
Control of the quadcopter Crazyflie

Author:
M. Fabrice POIRIER
CI2019 - ROB

Team :
Mr. Alexandru STANCU

Mr. Eduard CODRES
Mr. Mario MARTINES

GUERRERO

September 30, 2018

Résumé

Ce rapport présente le quadrirotor ”Crazyflie 2.0” et l’avancée qu’il permet
dans l’étude de ce genre de drone. Ce petit drone est un projet ”open-source”
développé par la compagnie Bitcraze qui s’appuie sur une communauté active
pour progresser. De par sa nature, il est utilisé par de nombreux étudiants et
chercheurs pour l’application de théories dans la localisation, la régulation et
l’électronique. C’est un project touchant plusieurs domaine de connaissance,
ce qui permet d’en apprendre d’avantage sur toutes les connaissances utile
en robotique. Les programmes nécessaires pour intéragir avec le drone sont
implémentés dans un projet ROS, et fait appel à des programmes de local-
isation et de régulation embarqués. Toutefois, les explications nécessaires
pour correctement commencer à travailler avec le quadrirotor ne sont pour
la plupart ni compl ète ni à jour. Dans l’objectif de faciliter l’apprentissage
de la parti robotique du projet, il était nécessaire de démontrer le potentiel
du drone par la réalisation d’un contrôleur.

1

Abstract

This report presents the quadcopter ”Crazyflie 2.0” and its possibilities con-
cerning the study of this type of drones. This small drone is an open-source
project developped by the company Bitcraze supported by an active commu-
nity. As such, many students and searchers use it to apply theories on fields
such as localisation, regulation or electronics. It is in itself a project one can
learn different aspects of the robotics. The programs necessary to interact
with the quadropter are implemented in a ROS project, and they exploit
the on-board localizer and regulator. However, most of the explanations to
start working with the quadcopter aren’t complete nor up-to-date. In order
to ease the learning process concerning the robotic approach of this drone,
a controller attesting the potential of the drone was mandatory.

2

Contents

1 Introduction 5
1.1 University of Manchester : Autonomous system research centre 5

1.1.1 Background . 5
1.1.2 Economic analysis . 5
1.1.3 Internship in the research centre 5

1.2 About the Crazyflie . 6
1.3 Goals . 6
1.4 Motivation . 7

2 State of the art 8
2.1 Hardware . 8
2.2 Firmware . 10
2.3 Softwares . 10

3 Stabilizer presentation 12
3.1 Localisation . 13
3.2 Command . 16
3.3 Regulation . 16

4 ROS project 21
4.1 Camera localisation . 21
4.2 Crazyflie_ros . 23

4.2.1 crazyflie_driver . 24
4.2.2 crazyflie_controller . 25
4.2.3 crazyflie_simulation 26

5 Experimentation 27
5.1 methodology . 27

5.1.1 observation of the drone behaviour 27
5.1.2 position control with off-board position estimation . . 29
5.1.3 position control with on-board position estimation . . 30

5.2 results . 31
5.3 discussion . 31

3

6 Conclusion and Future 33
6.1 Future possibilities . 33
6.2 Conclusion . 34
6.3 Outcomes on my project . 35

A Archived work 38

B Flight videos 39

C Evaluation report 40

4

Chapter 1

Introduction

1.1 University of Manchester : Autonomous sys-
tem research centre

1.1.1 Background

I did my internship in the Control Systems Group (CSG), School of Electrical
and Electronic Engineering (SEEE) at the University of Manchester. My
internship supervisor was Dr Alexandru Stancu. He is a Lecturer in Control
Engineering in the CSG and is also researcher at Dalton Cumbrian Facility
(DCF), research centre for radwaste and decommissioning. His expertise
is in nonlinear control, on-line and off-line identification, neural networks,
fault monitoring and fault tolerant control — and its applications to ground
mobile robots and mobile manipulators — and to biochemical processes.

1.1.2 Economic analysis

Unlike French school system, the university of Manchester doesn’t allocate
money to the researchers, and the latter have to pay for the office rent.
This means funds have to be found from other sources such as industry
partnership, hence the variation of the budget size year-round.

The impact of the engineers is that they all need to often publish re-
search papers to stay relevant, and they need to work in collaboration with
companies most of the time.

1.1.3 Internship in the research centre

The students in robotic engineering in the university of Manchester are work-
ing on theoritical subjects as well as practical ones (eg. ”embedded systems”,
”process control and automation”, ”intelligent control and robotics” and ”ap-
plied control” units). For this reason, they need to use learning-friendly
robots. They were eager to add a drone to their list of robots to work on,

5

and choose the Crazyflie. However, none of them has enough knowledge on
it, and had no time to study it. This is why Mr. Stancu gave this internship
subject.

1.2 About the Crazyflie

Bitcraze is a Swedish company created in 2009. It started with a small
team developping a quadropter outside their job. In 2010, they shared a
video of their work that became popular and encourage them to create the
company Bitcraze in order to finance the development and manufacturing of
the quadrotor. Their first version of the Crazyflie has been used for 4 years.

Figure 1.1: crazyflie 1.0

The Crazyflie 2.0 commer-
cialised afterwards is an im-
proved version of the inital
quadcopter. It is an open-
source project giving a com-
plete control over the hardware,
the firmware running on the
quadrotor as well as the client
library running off-board.

The Crazyflie is a small
quadrotor with plastic blades.
Indeed, it has a diagonal of
92mm and weighs 27g. It could
fly for 5 minutes. Its size is ideal
to fly indoors, as it could be easily studied flying from up close. Bitcraze
hosts all of its codes on Github.

The Crazyflie is not the only product developped by Bitcraze. The
CrazyRadio is a USB-radio dongle used to connect to the Crazyflie. There
have also various expension decks to improve their drone.

1.3 Goals

The autonomous systems field of research is working on different kind of
robots, like ground robots and drones. These robots have to follow some
criteria:

• Measurable: It is necessary to have access to all types of data to be
able to interpret them;

• Modifiable: Being able to modify at least some part of its behaviour is
mandatory;

6

• Repairable: Modify the robot to test algorithms could easily lead to
breakages, and spare parts greatly reduce the cost of these relatively
expensive devices.

The BitCraze Crazyflie matches all these requirements, and it’s for these
reasons that it is used in many universities like the one in Manchester.

As this is still a new system in constant evolution, it was necessary to see
the potential of this drone. For this reason, the subject of my internship was
at first to use the softwares associated to the Crazyflie. The next step was
to master the algorithms and programmes implemented in the open-source
project and make an autonomous controller for this drone. The following
objective was to prepare a guide for the ones that will work on it. The
points to look into were the following:

• How the open-source project is structured?

• What technologies could be the most interesting in regards of au-
tonomous systems research?

• What could be a good starting point when starting to work on this
device?

• What could be the tracks to follow afterwards?

1.4 Motivation

Quadcopters are nowadays a important part of the robotic field of research.
they necessitate knowledge in physics, electronics, aviation, and computer
science. They could carry objects in areas difficult to reach, with better
manageability than most of autonomous systems. As it is attractive for
commercial applications such as surveying and delivery, it will be a necessity
to know how to handle these robots in the comig years.

7

Chapter 2

State of the art

To fully understand the potential of the Crazyflie, it is necessary to have an
overview of the hardware1, the firmware2, and the softwares345 associated to
this project.

2.1 Hardware

Figure 2.1: Global hardware architecture

The Crazyflie is divided into two main chips, the radio (nRF51822) and
the main processing chip (STM32F405). The nRF51822 handles all of the
raw radio communication. The received packets are then sent to the Crazyflie
firmware in the STM32F405.

The Crazyflie Nano Quadcopter is equipped with an IMU (MPU-9250).
The IMU contains a 3-axis gyroscope and a 3-axis accelerometer. The

1https://wiki.bitcraze.io/projects:crazyflie2:hardware:specification
2https://github.com/bitcraze/crazyflie-firmware
3https://wiki.bitcraze.io/projects:virtualmachine:index
4https://github.com/bitcraze/crazyflie-clients-python
5https://github.com/whoenig/crazyflie_ros

8

Crazyflie is also equipped with an on-board magnetometer (AK8963) as well
as a barometer (LPS25H).

The CrazyRadio is a USB-radio dongle. When connected to a computer,
It permit to interact with the Crazyflie. It is important to note that the
radio protocol limits the size of the packets being sent from the Crazyflie
to the Crazyradio. This prevents from sending the entirety of the sensor
measurements with each packet without reducing the frequency at which
the state estimator gets sensor updates.

Figure 2.2: Crazyflie bat-
tery

The battery used by the Crazyflie 2.0 is a
Lithium-Polymer (LiPo) battery. It supplies
3.7V and has a capacity of 240mAh. The bat-
tery also comes with a Protection Circuit Mod-
ule (PCM) attached to it that prevents the user
from under or over charging the battery or from
shorting it. The PCM is located under the or-
ange tape on the top side of the battery where
the wires come out.

The battery is easily removable from the
quadrotor, which means it could be swapped with another one and charged
in parallel, reducing delays between experiments. The battery’s discharge
rate is 15C, which in theory should provide 4 minutes of continuous flight.

The Crazyflie 2.0 has four brushed DC motors. The motors are coreless
which should provides a faster acceleration. However, the Crazyflie 2.0 mo-
tors require more torque at higher speeds in order to fight the increased air
resistance and therefore more current. That means the battery voltage tends
to drop. Attached to the four motors are plastic propellers, which mitigate
the possible damage in case of accident, but are therefore more fragile.

Figure 2.3: Loco po-
sitionning deck

The quadcopter can also support extension decks,
which permits to add more possibilities to the drone.
For example, the loco deck6 grants better positioning
system.

6https://www.bitcraze.io/loco-pos-system/

9

2.2 Firmware

The Crazyflie firmware is based on FreeRTOS, an open source operating
system. it handles the scheduling of processes and control the flight calcula-
tions.

The firmware is in C and is composed of several source code and headers,
structuring the code in different layers of abstraction. The first ones (drivers
and hal folders) handle the hardware, whereas all the operations are done in
the high-level functions (module folder). This last one is the one studied in
detail in another chapter. There are also layers covering non-classical use of
the quadrotors, such as the interfacing of extension decks.

The radio communication use a protocole developped by the company,
the Crazy RealTime Protocol (CRTP). The compilation necessitates to have
a wired connected with a computer, with the quadrotor in the bootloader
mode. The firmware can be customised at compile time.

2.3 Softwares

The company shared a Xubuntu virtual machine hosting all the firmware
and a software (a client) to interact with a Crazyflie using the Crazyradio
dongle. Once connected, the client has access to the drone logs, and could
plot them easily. It could also change all parameters defined in the firmware
for as long as the drone isn’t rebooted. The user-friendly interface of this
software helps to promptly start working on the project. Android and iOS
applications have also been developed to use smartphones as controllers.

In the research field, the ROS project based on the work of W.Hoenig
[1] is more suitable. It will be detailed more precisely in another chapter.

10

Figure 2.4: The interface of the Bitcraze client

11

Chapter 3

Stabilizer presentation

The small size of the Crazyflie presents many challenges in using it as a
research platform. Its small inertia requires controllers that can react with
very little latency, or else it won’t fly properly. To be the most efficient
possible, all the calculations necessary to stabilize the drone is done by the
Crazyflie firmware.

The stabilizer is in three parts, each of them depends on the type of sta-
bilization wanted, here it will be in position. The first one is the localisation,
that gives the absolute position. Then comes the command part, which gives
the positions to go. Finally, the regulator moves the drone to the position
wanted.

Figure 3.1: Global architecture of the stabilizer in the position mode. The
coordinate frame is in italic

The stabiliser.c 1 file is the main file for the stabilisation loop.
1https://github.com/bitcraze/crazyflie-firmware/blob/master/src/modules/

12

3.1 Localisation

In most autonomous missions, it is necessary to track the position of a robot.
It could be done in the body frame or in the world frame. As the first
one could be done easily, the second one is preferred here. Indeed, drones
couldn’t ignore gravity like most of ground robots, which is a force working
in the world frame. Moreover, the command part necessitates to give a new
position to go, and it isn’t intuitive to work in the body frame.

There are different methods for localisation. Nevertheless, for a drone
with the type of sensors presented in the previous chapter, and with the
speed of calculation of the processor, some are better than others. Indeed, in
systems where we need to obtain continuous or dynamic measurements from
sensors, the sensors’ measurements are probably uncertain due to reasons
which include, errors from sensor and discrepant measurement from multiple
sensors. The Crazyflie source code contains both a complementary filter and
an Extended Kalman Filter [7] [8] (EKF) to do an estimation of the drone
attitude. However only the latter can estimate both orientation and position,
as the first only estimate the orientation. Only the EKF will be presented
here.

Kalman filter is an algorithm that obtains reliable estimations on a sys-
tem state. It works if with have a sequence of observed measurements,
possibly from multiple sensors, and the dynamic model of the system (under
the from xk+1 = f(xk, uk), x the state, u the command, k a discrete value
of the time). The Kalman filter has numerous applications in technology.
A common application is for guidance, navigation, and control of vehicles,
particularly aircraft and spacecraft.

For a robot where the position is estimated, the filter is organized under
the following steps that are repeat at each loop:

• The prediction: At a certain time, the current estimated position is
known, as well as the dynamic model. From that, the next position is
predicted, which becomes the new estimated position.

• The correction (or update): The estimated position need to be cor-
rected to correspond more to the real position, The measures are then
interpreted to update the estimated state.

As the estimation accumulates errors from different sources, the cumu-
lated error is defined by a covariance matrix that is changed at each steps of
the algorithm.

For the original Kalman filter, the hypotheses are that the system has to
be linear and the noises have to be gaussian. But for non-linear ones such
as the Crazyflie, it doesn’t work properly. The EKF is a variant of Kalman
filtering that can more easily deals with this type of system. It does a first

13

order Taylor expansion2 to obtain a linear approximation of the non-linear
measurements and dynamic models.

Figure 3.2: Architecture of the EKF

In the Crazyflie, the EKF, represented in the figure above, works as such:

• The EKF works at the stabilizer rate, which is 1 kHz;

• The filter necessitates sensor measures for its prediction step, and more
precisely for its quadrotor dynamic model. However, the data are noisy
and arrive at an irregular rate, which is why the data are averaged. The
prediction couldn’t be done at the data received rate, hence a predict
rate at 100Hz, which is 5 times lower than the IMU rate;

2For illustration purpose, the Taylor extension of a dynamic model is under the from
: xk+1 = f(xk, uk) = f(x̂k, uk + f

dt
(x̂k, uk) × (xk − x̂k) with x̂k being in our case the

previous estimated state.

14

• Even if the prediction isn’t done at each loop, the algorithm adds
process noise to simulate all the possible errors the system could have;

• The estimated position is then update with various measures from ex-
ternal sources (e.g. from an on-ground position estimation). This pro-
cess refines the position and the error associated. The one by default
is the position measure.

The barometer has not been interfaced here as the results were thought
unsatisfying by the community.

The complementary filter is compiled by default. The EKF can be cho-
sen by adding "ESTIMATOR=kalman" to the file tools/make/config.mk in
the Crazyflie firmware before compiling. The two estimators are in the esti-
mator_complementary.c and estimator_kalman.c files.

Figure 3.3: parameters of the EKF

The EKF parameters shown in the figure above are the following:

• initial[...]: The Kalman filter need an initial position to start the algo-
rithm;

• quadIsFlying: Define if the drone is already flying when the algorithm
starts could be sometimes useful;

• resetEstimation: It is necessary to reset the Kalman filter to prevent
error to cumulate before starting a mission. This parameter can be
set from the ground at any moment. However, it has to be done when
idling, or the drone will crash otherwise.

• mN[...] and pN[...]: The parameters starting with ”mN” are the mea-
sure noises (linked to the quality of the measurements), and the ones
starting with ”pN” are the process noises (linked to the possible posi-
tions the drone could move to during a loop).

15

3.2 Command

The command part isn’t the most complicated part in theory, as it is just to
give a position to go, here with an absolute positioning. However, if a position
given is too far from the current position, the regulation could move the drone
with extreme command, and could eventually lead to flips, huge oscillations,
or crashes. Most regulation algorithms choose to avoid this problem by
creating intervals of values than cannot be exceeded. However, it seems
better to creates intermediary setpoints to smoothen the trajectory. A high-
level commander is implemented in the firmware to do so. Unfortunately, at
the time of the experimentation, the algorithm wasn’t operational.

The operator has to choose positions that will not create perilous be-
haviours, even if regulation algorithms handle these situations. Command
setpoints (X,Y,Z,yaw rate) are send to the Crazyflie by radio. The setpoints
are then directly redirect to the regulation algorithm.

3.3 Regulation

Once the current and the desired positions are known, the drone has to move
appropriately. Indeed, moving too fast could leads to dangerous behaviours
(eg. flips and crashes). On the opposite, a slow movement could lead to
drifts and a low reactivity. A bad regulation will never stabilize the drone
on the desired position.

The Crazyflie hosts two different regulation algorithms. The first one,
and the most used when it boils down to regulation, is the Proportional-
Integral-Derivative controller (PID). A PID controller calculates an error
value from the difference between a desired setpoint and a measured variable
at each control loop. It then applies a correction based on the sum of a
proportional (P), an integral (I), and a derivative (D) terms. Each term is
adjustable with coefficients as each of the latter represents a different aspect
of regulation.

The proportional term is the current error value. The further the desired
value is, the bigger this term will be.

The integral term is the sum of error values over time. It is proportional
to both the magnitude of the error and the duration of the error.

The derivative term is the slope of the error over time. The strongest the
slop is, the bigger this term will be.

The coefficients are responsible of the stability, the accuracy and the
speed of convergence of the system. There are different methods of fine-
tuning the coefficients. However, this is rarely the best regulation algorithm
possible, and gives poor results on some systems. The PID regulator of the
Crazyflie is in fact composed of 4 PID controllers, each of them controls a
different aspect of the drone, and helps to obtain the desired motor control

16

parameters — Roll-Pitch-Yaw (RPY) rates and thrust — from the desired
position.

In the Crazyflie, the PID control algorithm, represented in the figure
below, work as such:

• The whole regulation works at lower rate than the stabilizer as it would
use unnecessary computational time otherwise. The rate is then of 500
Hz.

• The command algorithm, when set to receive positions, transmit XYZ
and a yaw rate to the regulation algorithm. In velocity mode, the yaw
rate is primarily integrated to change the desired yaw;

• As the desired orientation estimation takes a significant time to com-
pute, its frequency was lower than the whole regulation. the estimation
rate is of 100 Hz, and work as follow:

– The desired drone velocity is calculated from a PID on its position
in the World frame;

– The thrust-roll-pitch are calculated from a PID on velocity.

• Then, the last desired roll-pitch-yaw estimated are compared to the
drone RPY with another PID, which gives the desired RPY rate. For
the position regulation, the desired yaw rate is directly given by the
command;

• A final PID updates the actuator force with the RPY rates.

Figure 3.4: Architecture of the PID in the position mode

The other regulation algorithm is the Mellinger one [6].
In constrained settings typical of indoor environments, it is necessary to

constrain the behaviour of a quadrotor, but that doesn’t mean the trajectory
couldn’t be optimize. This is what the Mellinger algorithm does. It is in two
parts:

17

• a nonlinear control algorithm that could follow aggressive trajectories
requiring large accelerations;

• a trajectory generator that enables the generation of optimal trajec-
tories through a series of positions and yaw angles, while ensuring
safe passage through specified corridors and satisfying constraints on
achievable velocities, accelerations and inputs.

The trajectories are optimal as they minimize the cost functionals that
are derived from the square of the norm of the snap (the fourth derivative
of position). The corridors are defined by their widths. This parameter
changes the cost functional (eg. a large one reduces position constraints,
and the drone may take a less direct and lower cost path). Aside that, the
trajectories can be done at a slower pace for more accuracy, and therefore
be safer.

The control algorithm is aggressive in the sense that it allows significant
excursions of the attitude from the hover state. It is similar to another dy-
namically exponentially stable controller 3, but does not quite satisfy all the
assumptions needed to be as stable. Nevertheless, the controller yields good
tracking performance even with very large roll and pitch angles, according
to experimental results in fast motion three-dimensional slalom courses done
by D. Mellinger.

For its application in the Crazyflie, only the control algorithm has been
implemented.

In the Crazyflie, the Mellinger control algorithm work as such:

• The vector force (in the body frame) necessary to reach the desired
attitude is calculated with a PID using the differential between the
drone position, linear speeds and accelerations, and the desired ones.
The command thrust is compute here.

• The vectoral moment is calculated with a PID using the differential
between the drone orientation and angular speeds, and the desired
ones.

• Finally, the control orientations (RPY) are calculated from the mo-
ment. This step is achieved in the previous step, as it directly uses
these results.

It is important to note the integral terms aren’t in the original theory. It
has been implemented to compensates practical issues (battery voltage drops
over time, unbalanced centre of mass due to asymmetries, uneven wear on
propellers and motors).

3T. Lee, M. Leok, and N. McClamroch, “Geometric tracking control of a quadrotor uav
on SE(3),” in Proc. of the IEEE Conf. on Decision and Control, 2010

18

Figure 3.5: Architecture of the Mellinger regulation in the position mode

For indoor (manoeuvres), without any external perturbations, the Mellinger
regulation is supposedly better. However, this regulation algorithm isn’t fit
for outdoor missions, and the PID one prevails there.

The PID regulation was chosen over the Mellinger regulation for the
experimentation for two reason:

• First, the mission was to hover at some positions without obstacles.
Therefore, the speed and trajectory to reach the position is neglected.

• The other reason is that the PID has a straight forward approach of
regulation, and could be easily understood for that.

The two regulators are in the controller_mellinger.c and controller_pid.c
files.

PID regulation necessitate good coefficients to ensure stability, accuracy
and speed to fit a certain situation. For example, indoor environments are
suitable for extreme reactivity to avoid obstacle, or else the drone would
drift too much. However, these parameters couldn’t be kept for the outside,
the wind couldn’t exaggerate the regulation movement, and could overturn
and eventually crash. Each PID has its own set of parameters that could
be modify if needed as shown in the figure below. They are related to 3
coordinate systems, that could be the XYZ or RPY system. The final PID
controls the motor, and therefore it takes also physical limitations as well.

Figure 3.6: Velocity from
position PID

Figure 3.7: Thrust-Pitch-
Yaw from velocity PID

19

Figure 3.8: Roll-Pitch-Yaw rate
from RPY PID Figure 3.9: Motor com-

mand from RPY rate PID

As for the Mellinger algorithm, the coefficients of the two PID can be
modify if felt necessary. In case the mass of the Crazyflie is changed, the
change could be pass on here.

Figure 3.10: Parameters of the Mellinger regulation

20

Chapter 4

ROS project

Robotic is a predominent subject in our society. They are asked to be more
reliable, more complex, safer, and have to work along us and between them-
selves as packs. It necessitates multi-disciplinary knowledges, which means
normalization is needed to facilitate the clarity of their structures. This is
done by middleware such as the Robot Operating System1 (ROS), and it is
essential to learn to work with them.

A middleware is a software that permit the communication between two
tasks (eg. detect with a sensor, and control an actuator). It helps to simplify
the implementation of algorithm by normalising the transmission of data,
simplify teamworking, as well as giving access to more advanced tools (eg.
3D visualisation). For the ones not familiar with ROS, there is a complete
tutorial2 that helps to master this middleware.

Here are the Ros projects needed for the experimentations described in
the next chapter:

• usb_cam_node: creates a ROS topic for a camera device;

• Whycon [4] [3] [10] [9]: a tool for localisation of certain patterns;

• crazyflie_ros: different projects to interact with one or more Crazyflies.

The ROS workspace can be found in the Appendix A.

4.1 Camera localisation

As explained previously, The EKF needs external positions measurements
to gain in precision. A relatively cheap solution is to use a camera. A
simple monocular camera only render the video flow, therefore a software is
necessary to interpret it. As ROS is the middleware to work on, the video
flow interpretation will be done by nodes on it.

1http://www.ros.org/about-ros/
2http://wiki.ros.org/ROS/Tutorials

21

On the one hand, the video flow has to correspond to a ROS node.
usb_cam_node is one of the simplest ones to do so. It creates a node that
gather the video flow and the camera header, and publishes them on two dif-
ferent topics. It takes some parameters to work properly, the most important
ones are:

• video_device: The device the camera is on;

• image_width: width in pixel;

• image_height : height in pixel;

• pixel_format : The possible formats are mjpeg, yuyv and uyvy;

On the other hand, we need to detect the position of the Crazyflie on
the video. Recognize the shape and the colours of an object with a camera
is one thing, and detect the positioning of the detected object is even more
complex. Therefore, there are various methods to do so. Whycon is the one
chosen for its efficiency, accuracy and utilisation friendliness. The system is
being used in several research projects across the globe 3.

It is composed of an efficient circular black ring pattern detector and
a detector of multiple targets on a single image. It then computes the 3D
position of each circle. It creates a node that subscribe to a video flow topic,
and publishes the 3D positions of the detected circles.

As the detection depends on the experimentation frame, it is important
to understand its parameters:

• axis: A file containing the user-defined transformation from camera-
space to world-space could be used;

• targets: It indicates how many targets are to be tracked;

• max_refine: maximum number of refinement steps to be performed
after successfully detecting a given circle (1 = no refine). For a given
image, the detection process for a given circle can be improved itera-
tively until convergence by increasing this number;

• max_attempts: maximum number of attempts to detect a given circle
while processing a single frame;

• outer_diameter : It is the diameter (in meters) of outer portion (black)
of the circle(s);

• inner_diameter : It is the diameter (in meters) of inner portion (white)
of the circle(s).

The balance between precision/robustness and computational time to
process each frame could be change with the max_attempts and the max_refine
parameters.

3See https://github.com/lrse/whycon

22

4.2 Crazyflie_ros

Crazyflie_ros is the ROS project primarily developed by a Bitcraze commu-
nity member. Now, it is the fusion of different projects under the guidance
of the Bitcraze team. It is composed of 7 sub-modules on its repository, but
the one in the Appendix A has one more sub-module, which is a step to
accomplish the objective presented by this report.

Figure 4.1: Crazyflie_ros project. Gray: not directly used in the experimen-
tation; Green: created

Some of these projects aren’t useful enough to be fully presented in this
report:

• The crazyflie sub-module is the metapackage necessary for the whole
crazyflie_ros project.

• The crazyflie_cpp sub-module define classes of different objects (e.g.
Crazyradio, Crazyflie). It adds a layer of abstraction that ease the use
of these devices.

• The crazyflie_demo sub-module regroups bricks of algorithms that ac-
complish simple tasks, such as hovering, holding a position and execute
trajectories. However, they are experimental works and most of them
don’t work anymore, or with certain untold settings. Nevertheless, it
helps to roughly apprehend the functioning of the ROS project.

• The crazyflie_description sub-module contains an URDF model of the
Crazyflie, which is a 3D model for the rviz software.

23

• The crazyflie_tools sub-module is composed of useful tools, but aren’t
up-to-date. The most helpful one is the scan tools, that check if the
Crazyradio and the Crazyflie are detected. it takes the Crazyflie ad-
dress defined in the drone firmware4 as a parameter.

4.2.1 crazyflie_driver

This sub-module contains a server (crazyflie_server) that could communi-
cate with multiple Crazyflies with a single Crazyradio. The other sub-module
is the crazyflie_add file which is a program that dynamically add Crazyflies
to the server. The server does not communicate to any Crazyflie initially,
hence crazyflie_add needs to be used. These two programs work as drivers
for a remote control.

The server creates the node which subscribes to various types of command
to send to the Crazyflie, and publishes what it receives from the drone. There
are different methods to command the quadrotor. Once chosen one, you can
swap to another. However, some of them are flawed. For example, the
cmd_hover isn’t always stable, and even though the localisation algorithm
is in the Crazyflie firmware, using the cmd_position topic means having no
information on the estimated position from the off-board.

4The method to change it is described in the Appendix A

24

Figure 4.2: Node graph of the subscribed and published topics of the
Crazyflie server (with RQT)

The process to add drones to the servers takes some parameters5 to
successfully link the node to the quadrotor:

• The uri : It is the address of the drone;

• The tf 6 prefix : Gives the tf prefix for the crazyflie frame(s);

• Roll trim: Set the roll trim in degrees;

• Pitch trim: Set the pitch trim in degrees.;

• enable logging parameters: Permit to choose which data are necessary
to be send by radio from the Crazyflie. Only the rssi, which measures
the strength of the signal isn’t deactivable, as it confirms the drone can
still communicating with Crazyradio.

4.2.2 crazyflie_controller

This package contains on its repository a simple PID controller for hovering
or waypoint navigation. It can be used with external motion capture systems,

5https://github.com/whoenig/crazyflie_ros/blob/master/crazyflie_driver/launch/crazyflie_add.launch
6tf is a ROS package that lets the user keep track of multiple coordinate frames over

time. It is necessary for rviz visualisation

25

such as VICON 7. The programs necessary to fulfil the objective have been
added here. There are different controllers with different method of control.
Three of them use an external camera and a target on top of the Crazyflie
facing the front side, another one uses an with embedded camera with the
same target facing the drone from a distance. Their functioning will be
thoroughly described in the next chapter, except for the Embedded one.
Unfortunately, the latter has not been tested, as the camera needed to be
calibrated and the usual way to do so wasn’t effective.

4.2.3 crazyflie_simulation

This sub-module has been created for this work, and could only be found
in the Appendix A. It can simulate a Crazyflie using the IMU only, or in
addition with an external camera.

The camera_simulation and the IMU_simulation scripts create nodes
that subscribe to some sensor topics, estimate the drone attitude from it, and
publishes the estimated position and orientation. The printer script creates
a node that could receive the position published by one of the simulator, and
display a simple 3D representation of the drone according to the position.
This node uses a schematic representation of a quadcopter. All units are in
the SI base unit.

7https://www.vicon.com/motion-capture/engineering

26

Chapter 5

Experimentation

5.1 methodology

The objective was to hover the drone autonomously at any given position.
As the ongoing regulations forbid the flight of drones in open areas, it was
necessary to restrain the accessible positions based on the initial position.
Hence reaching a position of half a meter above the ground will be considered
as a success. The strategy to follow will be to localize and regulate the
position of the drone thanks to its internal sensors and an external camera.

The practical steps for this methodology are in the Appendix A.

5.1.1 observation of the drone behaviour

Flying robots are more difficult to control than most of ground and aquatic
robots, and errors could lead to crashes and eventually casualties. Fortu-
nately, this is a small drone with plastic propellers which mitigate the risks.
It is then important to consider every step before starting the flight tests.
For that, the real-time simulator nodes were implemented.

The first simulator used the pressure and the IMU data sent by the
Crazyflie for its position estimation. It is based on a second order Runge-
Kutta method. However, as it didn’t take into account that all the IMU
measurements were noisy and bias, this simulation has been put aside.

The second simulator took into account the position estimation from
the Whycon node as well as the IMU measures. Indeed, the orientation
measurements from the Whycon seemed less accurate than the one from the
IMU measurements. This means the only computation here were a simple
integration of the angular speed from the IMU to give the drone orientations.

27

Figure 5.1: Overview of the simulation (with Matplotlib)

28

5.1.2 position control with off-board position estimation

The first attempt was to detect the drone without using an already existing
method. It could have been a way to eventually detect the Crazyflie with
a less restrictive and more customed method than with a target on top of
the drone. It used the OpenCV tools to do so. The results were that even
recognize the marker pattern on a motionless quadrotor was an unnecessary
difficulty. The bulkiness of the detection system was then neglected, as long
as it didn’t obstruct the drone movement, and provide a reliable method of
localisation.

The Whycon method was the solution chosen to do so. The node control-
ling the drone subscribed to the IMU and the Whycon topics. A simple PID
have been implemented for the regulation. Finally, the node published on
the cmd_vel topic, which takes speeds to give to the Crazyflie in the world
frame XYZ axes. The node graph is represented on the next figure.

Figure 5.2: Node graph of the external_video2 setup (with RQT)

The results publish by the Whycon node were good for the position es-
timation, but were less accurate that the drone IMU measures for the ori-
entation. The solution was to use both of them for their respective best
measurements. The new node graph is in the figure below.

The results were the position estimation provided acceptable values, but
the PID regulation led to drifts and instabilities. It could have been resolved
by finetuning the PID coefficients, but that would not show the strength of
the stabilizer implemented in the firmware. For this reason, it was necessary
to go to the final step.

29

Figure 5.3: Node graph of the final external_video2 setup (with RQT),
named here camera_hover_...

5.1.3 position control with on-board position estimation

The stabilizer is composed of a position estimator and a regulation algo-
rithm1. Both of them are more complex and optimized than the controllers
done in the previous steps.

It creates a node that subscribed once again to the IMU and Whycon
topics. It then publish the estimated drone attitude on the external_position
topic, that refined the Kalman filter estimation. Then the node published
the desired position on the cmd_position topic. The following figure is the
node graph obtained.

Figure 5.4: Node graph of the external_video3 setup (with RQT)

This method should permit a better stabilization, as the computation
are mostly done on-board, and is therefore faster. The drone could know
regulate itself properly for short duration (a few seconds) even without new
update from the ground, which allow to reduce the radio transmission rate
previously necessary for stabilisation.

1See the corresponding chapter for more details

30

5.2 results

The two videos in appendix B show the drone attitude for two different
desired positions. One can see the drone reaches the desired position in both
cases, then return approximatively to the initial position. Other attempts
have been done, leading a few time to crashes, and sometimes to movements
around the desired point.

Figure 5.5: Trajectory with oscillations in the front-rear and left-right axes

5.3 discussion

The approximate return position was due to the fact the initial position
was situated on the ground, which created a discontinuity on the regulation
(oscillations led to bumping on the ground). Moreover, this position was
given just before the ending of the algorithm. The regulation couldn’t work
long enough to do its job.

From the data collected, all the crashes were due to the fact the position of
the drone couldn’t be detected any longer at a certain time of the autonomous
flight. There were three reasons possible to that:

• The paper with the landmark on it bended. If this type of localisation
(landmark on the drone) will be keep in the future, it will be necessary
to use another material that doesn’t deteriorate easily, without adding
to much weight, and therefore changing the centre of inertia;

• The drone fly out of the camera frame. It could be that the position
given were to far away, or the regulation moved the drone with an
exaggerated amplitude. Choosing safer positions or looking into the
regulation algorithm parameters could be solutions to this problem;

• The drone wasn’t facing the camera anymore. The orientation is only
estimated by the IMU, whom measurements are noisy and could easily
lead to errors other time. Moreover, the regulation changes the roll

31

and the pitch to move the drone adequately. Both of these reasons
could hide the marker. One could change the yaw rate dynamically to
always have the head of the Crazyflie facing the camera.

As said earlier, the drone moved around the desired position before sta-
bilizing. This is mostly due to the fact the PID regulation parameters are
set to work outside. Indeed, because of the wind, the drone couldn’t be as
nervous as indoors. As these settings are safer, the drone is bound to react
slowly.

Overall, it was a success, and the objectives were accomplished.

32

Chapter 6

Conclusion and Future

6.1 Future possibilities

The experimentation was thought as an overview of the Crazyflie potential.
As seen in the previous chapter, it could be finetuned to obtain a more
reliable result if felt necessary.

Another solution to improve it would be to change the localisation algo-
rithm. Indeed, the EKF is currently the only position estimator working in
the firmware. There are works on other localisation methods [2] [5] that
could be interesting to develop.

The sensors currently used could be completed or replaced by others.
The Loco positioning system1 developed by the company, for example, uses
beacons to improve the localisation. The target on the Crazyflie could be
modified to allow changes of orientation as in the picture below took from
the Whycon website.

Once flying the drone as wanted will no longer be an issue, it could be
interesting to give the Crazyflie a mission to do. One could map a room with
obstacles. A first step would be for an embedded camera to detect markers
with unknown positions, and determine their positions in the room. It could
alternatively help to improve the localisation.

If the Hardware is thought as insufficient, improving it could be a so-
lution. The payload capacity is limited, which makes it challenging to add
additional piece of technology. To help doing so, Bitcraze developed decks
for different uses, working with one of these could be useful (the flow deck2,
the Loco positioning deck3, the Qi charger deck4, or the prototyping deck5).

Adding a camera on the drone was done, but one could choose another
camera, or embed it more adequately (e.g. use the micro-USB port to supply

1https://www.bitcraze.io/loco-pos-system/
2https://www.bitcraze.io/flow-deck/
3https://www.bitcraze.io/loco-pos-system/
4https://www.bitcraze.io/qi-charger-deck/
5https://www.bitcraze.io/prototyping-deck/

33

Figure 6.1: localisation quadrotor formation performed by the Whycon
method

it, and possibly communicate with it). Moreover, one could find another
way to calibrate the camera, as the chessboard didn’t worked properly on
the embedded camera selected.

Working on the interaction between multiple quadrotors could be achieved
by studying the Crazyswarm6 project. This is a ROS project to control mul-
tiple Crazyflie at once with only one crazyradio. The implementation in the
official Crazyflie ROS project is in progress.

6.2 Conclusion

This project was to create a controller that represent a research tool that
the Crazyflie is. This was done by presenting the state of art, as well as the
theories applied to make this project possible. The most valuable parts for
the theoretical approach are the localisation and the regulation algorithms
implemented in the firmware of the quadrotor. The ROS project used for the
experimentation is also an important tool to interact with the drone reliably.

6https://github.com/USC-ACTLab/crazyswarm

34

Eventually, this work highlights what could be interesting to work onto.
It is important to insist on the fact it is an open-source project with an

active community. Stayed tune to new community progresses is a necessity.

6.3 Outcomes on my project

As the place of drones in today’s society is more and more prominent, the
need of engineers that have knowledges in these devices should increase.
Therefore, working on the Crazyflie is a good opportunity to improve my
professional profile. Moreover, I learned more about localisation and regu-
lation, which are important tools a robotic engineer has to master. Finally,
the interaction I had with the other members of the research centre permit
me to learn more about organisation in this type of infrastructure.

35

Bibliography

[1] Wolfgang Hoenig, Christina Milanes, Lisa Scaria, Thai Phan, Mark Bo-
las, and Nora Ayanian. Mixed reality for robotics. In IEEE/RSJ Intl
Conf. Intelligent Robots and Systems, pages 5382 – 5387, Hamburg,
Germany, Sept 2015.

[2] Manon Kok, Jeroen D. Hol, and Thomas B. Schön. Using inertial sensors
for position and orientation estimation. Foundations and Trends in
Signal Processing, 11(1-2):1–153, 2017.

[3] T. Krajník, M. Nitsche, J. Faigl, T. Duckett, M. Mejail, and L. Přeučil.
External localization system for mobile robotics. In 16th International
Conference on Advanced Robotics (ICAR), Nov 2013.

[4] Tomáš Krajník, Matías Nitsche, Jan Faigl, Petr Vaněk, Martin Saska,
Libor Přeučil, Tom Duckett, and Marta Mejail. A practical multirobot
localization system. Journal of Intelligent & Robotic Systems, 2014.

[5] Sebastian O.H. Madgwick. An efficient orientation filter for inertial and
inertial/magnetic sensor arrays, April 2010.

[6] Daniel Mellinger and Vijay Kumar. Minimum snap trajectory genera-
tion and control for quadrotors. In IEEE International Conference on
Robotics and Automation, Shanghai, China, May 2011.

[7] Mark WMueller, Michael Hamer, and Raffaello D’Andrea. Fusing ultra-
wideband range measurements with accelerometers and rate gyroscopes
for quadrocopter state estimation. In 2015 IEEE International Con-
ference on Robotics and Automation (ICRA), pages 1730–1736, May
2015.

[8] Mark W Mueller, Markus Hehn, and Raffaello D’Andrea. Covariance
correction step for kalman filtering with an attitude. Journal of Guid-
ance, Control, and Dynamics, pages 1–7, 2016.

[9] Matias Nitsche and Tomáš Krajník. WhyCon: Stable release, GitHub.
May 2014.

36

[10] Matias Nitsche, Tomáš Krajník, Petr Čížek, Marta Mejail, and Tom
Duckett. Whycon: An efficent, marker-based localization system. In
IROS Workshop on Open Source Aerial Robotics, 2015.

37

Appendix A

Archived work

You will find in the same archive than this report all the files necessary to
start working from where a stopped. You should have:

• An installation tutorial

• The two virtual machines (as presented in the tutorial)

• The Solidworks parts of an embedded camera casing

• the assembly instructions for this casing

Edit: Some of the above files aren’t attached to fit the repository size.
Please, contact me (fabrice.poirier@ensta-bretagne.org) for more informa-
tion.

38

Appendix B

Flight videos

Two videos show what look like autonomous flights with the on-board Kalman
filter fed by an external camera (position determined by whycon). The pa-
rameters were:

• X-Y-Z__0.0-0.0-0.1.mp4 : reach position (x,y,z) = (0.0,0.0,0.1) for
10 seconds, then lands at (0.0,0.0,0.0)

• X-Y-Z__0.0-0.1-0.1.mp4 : reach position (x,y,z) = (0.0,0.1,0.1) for
10 seconds, then lands at (0.0,0.0,0.0)

39

Appendix C

Evaluation report

40

	Introduction
	University of Manchester : Autonomous system research centre
	Background
	Economic analysis
	Internship in the research centre

	About the Crazyflie
	Goals
	Motivation

	State of the art
	Hardware
	Firmware
	Softwares

	Stabilizer presentation
	Localisation
	Command
	Regulation

	ROS project
	Camera localisation
	Crazyflie_ros
	crazyflie_driver
	crazyflie_controller
	crazyflie_simulation

	Experimentation
	methodology
	observation of the drone behaviour
	position control with off-board position estimation
	position control with on-board position estimation

	results
	discussion

	Conclusion and Future
	Future possibilities
	Conclusion
	Outcomes on my project

	Archived work
	Flight videos
	Evaluation report

