raspberry-pi-camera-module-v2-1-with-mount?variant=19833929735¤cy=GBP&utm_source=google&utm_medium=cpc&utm_campaign=google+shopping&gclid=EAIaIQobChMI--vU26fB4wIViZ3VCh1dXgMtEAkYASABEgI0GfD_BwE

 Alexandre Argento Page 12 / 30

gI0GfD_BwE

IMU Groove IMU
10DOF v2.0

£14.00 OK https://www.unmannedtechshop.co.uk/pr
oduct/grove-imu-10dof-v2-0-mpu-9250-
and-
bmp280/?gclid=EAIaIQobChMI_pqHk9D
A4wIVRvhRCh2lzQRiEAkYASABEgIKC_
D_BwE

Raspberry
Pi board

Raspberry Pi
3 Model B+

£29.89 OK https://www.amazon.co.uk/Raspberry-Pi-
Model-64-Bit-
Processor/dp/B07BDR5PDW/ref=asc_df
_B07BDR5PDW/?tag=googshopuk-
21&linkCode=df0&hvadid=31081896063
9&hvpos=1o1&hvnetw=g&hvrand=11215
478279115832376&hvpone=&hvptwo=&
hvqmt=&hvdev=c&hvdvcmdl=&hvlocint=
&hvlocphy=9045313&hvtargid=pla-
433437388235&psc=1

Arduino
board

Arduino
Mega 2560
R3

£36.00 OK https://coolcomponents.co.uk/products/ar
duino-mega-2560-
r3?variant=45223081486¤cy=GBP
&gclid=EAIaIQobChMIy4Cvvs_A4wIVB1
XTCh3cAAL_EAkYASABEgLBiPD_BwE

Arduino
shield
sensor

Grove Mega
Shield V1.1

£5.95 OK https://www.ebay.co.uk/i/332587862928?
chn=ps&norover=1&mkevt=1&mkrid=710
-134428-41853-
0&mkcid=2&itemid=332587862928&targ
etid=594652109720&device=c&adtype=p
la&googleloc=9045313&poi=&campaigni
d=1700604133&adgroupid=6804208916
2&rlsatarget=pla-
594652109720&abcId=1140496&mercha
ntid=7388724&gclid=EAIaIQobChMIvuiR
r8_A4wIVk_dRCh3oWQ4kEAkYBSABEg
I8PfD_BwE

Arduino
shield
motor

Adafruit 1411
16-Channel
12-bit PWM
Servo Shield

£19.00 OK https://www.rapidonline.com/Adafruit-
1411-Servo-PWM-Shield-16-Channel-12-
bit-I2C-Interface-for-Arduino-75-
0558?IncVat=1&pdg=pla-
337654354019:kwd-337654354019:cmp-
757438067:adg-44804851896:crv-
207912323492:pid-75-0558:dev-
c&gclid=EAIaIQobChMIgIjt9szA4wIVxeF
RCh00iguGEAkYAiABEgLqfvD_BwE

The total expenses, without counting the assembling costs or 3D printing costs, amounts to
£630.91, which is, with the current conversion rate of £1=1.10€, equal to 694€.
The remote control is included in the sailboat price as it is part of the product.

We might face a problem with the sailboat’s availability and have to see if the company will resume
its distribution or if we can use another similar sailboat.

Table 2 – Bill of material

https://shop.pimoroni.com/products/raspberry-pi-camera-module-v2-1-with-mount?variant=19833929735¤cy=GBP&utm_source=google&utm_medium=cpc&utm_campaign=google+shopping&gclid=EAIaIQobChMI--vU26fB4wIViZ3VCh1dXgMtEAkYASABEgI0GfD_BwE
https://www.unmannedtechshop.co.uk/product/grove-imu-10dof-v2-0-mpu-9250-and-bmp280/?gclid=EAIaIQobChMI_pqHk9DA4wIVRvhRCh2lzQRiEAkYASABEgIKC_D_BwE
https://www.unmannedtechshop.co.uk/product/grove-imu-10dof-v2-0-mpu-9250-and-bmp280/?gclid=EAIaIQobChMI_pqHk9DA4wIVRvhRCh2lzQRiEAkYASABEgIKC_D_BwE
https://www.unmannedtechshop.co.uk/product/grove-imu-10dof-v2-0-mpu-9250-and-bmp280/?gclid=EAIaIQobChMI_pqHk9DA4wIVRvhRCh2lzQRiEAkYASABEgIKC_D_BwE
https://www.unmannedtechshop.co.uk/product/grove-imu-10dof-v2-0-mpu-9250-and-bmp280/?gclid=EAIaIQobChMI_pqHk9DA4wIVRvhRCh2lzQRiEAkYASABEgIKC_D_BwE
https://www.unmannedtechshop.co.uk/product/grove-imu-10dof-v2-0-mpu-9250-and-bmp280/?gclid=EAIaIQobChMI_pqHk9DA4wIVRvhRCh2lzQRiEAkYASABEgIKC_D_BwE
https://www.unmannedtechshop.co.uk/product/grove-imu-10dof-v2-0-mpu-9250-and-bmp280/?gclid=EAIaIQobChMI_pqHk9DA4wIVRvhRCh2lzQRiEAkYASABEgIKC_D_BwE
https://coolcomponents.co.uk/products/arduino-mega-2560-r3?variant=45223081486¤cy=GBP&gclid=EAIaIQobChMIy4Cvvs_A4wIVB1XTCh3cAAL_EAkYASABEgLBiPD_BwE
https://coolcomponents.co.uk/products/arduino-mega-2560-r3?variant=45223081486¤cy=GBP&gclid=EAIaIQobChMIy4Cvvs_A4wIVB1XTCh3cAAL_EAkYASABEgLBiPD_BwE
https://coolcomponents.co.uk/products/arduino-mega-2560-r3?variant=45223081486¤cy=GBP&gclid=EAIaIQobChMIy4Cvvs_A4wIVB1XTCh3cAAL_EAkYASABEgLBiPD_BwE
https://coolcomponents.co.uk/products/arduino-mega-2560-r3?variant=45223081486¤cy=GBP&gclid=EAIaIQobChMIy4Cvvs_A4wIVB1XTCh3cAAL_EAkYASABEgLBiPD_BwE
https://coolcomponents.co.uk/products/arduino-mega-2560-r3?variant=45223081486¤cy=GBP&gclid=EAIaIQobChMIy4Cvvs_A4wIVB1XTCh3cAAL_EAkYASABEgLBiPD_BwE
https://www.ebay.co.uk/i/332587862928?chn=ps&norover=1&mkevt=1&mkrid=710-134428-41853-0&mkcid=2&itemid=332587862928&targetid=594652109720&device=c&adtype=pla&googleloc=9045313&poi=&campaignid=1700604133&adgroupid=68042089162&rlsatarget=pla-594652109720&abcId=1140496&merchantid=7388724&gclid=EAIaIQobChMIvuiRr8_A4wIVk_dRCh3oWQ4kEAkYBSABEgI8PfD_BwE
https://www.ebay.co.uk/i/332587862928?chn=ps&norover=1&mkevt=1&mkrid=710-134428-41853-0&mkcid=2&itemid=332587862928&targetid=594652109720&device=c&adtype=pla&googleloc=9045313&poi=&campaignid=1700604133&adgroupid=68042089162&rlsatarget=pla-594652109720&abcId=1140496&merchantid=7388724&gclid=EAIaIQobChMIvuiRr8_A4wIVk_dRCh3oWQ4kEAkYBSABEgI8PfD_BwE
https://www.ebay.co.uk/i/332587862928?chn=ps&norover=1&mkevt=1&mkrid=710-134428-41853-0&mkcid=2&itemid=332587862928&targetid=594652109720&device=c&adtype=pla&googleloc=9045313&poi=&campaignid=1700604133&adgroupid=68042089162&rlsatarget=pla-594652109720&abcId=1140496&merchantid=7388724&gclid=EAIaIQobChMIvuiRr8_A4wIVk_dRCh3oWQ4kEAkYBSABEgI8PfD_BwE
https://www.ebay.co.uk/i/332587862928?chn=ps&norover=1&mkevt=1&mkrid=710-134428-41853-0&mkcid=2&itemid=332587862928&targetid=594652109720&device=c&adtype=pla&googleloc=9045313&poi=&campaignid=1700604133&adgroupid=68042089162&rlsatarget=pla-594652109720&abcId=1140496&merchantid=7388724&gclid=EAIaIQobChMIvuiRr8_A4wIVk_dRCh3oWQ4kEAkYBSABEgI8PfD_BwE
https://www.ebay.co.uk/i/332587862928?chn=ps&norover=1&mkevt=1&mkrid=710-134428-41853-0&mkcid=2&itemid=332587862928&targetid=594652109720&device=c&adtype=pla&googleloc=9045313&poi=&campaignid=1700604133&adgroupid=68042089162&rlsatarget=pla-594652109720&abcId=1140496&merchantid=7388724&gclid=EAIaIQobChMIvuiRr8_A4wIVk_dRCh3oWQ4kEAkYBSABEgI8PfD_BwE
https://www.ebay.co.uk/i/332587862928?chn=ps&norover=1&mkevt=1&mkrid=710-134428-41853-0&mkcid=2&itemid=332587862928&targetid=594652109720&device=c&adtype=pla&googleloc=9045313&poi=&campaignid=1700604133&adgroupid=68042089162&rlsatarget=pla-594652109720&abcId=1140496&merchantid=7388724&gclid=EAIaIQobChMIvuiRr8_A4wIVk_dRCh3oWQ4kEAkYBSABEgI8PfD_BwE
https://www.ebay.co.uk/i/332587862928?chn=ps&norover=1&mkevt=1&mkrid=710-134428-41853-0&mkcid=2&itemid=332587862928&targetid=594652109720&device=c&adtype=pla&googleloc=9045313&poi=&campaignid=1700604133&adgroupid=68042089162&rlsatarget=pla-594652109720&abcId=1140496&merchantid=7388724&gclid=EAIaIQobChMIvuiRr8_A4wIVk_dRCh3oWQ4kEAkYBSABEgI8PfD_BwE
https://www.ebay.co.uk/i/332587862928?chn=ps&norover=1&mkevt=1&mkrid=710-134428-41853-0&mkcid=2&itemid=332587862928&targetid=594652109720&device=c&adtype=pla&googleloc=9045313&poi=&campaignid=1700604133&adgroupid=68042089162&rlsatarget=pla-594652109720&abcId=1140496&merchantid=7388724&gclid=EAIaIQobChMIvuiRr8_A4wIVk_dRCh3oWQ4kEAkYBSABEgI8PfD_BwE
https://www.ebay.co.uk/i/332587862928?chn=ps&norover=1&mkevt=1&mkrid=710-134428-41853-0&mkcid=2&itemid=332587862928&targetid=594652109720&device=c&adtype=pla&googleloc=9045313&poi=&campaignid=1700604133&adgroupid=68042089162&rlsatarget=pla-594652109720&abcId=1140496&merchantid=7388724&gclid=EAIaIQobChMIvuiRr8_A4wIVk_dRCh3oWQ4kEAkYBSABEgI8PfD_BwE
https://www.ebay.co.uk/i/332587862928?chn=ps&norover=1&mkevt=1&mkrid=710-134428-41853-0&mkcid=2&itemid=332587862928&targetid=594652109720&device=c&adtype=pla&googleloc=9045313&poi=&campaignid=1700604133&adgroupid=68042089162&rlsatarget=pla-594652109720&abcId=1140496&merchantid=7388724&gclid=EAIaIQobChMIvuiRr8_A4wIVk_dRCh3oWQ4kEAkYBSABEgI8PfD_BwE
https://www.ebay.co.uk/i/332587862928?chn=ps&norover=1&mkevt=1&mkrid=710-134428-41853-0&mkcid=2&itemid=332587862928&targetid=594652109720&device=c&adtype=pla&googleloc=9045313&poi=&campaignid=1700604133&adgroupid=68042089162&rlsatarget=pla-594652109720&abcId=1140496&merchantid=7388724&gclid=EAIaIQobChMIvuiRr8_A4wIVk_dRCh3oWQ4kEAkYBSABEgI8PfD_BwE
https://www.ebay.co.uk/i/332587862928?chn=ps&norover=1&mkevt=1&mkrid=710-134428-41853-0&mkcid=2&itemid=332587862928&targetid=594652109720&device=c&adtype=pla&googleloc=9045313&poi=&campaignid=1700604133&adgroupid=68042089162&rlsatarget=pla-594652109720&abcId=1140496&merchantid=7388724&gclid=EAIaIQobChMIvuiRr8_A4wIVk_dRCh3oWQ4kEAkYBSABEgI8PfD_BwE

 Alexandre Argento Page 13 / 30

III. Coding structure

III.1. Information flow

In order to manage the communication between the different processes and devices, we need to
define or identify the different data types to use.
All different processes or actors that will transform data are:
 The remote control computer: from user request to behavior command.
 The ROS middleware including:

o The state machine node: from filtered sensor data and behavior command to
simple orders and . The behavior command will be the state machine choice and the filtered
sensor data, the parameters for each state machine.

o Filters nodes: from sensor data to filtered sensor data. Their function is generally to
give more reliable data from sensor data by replacing outliers or smoothing variations.

o Arduino serial node: from simple order to simple order and sensor data to sensor
data. The serial node is basically an information smuggler, it distributes sensor data to their
adapted filter.

o The camera treatment node: from raw data to filtered sensor data.
o The rosbag function in ROS that allows to store data and replay their progress once the

mission is over.
 The sensors: from the physical environment to raw data.
 The remote control: from user request to simple order. A simple remote control with rudder

and sail control.
 The Arduino board: Collects data from all the sensors it is connected to and transmits it via the

serial node. Applies order that comes from the state machine node or, in priority, the command
from the remote controller.

 Alexandre Argento Page 14 / 30

The following figure presents the different repartition of orders and the hierarchy between the tasks
to be accomplished.

IMU,
weathercock,
anemometer,

GPS

Rudder

State machine
node

User

Arduino
board

Rosbag
(recording)

Remote
controller

Remote
control

computer

Camera

Sail

Arduino
serial node

Filter node

Behavior
command State

information

Raw data

Camera
treatment node

Filtered sensor
data

Raw data

Simple
order
data

Mission
information

Filtered sensor
data

Sensor data

Raw order Raw order

Sensor data

Simple order

Figure 7 – Information flow graph

User request User request

ROS middleware
on Raspberry Pi

and

Simple order

 Alexandre Argento Page 15 / 30

In that way, the fleet commander can have a choice between different group sailing mode and
select them through the remote computer. For example, either we ask the fleet to go pick up
rubbish, or to come back home, to stand still or to transport goods to another port.
The sailboat itself, for a specific group behavior, follows a specific state machine which uses the
simple orders it can give to the Arduino board such as a cap following, a line following between two
points or staying in a given zone.
Each simple order can be declined in technical order given to the actuator classes, by demanding
different orientations for the rudder and the sail.
These classes traduce these orders by activating the right PWM to the servo motor activating the
mechanical function.

III.2. Arduino structure

The Arduino structure I used was a simplification and adaptation of the one the researcher Ulysse
Vautier let me start from, with slightly different sensors. Along with the practice of coding C++
classes, the idea of using classes was to use polymorphism in order to organize the processes by
functions which are:
 update(): the updating function for all sensor measures inside their respective class. Low-level

calculations are done at this level to measure the incoming signal and to store it into a value
that makes sense.

 communicateData(): the function that triggers the publication of the sensor data through the
serial node. The same applies for the current actuator commands.

 ControlTime(): the actuator function that triggers the application of the actuator’s command,
by checking if its refresh period has passed.

Raw order (signal to the
actuator)

Technical order (command
through Arduino class)

Simple order (Arduino board
controller selection)

Behavior order (State
machine node)

Group behavior order
(remote computer)

Group sailing

Individual
sailing

Line following

Rudder
orientation

Pulse Width
Modulation

(PWM)

Sail
orientation

PWM

Tacking

Rudder
orientation

PWM

Sail
orientation

PWM

Cap following ...

Individual
sailing

...

Figure 8 – Orders and hierarchy

 Alexandre Argento Page 16 / 30

The orange zone is the code in the main Arduino loop where the functions are called from the
Sailboat class.
The green zone is the code in the Sailboat class where the functions are called from the Sensor,
Controller or Actuator classes stored in the Sailboat class. There, we find all the virtual functions to
be used regardless of the sensor, controller or actuator.
The timing control functions are just a control layer that is passed if the refresh period is respected.
In that case, we end up in the violet section, which is the application of the Sensor, Controller or
Actuator main function.
The Appendice 1 details the complete Arduino class architecture, with the initialization functions
and the data stored in each classes.

III.3. Protocols

Protocols are the practical actions that are repeated with a potentially high frequency. I chose to
identify many of the ones I used because they meet the following benefits:

 Identification of the good working method: Firstly, because of the repetitiveness of these
actions, we could someday forget some steps without realizing it. Then, it is the method
that usually works until now, which means that it helps debugging if we needed to use a
new protocol that could be better.

 Narrowing a problem’s origin: Checking the protocol tracking is the first verification to do
before debugging a program. It also helps clarifying the problem when asking for help.

 Reference for beginners or project takers who are not familiar with the way of working on
the project.

Main Arduino
loop

updateSensors() communicateData() Control()

Group functions
that applies either for all
sensor, or all actuator

(with the index i).

sensors[i]->update()
Timing control

functions
in order to respect their

data refresh period.

controller->ControlTime(cmd*)

sensors[i]->communicateData()

actuators[i]->communicateData()

ROS data
publication

Sensor data
measurement
and storage

Rudder and sail
orientation

according to the
current controller

*cmd is the command
data for the controller, it
is stored in the Sailboat
class, cf. Appendice 1

Figure 9 – Arduino code process

 Alexandre Argento Page 17 / 30

In this process, I detailed in the Appendices the following protocols:
 Code test protocol
 Code modification protocol
 Sensor integration protocol
 Actuator integration protocol
 ROS node integration protocol
 Maintenance protocol

We can say that the protocols for sensor and actuator integration are quite heavy. Fortunately, the
sailboat output structure will never grow much and adding more sensors are not for today. The
Arduino code might also be improved so as to detect automatically the presence of sensors and
better adapt itself to it a little more.

 Alexandre Argento Page 18 / 30

IV. System intern security

IV.1. Robustness

The sailboat can face different types of problem:
- Mechanical problems such as breakage, oxidation, disconnections, …
- Algorithmic problems which concerns all types of program crash, but also wrong decisions

when avoiding an obstacle for example.

Mechanical problems can be avoided through dimensioning given the operating environment, with
the choice of safety coefficients or repeated tests on the structure.
For flotation tests, we let the sailboat in a water tank long enough to detect water leaks and to
make it waterproof.
However, if something happens in the middle of a mission, we want to know if the sailboat can
finish its mission or come back without finishing it, or not coming back at all, even with manual
control.
Often, the closer to hardware we are, the more critical it is. If we lose actuators such as the rudder
or the sail, the system stops working properly and no on-board decision can be taken in order to
save it.

When the system has lost his autonomy, it means no on-board solution can be found in order to
come back to the user.

In fact, we can even specify alternative problems with a tree graph:

Risk

Arduino death

Actuator disfunction

Broken shell with water infiltration

Torn veil

Deficient USB connexion

ROS crash

Temporary absence of the user

Deficient Xbee connexion

Loss of system
autonomy

Arduino board
alone

Sailboat alone

Figure 10 – System robustness

 Alexandre Argento Page 19 / 30

If one box is deficient, it will damage dataflow between the entire “leaf” part and only the
“branches” that go up to the tree’s “root”.
For example, if the IMU gives wrong data, say because of calibration problem, then neither the
wind sensor nor the motor shield (and its wire) will be affected. However, data coming from the
Arduino board, the USB connection, the Raspberry Pi board, the Xbee connection and will be
corrupted.

IV.2. Risk list

A list can be drawn up in order to identify system threats and to implement an appropriate
protection. Depending on the recurrence of the problem during the use of the sailboat, a possible
update of the risk consideration may lead to a system revision.

The risk identification can either damage the system in a short-term perspective, or in a long-term
way, limited to a single mission.
Risk level:

0: Not a risk.
1: Damages quality (precision, quality of mission data, …)
2: Damages mission’s chances of success, but not the boat itself (lower precision, wrong

behavior, …).
3: Damages the boat itself to a lesser extent.
4: Damages the boat itself to a higher extent, including expensive material (possibly more

than £50).
5: Puts the user at risk.

We can, then, identify the probability of the problem happening, depending on the system
implementation. In doing so, we shall use an estimated percentage of failure, or risk happening, in
order to specify it. We will keep at a 5% precision since it is roughly estimated, and we will assume
that a 0% failure might be the result of a demonstration (for codes), but still means 0.01% instead.

Tree level Risk
Risk level

(/5)
Current

probability
Main causes

Laptop user

Xbee
connexion

Raspberry
Pi board

USB
connexion

Arduino
board

Wind
sensor

IMU Electric wire

Motor
shield

Battery
connection

Electric wire

Rudder

Electric wire

Sail

GPS

Loss of system
autonomy

Arduino board
alone

Autonomous
system

Figure 11 – System robustness tree

 Alexandre Argento Page 20 / 30

level (%)

Any Oxidation 4 10
Water infiltration, poor
permeability

 Wire disconnection 3 10 Hanging, bad welding

IMU
Inexact compass
calibration

1 80 Ferrous materials nearby

Wind sensor
External blocking of
rotation

1 10
External environment, lack of
protection

??? Boat crash 4 Unknown
Faulty obstacle avoidance in
triggering, method or
precision

Any
Component catching
fire

5 10
Bad sizing, unwanted
connection, bad welding

Raspberry Pi Bug 2 90 A large range of causes

Arduino Bug 2 90 A large range of causes

The higher the risk level is, the more important is taking it into consideration for implementing a
robust solution.
The main criteria we can have an impact on is the probability level of a problem occurring, as long
as the main cause is the system itself. This probability level can be lowered through solution
design. This corresponds to the “virtuous circle” described below:

Comparison between
risk level and probability

level

Solution implementation
in order to reduce

probability

Observation of
probability reduction

Table 3 – Risk list and analysis

Figure 12 – System protection virtuous circle

 Alexandre Argento Page 21 / 30

It is also possible to design a solution that reduces the risk level of a specific risk, but in all cases, a
solution implementation implies the emergence of a new line in the previous table.

For example, if we consider the external blocking of rotation of the wind sensor. We can design a
physical protection in order to prevent such problem from happening. With a good design, the
probability has been reduced to almost 0%, but we are facing a new risk which is the solution’s
failure. This means we are adding a new line to our table:

Tree level Risk
Risk level

(/5)

Current
probability
level (%)

Main causes

Wind sensor
External blocking of
rotation

1 0
External environment, lack of
protection

Protection
structure

Boat crash 1 10

 Table 4 – Risk protection example

 Alexandre Argento Page 22 / 30

V. Fleet building

V.1. Assembling

In order to visualize how the sailboat pieces are assembled, the figure below shows the physical
links between all the sailboat parts. The yellow links are the connections between the electronic
parts and the mechanical structure.

We see that the assembling can be done by realizing the black links, with the two groups on the
left and right of the yellow links simultaneously. The last steps are the electronic device fixation on
the sailboat, and the Arduino and Raspberry Pi boards can be placed inside the hull.

A more detailed, step by step diagram can be drawn in order see more precisely the sailboat’s
sequence of assembly.

Wind
sensor
fixation

Sailboat
Ragazza

(mounted)

Connection
adapter

Camera
fixation

Packaging
for

transport

Battery
Anker

PowerCo
re

 GPS

Drilling
operation

Battery
level

sensor

Arduino
Mega
board

Raspberry
Pi board

 IMU

Xbee
communication

Arduino
connector

shield

Arduino
shield
motor

IMU

fixation

Connection
adapter

Camera

Wind
sensor

Figure 13 – Links between the system’s parts

 Alexandre Argento Page 23 / 30

This is the final view of the wind sensor support:

Fin
al au

to
n

o
m

o
u

s sailb
o

at

Sailboat + All
supports

Open sailboat

Electronic core

Arduino board

Arduino shield
sensor

Arduino shield
motor

Raspberry Pi
board

Sailboat mounted
parts (except lid)

Sailboat parts
(except lid)

Connection
adapters

Fitted lid

Lid

Pipe fitting

Drilling

Camera support

Laser cut wooden
parts

Printed part

6 screws

Adherent rubber

Wind sensor
support

Wooden rods X2

Suction cups X4

Printed wind
sensor support

IMU support

GPS support

Camera

Wind sensor

GPS

Figure 14 – General assembling scheme

Figure 15 – Wind sensor photograph

 Alexandre Argento Page 24 / 30

V.2. Fleet behavior

The constitution of a fleet opens a possible practice of programming a group behavior for sailboats.
Some examples can show new areas of performance:

 Marine waste collection:

Either by localizing, regrouping or collecting waste from the sea, autonomous sailboats can be a
solution where we could avoid making go-rounds ourselves.

 Wind force mapping:

With the use of a supervisor that collects all data from the sailboats, it can find out which sailboat of
the fleet receives more wind in order to guide the fleet towards more favorable areas.

 Faulty sensor compensation:

Figure 16 – Marine waste collection

Figure 17 – Wind force mapping

Figure 18 – Faulty sensor compensation

 Alexandre Argento Page 25 / 30

When supervising the fleet, the remote computer can detect if a sailboat gives outliers and filter its
data with field approximations.

 Obstacle avoidance for the group:

The obstacle avoidance for a fleet is more complex if we want to prevent the sailboats from
colliding with each other. It requires a group reaction where the solutions are open.

Figure 18 – Group obstacle avoidance

 Alexandre Argento Page 26 / 30

VI. Conclusion

These twelve weeks at the university of Plymouth allowed me to improve myself in coding and to
use more complex code structures that can be useful later.
I particularly achieved a real method of code debugging, whether by searching deeper into Arduino
libraries or having better methods.

This internship made me apprehend the preparation of a research budget and develop the
approach of research topics related to marine robotics. I could formalize different concepts and
adapt them to the specific subject.

 Alexandre Argento Page 27 / 30

VII. Appendices

VII.1. Arduino class architecture

VII.2. Code test protocol

 Activation of the entire system:
- Open a terminal:

- Move in the workspaceRos folder;
- Launch the ROS core:

catamaran@catamaran:~$ cd workspaceRos/
catamaran@catamaran:~/workspaceRos$ roscore

 Alexandre Argento Page 28 / 30

- Open a second terminal (with ctrl+maj+t):
- Launch the serial node:

catamaran@catamaran:~/workspaceRos$ rosrun rosserial_python serial_node.py
_baud:=115200 _port:=/dev/ttyACM0

- Open a third terminal (with ctrl+maj+t):
- Launch the ROS nodes:

catamaran@catamaran:~/workspaceRos$ roslaunch catamaran launch.launch

- Open a fourth terminal (with ctrl+maj+t):

- Run the rqt application:

catamaran@catamaran:~/workspaceRos$ rqt

VII.3. Code modification protocols

 Modification of the Arduino program (.ino) or an Arduino library:
- Save the modified file.
- In the Arduino IDE, upload the .ino file: debug if necessary until upload works.
- Activate the entire system to see modifications.

 ROS node modification:
- Save the modified file.
- Open a terminal:

- Move in the workspaceRos folder;
- Build the catkin workspace code:

catamaran@catamaran:~$ cd workspaceRos
catamaran@catamaran:~/workspaceRos$ catkin_make

- Debug if necessary, until the previous command is successful.
- Activation of the entire system to see modifications.

VII.4. Sensor integration protocol

- Add a folder with the sensor name in the Arduino library
- Complete this folder with the .cpp file and the .h file that include:

- The inclusion of the library Sensor.h
- A definition of the class inheriting of Sensor or SensorROS
- If it inherits from Sensor:

▪ Define the class variables that need to be kept between two measures updates.
▪ Define an initialization function: init(). It needs the call of “SensorROS::init(n)”.
▪ Define the measure function that updates the class variables:

updateMeasures().
- If it inherits from SensorROS:

▪ Define the class variables that need to be kept between two measures updates.
▪ Define the message to be published to communicate the data.
▪ Define an initialization function: init(ros::NodeHandle* n).
▪ Define the measure function that updates the class variables:

updateMeasures().
▪ Define the publishing function: communicateData().

- Modify the file config-catamaran.h by increasing the number of sensors and configuring the
number attribution among all sensor variable.

- Include the sensor library (.h) in the file Sailboat.h
- Modify the function Sailboat::init() in file Sailboat.cpp so as to create and store the sensor in

the sailboat’s data (sensors[] or sens[]).
- Check that the ROS message has a subscriber node.

 Alexandre Argento Page 29 / 30

 Optionnal: assign in init() the “comperiod” value which specifies the period of sending data
through a ROS topic.

 Optionnal: assign a “period” value in the sensor declaration (in Sailboat::init()) in order to
specify the measure’s update period.

VII.5. Actuator integration protocol

- Add a folder with the actuator name in the Arduino library
- Complete this folder with the .cpp file and the .h file that include:

- The inclusion of the library Actuator.h
- A definition of the class inheriting of Actuator or ActuatorROS.
- If it inherits from Actuator:

▪ Define class variables that need to be kept between two actuations.
▪ Define an initialization function: init().
▪ Define the “applyCommand(double command)” function which is the execution

of the actuator’s function from an order passed as parameter.
- If it inherits from ActuatorROS:

▪ Define class variables that need to be kept between two actuations.
▪ Define an initialization function: init(ros::NodeHandle* n).
▪ Define the “applyCommand(double command)” function which is the execution

of the actuator’s function from an order passed as parameter.
▪ Define the publishing function: communicateData().

- Modify the file config-catamaran.h by increasing the number of actuators, adding a variable for
the new actuator and configuring the number attribution among all actuator variables.

- Modify the file config-sailboat.h by assigning the Arduino pin used to control the actuator.
- Include the actuator library (.h) in the file Sailboat.h
- Modify the function Sailboat::init() in file Sailboat.cpp so as to create and store the actuator in

the sailboat’s data (actuators[]).

VII.6. ROS node integration protocol

- Add a new file .cpp in the workspace: workspaceRos/src/catamaran/src/
- Modify the file CMakeLists.txt in workspaceRos/src/catamaran/:

- Complete, if necessary, the missing libraries used in the .cpp
- Add the command to create the executable.
- Target the linked libraries.

- Build the catkin workspace code:

catamaran@catamaran:~/workspaceRos$ catkin_make

- Debug if necessary, until the previous command is successful.

VII.7. Maintenance protocol

The system needs:
o IMU calibration (before each mission):

Launch a specific procedure made by the trainee Corentin Jegat.

 Alexandre Argento Page 30 / 30

o Remote controller binding:

 Connect pin BAT-1 to BAT-3, CHX-2 to 5V and CHX-3 to GND. The red led on the receiver
should be blinking.

 On the transmitter, hold down the bind range test and then, turn the transmitter on. The red
led on the receiver should be staying on.

 Disconnect the receiver from its alimentation.
 Turn off the transmitter.

